Search for Nucleon Decay in the future LENA detector

BLV 2011 Workshop Gatlinburg, Sept 22

Michael Wurm Universität Hamburg

Large volume liquid-scintillator detectors

Kate Scholberg, TAUP2011

What waits at the 50-kt scale?

Precision measurements

 of known neutrino sources

 Sun, Earth's interior, Supernovae

 nuclear reactors, EC sources

2) Search for very faint signals Diffuse SN neutrinos, Dark Matter annihilation

> 3) Access to the GeV energy region Long-baseline neutrino beams, atmospherics, proton decay

LENA detector layout

$LAGUNA \rightarrow LAGUNA-LBNO$

- Consortium of European science institutions and industry partners
- Design studies funded by the European Community (FP7)
- LAGUNA: detector site, cavern, and oscillation baselines (2008-11)
- LAGUNA-LBNO: detector tank, instrumentation, and beam source

(2000 11)

Considered proton decay modes

 $p \rightarrow \pi^0 + e^+$

favored by standard GUTs

predicted proton lifetime: $\tau \sim 10^{31-?}$ yrs

current best limit from SK: $\tau \ge 5.4 \times 10^{33}$ yrs

Large detection efficiency in water, and in this case, size does matter ...

$p \rightarrow K^+ + \overline{\nu}$

favored by SUSY, large BR in SUGRA

predicted proton lifetime: $\tau \le 10^{34\text{-}35} \, \text{yrs}$

current best limit from SK: $\tau \ge 2.3 \times 10^{33} \text{ yrs}$

Low efficiency in water as the kaon is below Cherenkov threshold. → Window for "small" detectors

Signature in liquid scintillator

→ Fast coincidence of K⁺ and decay products, subsequent decays of muons
 → Two-body decays (p, K): decay particles feature fixed energies

Nuclear effects for proton decays in Carbon

Simulated proton decay events

Analysis based on sum signal of all 10⁴ PMT channels.

 \rightarrow Kaon decays after 18ns

Experimental challenge: recognize fast Kaon decays $(\tau = 12.8ns)$

ightarrow Kaon decays after 5ns

by Teresa Marrodán Undagoitia, PRD 72 (2005) 075014

Atmospheric neutrino background

Signal: Proton decay

Kaon decaying after 5ns

Background: Atmospheric v's

CC reaction of ν_{μ} on target nuclei:

 $\nu_{\mu} + {}^{A}Z \rightarrow {}^{A}(Z+1) + \mu^{-}$

pulse-shape analysis of signal rise-time

Rise time analysis

→ Background from atmospherics: maximum μ rise time is limited

• 2x10⁴ signal/bg events simulated

for t_{rise} > 7ns, no bg event is selected
 → bg suppression of at least 5x10⁻⁵!

remaining efficiency: 67%

Coincidence signal: rise-time is spread to larger values

Resonant production of hadrons

Single pion production

$$\nu_{\mu} + \mathbf{p} \rightarrow \mu^{-} + \pi^{+} + \mathbf{p}'$$

• $\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \quad \tau_{\pi^{+}} = 26 \text{ ns}$
• $\mu^{+} \rightarrow \mathbf{e}^{+} + \nu_{\mathbf{e}} + \overline{\nu}_{\mu}$

- ightarrow 2nd signal from π decay very small
- \rightarrow rejection possible

- Production of kaon + hyperon ($\Delta S=0$) $\nu_{\mu} + n \rightarrow \mu^{-} + K^{+} + \Lambda^{0}$ $\wedge^{0} \rightarrow p + \pi^{-} \quad \tau_{\Lambda^{0}} = 0.26 \text{ ns}$ $\wedge^{0} \rightarrow n + \pi^{0}$ $\nu_{\mu} + n \rightarrow \mu^{-} + K^{+} + \Lambda^{0} + \pi^{0}$
- Single kaon production (Δ S=1) $\nu_{\mu} + p \rightarrow \mu^{-} + K^{+} + p$

→ prompt signal too large (K⁺+ Λ^0) → rejection possible

 → no discrimination if one decay e⁻ coincides with 1st/2nd signals (4%)
 → background rate: 0.064 per year

Efficiency and detector performance

(3.4ns)

 $(10^4 \gamma/MeV)$

Most important parameter

Time resolution for pulse shape analysis

depends mostly on scintillator properties:

- fast fluorescence component
- light yield
- scintillator transparency:
 - λ attenuation length

 λ_a absorption length λ_s scattering length

→ no large spread expected

λ (m)	$\lambda_a \ ({ m m})$	λ_s (m)	ε	Y (pe/MeV)	Cut (ns)
5	10	10	0.56	58	10
7	14	14	0.65	116	8
9	18	18	0.67	161	7
10	12	60	0.65	110	7
10	15	30	0.69	145	7
10	20	20	0.66	180	7
10	30	15	0.63	230	8
10	60	12	0.62	303	9

Projected sensitivity for $p \rightarrow K^+ \overline{v}$

Expected impact of tracking

on p→K⁺v

- will further increase efficiency to suppress μ from atmospheric ν_{μ} 's
- for kaon production from atmospherics:

 $\nu_{\mu} p \to p K^+ \mu^- \to p \left(\nu_{\mu} \mu^+\right) \mu^-$

→ rejection of double-muon events will increase background-free exposure

on p→π⁰e+

allows to discriminate decay signature

 $p \to \pi^0 e^+ \to (\gamma \gamma) e^+$

from CC atmospherics background

 still, both detector mass and detection efficiency will be of the order of Super-K

Tracking principle:

- In liquid scintillator, HE particles create Cherenkov-like light cone from superposition of spherical light fronts
- Reconstruction of single lepton tracks for E>0.2GeV,

e.g. $\Delta E=0.5\%$, $\Delta \theta=4^{\circ}$ for single muons @ 0.3GeV

Conclusions

 Very-large volume liquid-scintillator detectors like LENA offer a lot of particle, geo- and astrophysics.

■ The visibility of the kaon allows for a high detection efficiency for p→K⁺v.

After 10 years of background-free measurement, a limit of p > 4x10³⁴ yrs can be established.

A white paper has been prepared this spring and can be found at <u>arXiv:1104.5620</u>

Backup Slides

J.

Summary

The next-generation liquid-scintillator neutrino observatory LENA

Michael Wurm,^{1,2,*} John F. Beacom,³ Leonid B. Bezrukov,⁴ Daniel Bick,² Johannes Blümer,⁵ Sandhya Choubey,⁶ Christian Ciemniak,¹ Davide D'Angelo,⁷ Basudeb Dasgupta,³ Amol Dighe,⁸ Grigorij Domogatsky,⁴ Steve Dye,⁹ Sergey Eliseev,¹⁰ Timo Enqvist,¹¹ Alexey Erykalov,¹⁰ Franz von Feilitzsch,¹ Gianni Fiorentini,¹² Tobias Fischer,¹³ Marianne Göger-Neff,¹ Peter Grabmayr,¹⁴ Caren Hagner,² Dominikus Hellgartner,¹ Johannes Hissa,¹¹ Shunsaku Horiuchi,³ Hans-Thomas Janka,¹⁵ Claude Jaupart,¹⁶ Josef Jochum,¹⁴ Tuomo Kalliokoski,¹⁷ Pasi Kuusiniemi,¹¹ Tobias Lachenmaier,¹⁴ Ionel Lazanu,¹⁸ John G. Learned,¹⁹ Timo Lewke,¹ Paolo Lombardi,⁷ Sebastian Lorenz,² Bayarto Lubsandorzhiev,^{4,14} Livia Ludhova,⁷ Kai Loo,¹⁷ Jukka Maalampi,¹⁷ Fabio Mantovani,¹² Michela Marafini,²⁰ Jelena Maricic,²¹
Teresa Marrodán Undagoitia,²² William F. McDonough,²³ Lino Miramonti,⁷ Alessandro Mirizzi,²⁴ Quirin Meindl,¹ Olga Mena,²⁵ Randolph Möllenberg,¹ Rolf Nahnhauer,²⁶ Dmitry Nesterenko,¹⁰ Yuri N. Novikov,¹⁰ Guido Nuijten,²⁷ Lothar Oberauer,¹ Sandip Pakvasa,²⁸ Sergio Palomares-Ruiz,²⁹ Marco Pallavicini,³⁰ Silvia Pascoli,³¹ Thomas Patzak,²⁰ Juha Peltoniemi,³² Walter Potzel,¹ Tomi Räihä,¹¹ Georg G. Raffelt,³³ Gioacchino Ranucci,⁷ Soebur Razzaque,³⁴ Kari Rummukainen,³⁵ Juho Sarkamo,¹¹ Valerij Sinev,⁴ Christian Spiering,²⁶ Achim Stahl,³⁶ Felicitas Thorne,¹ Marc Tippmann,¹ Alessandra Tonazzo,²⁰ Wladyslaw H. Trzaska,¹⁷ John D. Vergados,³⁷ Christopher Wiebusch,³⁶ and Jürgen Winter¹

¹Physik-Department, Technische Universität München, Germany
 ²Institut für Experimentalphysik, Universität Hamburg, Germany
 ³Department of Physics, Ohio State University, Columbus, OH, USA
 ⁴Institute for Nuclear Research, Russian Academy of Sciences, Moscow, Russia
 ⁵Institut für Kernphysik, Karlsruhe Institute of Technology KIT, Germany
 ⁶Harish-Chandra Research Institute, Allahabad, India

Tracking in LENA – scintillation light front

HE particles create spherical light fronts along their track that lead in superposition to a Cherenkov-like light cone. **But: about 50x more light!**

Tracking in LENA

number of hits: 0-59

Photoelectron distribution for 0.5 GeV muon

Sub-GeV tracking: Strategy

Lepton flavor identification

For beta beams:

 v_{μ} appearance $\rightarrow v_{e}$ rejection.

i) Muon-decay electron:

- muon has to decay sufficiently late
- energy threshold to reject spallation neutrons
- v_e rejection efficiency: >99.95% (95%C.L.)
- v_{μ} acceptance: 85%

ii) Pulse-shape discrimination:

- rise time and peak width
- about 80% efficiency for v_e rejection, but very powerful for v_e selection
- discrimination of CC (v_e + π^{\pm}) interactions?

Angular resolution, ν_{μ} QE events

Energy resolution, ν_{μ} QE events

