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● New-generation of large-scale, low-threshold, directional detectors
● Combine advantages of Water-Cherenkov- and liquid scintillator-

detectors 

● Advantages:
● Scintillation: High light yield 

→ Good energy resolution + low threshold
● Cherenkov-light: Non-isotropic emission

→ Directional information

+ Particle identification by ring-characteristics
● Combined: C/S-ratio

→ Improved particle discrimination 

Theia Concept/Motivation

ASDC Whitepaper October 2014 arxiv:1409.5864

Wei, Hanyu et al. 
arXiv:1607.01671

Number of Cherenkov- and scintillation 
photons for different particles in LAB

Crucial: Need to be able to 
separate both light species!

Also important: 
Low cost & high transparency of water
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Cherenkov-/Scintillation Light Separation

● Three different signatures + new technologies
– Cherenkov-rings → optimize light ratio 

→ Water-Based-Liquid-Scintilator (WBLS)/low light yield scintillator 
– Emission time profile 

→ fast timing (sensors)/slow scintillator (cocktail)
– Wavelength 

→  filtering/optimized sensors

+ Advanced reconstruction methods

Ben Land, Berkley

1 GeV β, 5% WbLS, 50kt, 90%

Wei, Hanyu et al. 
arXiv:1607.01671

 C. Aberle  et al.,  JINST 9 
P06012 (2014)

0.1 ns TTS
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The THEIA Detector
● Large-scale detector (30-100 kton)
● Water-based LS target
● Fast, high-efficiency photon detection

with high coverage
● Deep underground (e.g. Homestake)
● Isotope loading (Gd, Te, Li...)
● Flexible! Target, loading, configuration

 ➡ Broad physics program!

White paper: M. Askins et al.,  Eur.Phys.J.C 
80 (2020) 5, 416, arXiv:1911.03501

Dimensions for a 
170 kt detector

Concept paper: arXiv:1409.5864 

45 m

60 m

 30 kt detector, 
that would fit 4th 
DUNE cavern
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Theia Physics Program

KM3Net collaboration, J.Phys. 
G43 (2016) no.8, 084001

S.M. Usman, et al., Scientific Rep. 5,  13945 (2015)

Jorge L. Lopez, Rept.Prog.Phys. 
59 (1996) 819-865

Long-baseline physics Solar neutrinos 

Nature 562 (2018) no.7728, 505-510

Supernova burst  
neutrinos & DSNB

Wikipedia.de

Ge, Shao-Feng, et al. JHEP 1510 
(2015) 077

Neutrinoless double beta decay

and more ...

Nucleon decayGeo-neutrinos
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Using Other Experiments as R&D Testbeds

10kt

30t

1kt

780t
200t

WBLS in 
phase III

Courtesy to G.D. 
Orebi Gann

Broad community 
interest!
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Using Other Experiments as R&D Testbeds

10kt

30t

1kt

780t
200t

WBLS in 
phase III

Courtesy to G.D. 
Orebi Gann

Broad community 
interest!

→ All the work presented in this talk has been 
done using simulations of other detectors, but has 

been carried out with Theia in mind! 
(from people interested in Theia)
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How can Theia profit from ML?

● Make the most from the data:
– Particle identification
– Cherenkov-Separation

● Ring counting/analysis

→ Particle identification
– Direction analysis
– Topological reconstruction 

● Speeding up MC production
● Maybe combine reconstruction & simulation

in an invert-able network
● Optimizing the detector design

– Requires understanding how data quality and 
performance are related to detector properties! 

Will not cover 
this here!
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How can Theia profit from ML?

● Make the most from the data:
– Particle identification
– Cherenkov-Separation

● Ring counting/analysis

→ Particle identification
– Direction analysis
– Topological reconstruction 

● Speeding up MC production
● Maybe combine reconstruction & simulation

in an invert-able network
● Optimizing the detector design

– Requires understanding how data quality and 
performance are related to detector properties! 

Will not cover 
this here!

Many different design options 
→ Reconstruction algorithms need to be portable 
→ This is easier for ML 

(Once I have architecture, I can train on many different data sets)
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Particle Identification at MeV Energies
● Detector environment:

– JUNO full MC

→ 20kt LAB-PPO + bis-MSB (pure LS)

      → ~3% Cherenkov-light (2/3 of this is scatter)

      total coverage ~80%

      ~5000 dynode PMTs (s
TTS

 = 1.27 ns) 

      ~12000 MCP PMTs (s
TTS

 = 5.1 ns)

● Assumptions: 
– Know vertex from previous reconstruction methods

● Compared three methods: 
– Gatti: Time of Flight (ToF) corrected time spectrum of all hits
– ML: Uses the same data (1D-data)
– Topological reconstruction (TR): 3D picture of event 

signature (+ cut based analyses / ML on 3D)
(TR: Optimized for electron events)

→ Much worse TTS than 
Theia and no WBLS
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Results Particle Identification I

● Discrimination based on long tail of a and proton time spectrum

● ML slightly better than Gatti
● TR not compatible (but also not optimized for this)

a/b discrimination
 at 90 %efficiency

p/b discrimination
 at 90 %efficiency

DS3DS3
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L. Ludhova et al. arXiv:2007.02687
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Results Particle Identification II

● Discrimination based on topological differences
(additional g, several Compton scattering points, etc.)

● ML best for e+/e- but TR best for e-/g  
● Gatti not compatible (but also not optimized for this)

e+/e- discrimination
 at 50% efficiency

e-/g discrimination
 at 50% efficiency

DS3DS3
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L. Ludhova et al. arXiv:2007.02687
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Results Particle Identification III
● Data-set 1: No TTS, perfect vertex, no DCR
● Data-set 2: Added TTS and realistic vertex
● Data-set 3: Added Dark Count Rate (DCR)

e+e- discrimination e-/g discrimination

Gap between data-set 1 and 2 indicates huge potential of good TTS
(good TTS will also affect the vertex resolution)

Pre
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L. Ludhova et al. arXiv:2007.02687
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Machine Learning Example: C-10

● Studied in A. Li et al. , arXiv:1812.02906
● Using a Convolutional Neural Network (CNN)
● In KamLAND-like detector (~1ns s

T
, 23% QE, 16% coverage) 

→ 62% bkg reduction at 90% signal efficiency

     83.5% for JUNO-like coverage and QE, 

     98% for perfect light collection
(time delay of ortho-positronium decay not used)

● C-10 is background (bkg) for solar-n and 0nbb
● I see similar potential for I-130 & Cs-136 (0nbb bkg)

One positron + at least 
one 718 keV g

Conclusion: High granularity and statistics (coverage) are important!
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Directional Reconstruction:
What Kind of Network do we Use?

● CNN:
– CNN use structured data in Cartesian space
– Converting unstructured and sparse 3D Data (our PMT-positions) 

can lead to loss of information and quantization problems
– Computation intensive if volume approach or a combination of 

several views is used to handle 3D point clouds

● Graph-Neural-Networks
– Use unsorted nodes + connections (edges)

→ All operations need to be invariant against permutation 

(like max or average)
– Nodes and edges can have features (color, id, ...)
– Nodes usually not equidistant → hard to use kernel based filters

– Hard to get power of convolution integrated 
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Choice of ML-Tool: PointNet

● PointNet:
– Optimized for point clouds
– Can do classification and segmentation
– Each point is a vector (x,y,z) + features (no edges)
– Operating on each point independently
– Subsequently applying a symmetric function to accumulate features (max pooling)

→ Invariant against permutation by using max pooling

+ not so good in capturing local features
– Robust to various kinds of input corruptions

Charles R. Qi et al.: https://arxiv.org/abs/1612.00593v2
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Choice of ML-Tool: DGCNN
● Dynamic Graph CNN (DGCNN):

– Independent neural network module

– Can be used with PointNet (also has been in original publication)

– Also uses only symmetric aggregation function (like the max pooling in PointNet)

– Constructs local neighborhood graph using closed k-points in (feature) space

(→ Needs to define metric to measure distances in feature space)

–  Applying convolution-like operations on the edges connecting neighboring pairs of points 
(called EdgeConvolution)

– The neighborhood graph is rebuild (in feature space) after each layer

→ Graph changes dynamically

→ No deterministic neighborhood relation 

– Stacking this propagates local features over long distances and thus enables connection to 
global features

Yue Wang et al.: https://arxiv.org/abs/1801.07829
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Our Network

● Use always the same k-neighbors 
● Instead of finding neighbors in the feature space of each layer
● Made 'static' again by using always same neighborhood graph

Output: 
Normalised 
direction vector
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Data Treatment

● Assume vertex to be known by other methods!

Use this to correct signals for time of flight

● Use special projection on unit-sphere:

Project PMT-position on unit sphere around vertex 
→  Angular position for each signal

Use time to modulate distance of point to origin
→ Time deformed sphere around vertex

 

All signals surviving 2.75 ns 
time cut projected on unit 
sphere around vertex (red)



 10/07/20 20

Influence of Training-Data

*

* 100,000 events at detector center, rest evenly distributed along z-axis

at center
+ z-axis
+ use more data points
+ use projection on unit-sphere

First three 
colors:

No projection on 
unit sphere
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without time or vertex uncertainties
Dynoden-PMTs and vertex uncertainties
3 cm vertex shift in flight direction
3 cm vertex shift without uncertainties

Final Results: JUNO

3 cm bias of vertex in flight direction is included (green):
As expected from vertex reconstruction (that assumes only scintillation light)

Blue & red line: 
All PMTs used (80% coverage)

Green & yellow line: 
Only dynode PMTs (25% coverage)

Conclusion: 

- Not much directional information in JUNO
- But a change of strategy might help to improve (do not rely on vertex)
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Results with better TTS
● Assuming 1 ns TTS for all PMTs (80% coverage) 

→ Theia-like instrumentation

Pre
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Green line: 
1 ns TTS, 80% coverage, 
3 cm vertex bias,
6 cm/√E vertex resolution
0.1 ns vertex time resolution

Blue & red line: 
The same as before

Probably need to extract vertex and direction simultaneously to further 
improve this!
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Probably need to extract vertex and direction simultaneously to further 
improve this!

Results with better TTS
● Assuming 1 ns TTS for all PMTs (80% coverage) 

→ Theia-like instrumentation
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Green line: 
1 ns TTS, 80% coverage, 
3 cm vertex bias,
6 cm/√E vertex resolution
0.1 ns vertex time resolution

Blue & red line: 
The same as before
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Remark:  Here only 3% Cherenkov-light 

(in WBLS much higher ratio)

→ Should be much easier in WBLS (work in progress!) 
(but will also depend on how fast the scintillation is in WBLS)

● The same DG-CNN could also be used to separate Cherenkov from 
scintillation signals
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Goals at GeV Energies

● Non-ML methods: Full topological reconstruction can reveal many details
● But: Very computing intensive & lack robustness in some cases
● Question: Can ML do better?

365 MeV p0

(LENA)

g2

g1

Caveat: Used MC-truth vertex

365 MeV p0

(LENA)

g2

g1

Caveat: Used MC-truth vertex
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How to do Something Similiar with ML?

● Scenario used:
● Toy-MC simulating scintillation along random 

track with a high emission point (peak)
● No light attenuation or scattering 

(otherwise full LS model)
● Cubic detector with 4m edge length
● 100 PMTs with 1ns time resolution per wall 

(full coverage)

● Two output goals:
● Coordinates of start-, end- and peak-position
● Voxel reconstruction
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ML Architecture For Shower Reconstruction

● First stage: Dynamic Graph CNN
● Second stage: Fully connected layers (standard CNN)
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First Results: Shower (Peak) Finding

Promising first results:

Next steps:
- Go to more realistic detector/simulation
- Look at more complicated events
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Outlook: First Results Voxel 
Reconstruction

Red: MC Truth
Blue: Network output

Result of 
homogeneous network

Result after 
propagation layers

Result heterogeneous 
network (after training)

Using L1-regularization in loss function

W
ork

 in
 p

ro
gre

ss
!
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Event Classification with CNNs in ANNIE

● Water-Cherenkov detector (26 ton) operated in 
Booster-neutrino beam (at Fermilab)

● First neutrino experiment using LAPPDs
● → TTS ~ 0.1 ns, spatial resolution ~ 1mm
● Assumed 24 LAPPDs in simulation for this study 

Single ring/disk Multi rings/disks
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Identifying CCQE-0p Events
● Two classification tasks:

Result: Up to 5%  increases of accuracy compared to classical methods
→ Efficiency > 92% for each task (impurity <0.3%)

SR

10k 
Test 
Set

PMT+LAPPD 5x5

Preliminary

20k 
Test 
Set

Preliminary

Electron vs. muon
Single ring (SR) vs. 

multi ring (MR)

CCQE-0p 
candidates
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Summary/Conclusion
● Theia is a proposed detector

– Large community interest, collaboration has been formed
– White paper: M. Askins et al.,  Eur.Phys.J.C 80 (2020) 5, 416, arXiv:1911.03501 

● ML learning is a central to reach its full potential
– Particle Identification in pure LS already very successful

● Profits a lot from fast timing, high granularity and large coverage
● Separating Cherenkov-light will increase potential further

– Directional reconstruction difficult in LAB+PPO+bis-MSB (MeV energies)

→ The right cocktail (WBLS, slow LS, ...) will help a lot!

● Goal: Unlock power of C/S-ratio and ring-counting

A. Elagin et al., arXiv:1609.09865
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Backup slides
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Theia Interest Group

Picture from 
FROST-Workshop 

2016 in Mainz

Most of these institutes joint the Theia proto-collaboration!
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Bringing everything together

10kt

30t

1kt

780t
200t

WBLS in 
phase III

Courtesy to G.D. 
Orebi Gann

Broad community 
interest!
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Community Interest
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ANNIE CNN:Architecture
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Influence of Directionality/Particle ID
● Cherenkov-light 

– Can reveal direction of solar neutrino events
– And help particle identification 

● Cutting events pointing away from sun reduces bkg
● Efficiency will strongly depend on scintillator & detector properties

(MC-simulations for 50% coverage in water show 80% rejection of B-8 bkg with 75% signal efficiency) 
(R. Jiang & A. Elagin, arXiv:1902.06912: 65% coverage in LAB →  >50% rejection with 70% signal efficiency)



Henning Rebber
PID with Topological 3D 

ReconstructionMotivation

38

Which events do we want to discriminate  
- and why?
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Decay Schemes I-130 & Cs-136

https://www.nndc.bnl.gov/nudat2
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● Using dichroic filter 

(transmitting above or below a certain threshold, reflecting the rest) 
● Optimal Cut for LAB-PPO (2g/l): 450 nm

Full description in T. Kaptanoglu et al., JINST 14 (2019) no.05, T05001

Cherenkov-Light Separation by Wavelength

T. Kaptanoglu et al., JINST 14 (2019) no.05, T05001

Transmission 
curve of 506 nm 
longpass  filter

Reflection
 curve of 506 nm 
longpass  filter

Measured time profile of transmitted (left) and reflected (right) light from LAB-PPO
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Long-Baseline Physics with Theia 

● Ring-imaging for long-baseline physics
● SK & HK improved reconstruction methods a lot

→ Theia competitive long-baseline 

Theia White Paper
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Solar Neutrinos with Theia
● Directionality very potent tool
● Also powerful: Discrimination point-

like & non-point-like events (like C-10)
● Li-loading can make CC-channels 

accessible
30kt WBLS

1% Li-7 loading, 
100 g/MeV

Additional angular cut 
at cos(f

Sun
)=0.4

Dependence of CNO-Sensitivity on 
angular resoultion

Theia White Paper, to be published soon (Courtesy to R. Bonventre &G.D. Orebi Gann)
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Supernova Neutrinos in Theia
Huge statistics + Flavour information

Energy spectrum
(measure it time resolved)

● Core-collapse SN at 10kpc
● Opens new physics window:

– Test SN models
– Information about MH 
– Multi-messenger astronomy
– Early warning with precise pointing (< 1°)
– ...

Theia White Paper
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DSNB with Theia
● Combines Neutrino signal of past SN
● Encoded information from:

– Star formation rate
– Average core-collapse neutrino spectrum

● Advantage Theia: 
– Pulse-shape discrimination, Ring-Counting C/S-ratio

→ 5s conceivable after 5 yr Theia White Paper
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DSNB with Theia
● Combines Neutrino signal of past SN
● Encoded information from:

– Star formation rate
– Average core-collapse neutrino spectrum

● Advantage Theia: 
– Pulse-shape discrimination, Ring-Counting C/S-ratio

→ 5s conceivable after 5 yr

17kt fiducial 
mass

Theia White Paper
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Nucleon Decay with Theia

● Triple coincidence: p → n K+ → Kaon decay → decay of decay product
● Invisible decay of oxygen nucleus: 

n → 3n → One 6.18 MeV g from excited nucleus

Theia White Paper
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Geo-Neutrinos with Theia
● Thousands of Geo-neutrino events per year

→ Precise measurement of Th & U components in spectrum
● Expected rate  would be 2s greater than the KamLAND rate after 1 year (at SURF)

→ First evidence for surface variation of flux possible

Theia White Paper
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0nbb in Theia: Expected Endpoint Spectra

Theia White Paper

● Resulting Sensitivity (90% C.L.):

After 10 years

(Signal loss due to B-8 rejection not included yet)
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Topological Reconstruction at High Energies

● Can make dE/dx and complex event 
structure visible (even in pure LS)

● Needs fast timing & good time resolution

365 MeV p0

(LENA)

g2
g1

Caveat: Used MC-truth vertex

See B.W. et al., arXiv:1803.08802
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My Basic Idea

Assumption:
● One known reference-point (in space & time)

● Almost straight tracks

● Particle has speed of light

● Single hit times available

Concept:

● Take this point as reference for all signal times
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The Drop-like Shape

Signal time = particle tof + photon tof

→ ct = |VXX| + n*|XXP| 

Vertex
(reference point 

on track)

track

PMT

light light 
emission emission 

XX

path of 
light
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Working Principle Part I Summary

● For each signal:
– Time defines drop-like surface
– Gets smeared with time profile

(scintillation & PMT-timing) 

– Weighted due to spatial constraints 

(acceptance, optical properties, light concentrator, …)

● → Spatial p.d.f. for photon emission points  

1 ns TTS

See B.W. et al., arXiv:1803.08802
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Working Principle Part II

That is what I call probability mask (PM)

● Add up all signals (Need arrival time for every photon)

● Divide result by local detection efficiency
→ Number density of emitted photons

● Use knowledge that all signals belong to same 
topology to 'connect' their information

→ Use prior results to re-evaluate p.d.f. of each signal

decrease 
cell size

decrease 
cell size

xy-projection

xy-projection

xy-projection

dE/dx 
accessible 

See B.W. et al., arXiv:1803.08802
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Loss Function

● Loss-function:  TF.Losses.Cosine_Distance
(Tensor-standart-Loss-Function)

● Minimizes: 

q = angle between reconstructed and true direction

● True direction:
– Used start direction of event
– Not average flight direction of electrons

Remark: Resolution for the later could be better, but at least for 
background reduction we are interested in the former. For correction of 
energy reconstruction it would be better to take average direction.

L=√(cos (θ−1))2
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Improving Liquid Properties
● Development of scintillating liquids

– WBLS (Brookhaven NL, JGU Mainz, TU Munich)

– Isotope loading (BNL, MIT) (Li,B,Ca,Zr,In,Te,Xe,Pb,Nd,Sm,Ge,Yb)

– Oil-diluted LS (JGU Mainz)

● Characterization (Brookhaven NL, JGU Mainz, TU Munich, ...) 
– Optical properties (Emission, attenuation, ..)

– Timing properties (Time spectrum, ortho-positronium, ...)

● Filtering methods (Attenuation, radiopurity)
– Nanofiltration (UC Davis)

– JUNO-test facility achieved A.L > 23 m (LAB + PPO + bis-MSB)

A.L. for 1% WBLS

Compare Bignel, Lindsey J., et al. 
JINST 10 (2015) no.12, P12009

Nanofiltration at UC Davis

New WBLS: JHU Mainz & TU Munich

Nanocrystal-Doped Liquid
Scintillator arXiv:1908.03564
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Finding the Right Cocktail
● CHErenkov Scintillation Separation

● Cosmic muon ring-imaging experiment
● Select vertical cosmic muon events
● Image Cherenkov ring in Q and T on fast PMT-array
● Allows charge- and time-based separation

Courtesy to 
G. D. Orebi Gann

First demonstration of Cherenkov-
light separation in LAB-PPO

 PRC 95 055801 (2017)

Development of 
similiar cell with 
LAPPDs at JGU 

Mainz

See also Eur. Phys. J. C (2017) 77: 811

Work at UC Berkeley 

Larger light path in 
liquid to study 

propagation effects

CHESS
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Photo Sensor Development 
(Fast & Efficient & Affordable & High Granularity)

● LAPPDs (Fast timing & high granularity)

● HQE 20” PMTs (Efficient & affordable)

MCP-PMT (NNVT)
Dynode-PMT 
(Hamamatsu)

Commercially available now (Incom Inc.)
Used in ANNIE + R&D at U Chicago

SiPM

● SiPM + active light guide               
(Very efficient + increasing affordability)

● Modular PMTs                               
(Good compromise of everything)

QE ~28%: Used in JUNO

Water-Cherenkov Test  Beam Experiment

Scintillating light guide

Work at U Tübing + JGU Mainz
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Cherenkov-Light Separation by Wavelength

● Using dichroic filter 

(transmitting above or below a certain threshold, reflecting the rest) 
● Optimal cut for LAB-PPO (2g/l): 450 nm

Full description in T. Kaptanoglu et al., JINST 14 (2019) no.05, T05001

● Studying application as light concentrator (U. Penn.)

T. Kaptanoglu et al., JINST 14 (2019) no.05, T05001

Measured time profile of transmitted (left) and reflected (right) light from LAB-PPO

T. Kaptanoglu et al., JINST 14 (2019) no.05, T05001

Transmission 
through 506 nm 
longpass  filter

Reflected by 
506 nm 

longpass  filter
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