3d-Topological Reconstruction in Liquid Scintillator

Presented by

Björn Wonsak

on behalf of

Felix Benckwitz¹, Caren Hagner¹, Sebastian Lorenz², David Meyhöfer¹,

Henning Rebber¹, Michael Wurm²

Dresden, 14th June 2018

¹Universität Hamburg – Institut für Experimentalphysik

²JGU Mainz – Institut für Physik – ETAP / PRISMA

JOHANNES GUTENBERG

UNIVERSITÄT MAINZ

DFG Deutsche Forschungsgemeinschaft

JG|U

What is 3d Topological Reconstruction?

Spatial distribution of the energy deposit

 \rightarrow Same abilities as fine grained detector

Motivation:

- Particle discrimination
- Identify shower locations
 - \rightarrow Better vetoing of cosmogenics

My Basic Idea

Assumption:

- One known reference-point (in space & time)
- Almost straight tracks
- Particle has speed of light
- Single hit times available

Concept:

• Take this point as reference for all signal times

The Drop-like Shape

Signal time = particle tof + photon tof

The Drop-like Shape

ct = $|VX| + n^*|XP| \rightarrow drop-like form$

The Drop-like Shape

ct = $|VX| + n^*|XP| \rightarrow drop-like form$

Working Principle Part I Summary

- For each signal:
 - Time defines drop-like surface
 - Gets smeared with time profile (scintillation & PMT-timing)
 - Weighted due to spatial constraints (acceptance, optical properties, light concentrator, ...)
- \rightarrow Spatial p.d.f. for photon emission points

Working Principle Part II

Image Processing

Performance with Muons in LENA

- Fully contained muons with 1-10 GeV
 - Angular resolution: $<1.4^{\circ}$ for E ≥ 1 GeV
 - Energy resolution: 10% · sqrt(E/1 GeV) + 2 %

(Gets better if scattered light is treated correctly)

See B.W. et al., arXiv:1803.08802

Electron/Muon Separation

Use longitudinal extent

 \rightarrow Clear separation down to 600 MeV

Additional Parameters like dE/dx might improve this

NC Background

• Started to look at π_0 in LENA

Computing Time

Full fine grained reconstruction is very time consuming

(21 iterations, 12.5 cm binning \rightarrow a few hours for a few GeV muon in LENA)

However:

- Easy to implement parallel computing techniques (already some success)
- Reconstruction strategy can be adapted with a configuration file
- Can use prior track information
- Already the first iteration with coarse grains includes a lot of information

• \rightarrow Need to find balance for a given question

- Cell size, number of iterations and number of PMTs used

Looking for Shower in Cosmic Events

• Result:

- 40 GeV muon crossing the whole detector
- With hadronic shower
- Used PM generated from fast track reconstruction
- 1m cell size, 1 iteration only \rightarrow much faster reconstruction

Bachelor thesis of Felix Benckwitz

Tracking at Low Energies (a few MeV)

JUNO

Central detector

- ~78% PMT coverage
- 18000 20" PMTs + 25000 3" PMTs
 - \rightarrow 1200 photons/MeV
- Acrylic sphere with liquid scintillator
- PMTs in water buffer
 - \rightarrow Refraction, but no near field
- Time resolution < 1.2 ns (σ) (5000 Hamamatsu PMTs)

Implementation in JUNO

- LENA-MC: Only effective optical model
- JUNO: Full optical model + complex optics due to refraction at acrylic sphere
 Includes Cherenkov-light

Work by Henning Rebber

Electrons vs. Positrons in JUNO

Result after 5th iteration

3.6 MeV visible energy

Electron/Positron Discrimination in JUNO

- So far: Only 1-dimensional analysis based on contrast
- Future: Multivariate decision tree or neural network
- Effect of Ortho-Positronium already included

Work by Henning Rebber

Gamma Discrimination in JUNO

 Used only time based vertex reconstruction to get reference point

Eliminating Influence of Scattered Light

• **Idea:** Use probability mask and lookup tables to calculate for each signal the probability to be scattered

 \rightarrow Reweigh signals after each iteration

Eliminating Influence of Scattered Light

• **Idea:** Use probability mask and lookup tables to calculate for each signal the probability to be scattered

 \rightarrow Reweigh signals after each iteration

Cherenkov Light

Much better time information

 \rightarrow Good reconstruction without changes to algorithm

Additional information from Cherenkov-angle

 \rightarrow Need direction dependent local detection efficiency

 \rightarrow Need dedicated Look-Up-Tables (LUT)

Result without dedicated LUTs

Work in progress!

Complication

Angular distribution of Cherenkov-light modified by multiple scattering

 \rightarrow Depends on particle typ

• Consequences:

Need different photon detection efficiencies
 + hypthesis about particle typ

I do not like this! → Another idea!

Plots from R. B. Patterson et al., Nucl.Instrum.Meth. A608 (2009) 206-224

Idea to Measure Cherenkov Light

- **Assumption:** Already have a 3D topology
- **Observation:** Cherenkov-angle not used yet
- Strategy:
 - Go to each point on track/topology
 - Collect signal that match in time
 - Calculate angle of signal against direction towards vertex
 - \rightarrow Angular spectrum
 - → Get Cherenkov-angle, Cherenkov-intensity and the spread of its distribution

Cherenkov vs. Scintillation Separation

- What happens if I have both light species?
- Critical point:
 - Both light sources have very different timing behaviors
 - The whole reconstruction is based on good time information
 - Attributing the wrong time distribution to a signal will automatically introduce a bias

Cherenkov vs. Scintillation Separation II

Could use similar strategy as for scattered light

 Assign every photon a probability to be Cherenkov-light based on results of previous reconstruction

\rightarrow Separation seems possible

• Will depend on:

- Cherenkov/Scintillation light ratio
- Time responds of scintillator & sensors
- Wavelength dependencies

Work in progress!

Advantages of Cherenkov Separation

- Can improve spatial resolution if fast light sensors are used
- Contains additional information
 - Angle and intensity \rightarrow Particle velocity
 - Sharpness of ring

 \rightarrow Showers or multiple scattering

- Scintillation light delivers
 - Energy deposition
 - Low threshold
- **Together:** Particle identification

+ direction

First Result Directionality

- Theia with 5% water-based liquids scintillator (WBLS)
- Used directional sum
- Angular resolution depends on vertex resolution

 \rightarrow Resolution needs to be confirmed with full reconstruction chain

Summary/Conclusion

3d topological reconstruction

- Versatile tool
- A lot of potential
- Needs to get faster (working on it)
- Need to go to waveforms

Cherenkov separation

- Non-trivial
- Seams to be feasible
- Would have a lot of advantages

Backup slides

Solar Neutrinos in JUNO

Main challenge:

- Radio-purity
- Cosmogenic background, e.g. long living spallation ¹¹C

Potential:

- ⁷Be and low tail ⁸B (large mass)
- Discriminate pp from ¹⁴C (energy resolution)

Internal radiopurity requirements				
	baseline	ideal		
²¹⁰ Pb	$5 \times 10^{-24} [g/g]$	$1 \times 10^{-24} [g/g]$		
85 Kr	500 [counts/day/kton]	100 [counts/day/kton]		
$^{238}\mathrm{U}$	$1 \times 10^{-16} [g/g]$	$1 \times 10^{-17} [g/g]$		
232 Th	$1 \times 10^{-16} [g/g]$	$1 \times 10^{-17} [g/g]$		
^{40}K	$1 \times 10^{-17} [g/g]$	$1 \times 10^{-18} [g/g]$		
$^{14}\mathrm{C}$	$1 \times 10^{-17} \text{ [g/g]}$	$1 \times 10^{-18} [g/g]$		
Cosmogenic background rates [counts/day/kton]				
¹¹ C	1860			
^{10}C	35			
Solar neutrino signal rates [counts/day/kton]				
$pp \nu$	1378			
$^{7}\mathrm{Be}~\nu$	517			
pep ν	28			
$^{8}\mathrm{B}~\nu$	4.5			
$^{13}N/^{15}O/^{17}F \nu$	7.5/5.4/0.1			
	KamLAND-like	Borexino-like		

Vertex Reconstruction

- Use backtracking-like algorithm to find primary vertex (i.e. signals matching in time corresponding to position)
- Results for low energies already within expectations
- For high energy: Average distance to track 30 cm

 \rightarrow Room for improvement

(likelyhoods methods in LENA yielded <10 cm vertex resolution)

What Kind of Detector Would be Best?

 Good balance between amount of Cherenkov and Scintillation light

 \rightarrow WbLS or lightly doped oil-based LS

- Very fast sensors for Cherenkov separation \rightarrow LAAPD (time resolution 50ps)
- Single photon timing
 → Pixels of LAPPD
- Fast scintillation light, but not too fast for Cherenkov separation

Reconstruction: Overview

- 3D toplogical reconstruction
 - \rightarrow Spatial distribution of emission density
- Using full time information
- Iterative process
 - Using a probability mask (PM)
 - Usually result of previous iteration
- Operating on a grid \rightarrow bin size is important
- Only assumptions:
 - One known reference point (in space and time)
 - Single photon hit times available
- Potential at high (GeV) and low (MeV) energies

Mu/e-Separation: Angular Width

Parallel Computing

Example: Real Borexino Data

But what about the reference point?

Answer: Any point on track can be used if I know the time the particle passing!

2GeV Muon, First Hit Information

• Vertex (-500.,0.,0.), Orientation (1.,1.,0.)

2GeV Muon, First Hit, Backwards

• Vertex (-500.,0.,0.), Orientation (1.,1.,0.)

2GeV Muon, First Hit, from Middle

• Vertex (-500.,0.,0.), Orientation (1.,1.,0.)

2GeV Muon, First Hit, Back from Middle

• Vertex (-500.,0.,0.), Orientation (1.,1.,0.)

Vertex Finding/Backtracking

Basic idea:

from Domenikus Hellgartner

- Calculate at every point the time correction needed for each first hit signal to match the flight time to that point
- Then look for peaks in this time distribution

Vertex Reconstruction I

Uses first hit time of each PMT and gaussian time distribution

How to improve Backtracking

Some regions on track do not produce many 'first hits'

 \rightarrow Need to look more closely at timing patter (tof corrected)

 \rightarrow whole track

		Inner Detector	Outer Detector
	Backtracking	Tracking	Tracking
σ_{α} [°]	1.63 ± 0.10	2.44 ± 0.19	3.01 ± 0.15
$\sigma_y [\mathrm{cm}]$	35 ± 4	36 ± 5	28 ± 7
σ_z [cm]	38 ± 4	31 ± 6	45 ± 7

Stopped Muon in Borexino

Double Muon Event in Borexino

Double Muon Event in Borexino

Both tracks cut out!

The power of the 4th dimension

4d Canny Algorithm

The Reco Result (266 PMTs)

4d-Sobel Result

Reco Result divided by 4d-Sobel

Minima of 4d-Sobel

Result after Follow-up

Result for 3GeV Muon Track

Electron/Muon Separation

Used two parameters:

- Length of track
- Angular width of track
 (with respect to reference point)
- **Result:** 1.5% impurity, 98% efficiency

Result 2nd Iteration

1MeV positron at center

Result 2nd Iteration (Zoom)

1MeV positron at center

