

The OPERA Neutrino Velocity Measurement

Presented by Björn Wonsak

The Collaboration

160 physicists, 30 institutions, 11 countries

LNGS Assergi

Belgium IIHE-ULB Brussels

Croatia IRB Zagreb

France **LAPP Annecy IPNL Lyon IPHC Strasbourg**

Bari Bologna LNF Frascati L'Aquila Naples Padova Rome Salerno

Italy

Korea Jinju

Russia **INR RAS Moscow** LPI RAS Moscow **ITEP Moscow** SINP MSU Moscow **JINR Dubna**

Switzerland **ETH Zurich**

Turkey **METU Ankara**

Bern

Hamburg Israel

Technion Haifa

Germany

众

Japan Aichi Toho Kobe Nagoya Utsunomiya

25/10/11

- CERN: CNGS, Survey, Timing and PS groups
- The geodesy group of the Università Sapienza of Rome
- The Swiss Institute of Metrology (METAS)
- The German Institute of Metrology (PTB)

- Introduction
- The OPERA Experiment
- Time Synchronisation
- Measurement Principle
- Determination of the Flight Distance
- Time Calibration
- Data Analysis
- Conclusions

Past Experimental Results

- FNAL experiment (Phys. Rev. Lett. 43 (1979) 1361)
 - Muon neutrinos, high energy ($E_v > 30$ GeV), short baseline (550 m)
 - Comparison of muon-neutrino and muon velocities (1 ns bunches)
 - Tested deviations down to $|v-c|/c \le 4 \times 10^{-5}$
- SN1987A (see e.g. Phys. Lett. B 201 (1988) 353)
 - Electron (anti) neutrinos, 10 MeV range, 168'000 light years baseline
 - Performed with observation of neutrino and light arrival time
 - Tested deviations down to $|v-c|/c \le 2 \times 10^{-9}$
- MINOS (Phys. Rev. D 76 072005 2007)
 - Muon neutrinos, E_v peaking at ~3 GeV with a tail extending above 100 GeV, 730 km baseline
 - Comparison of time distribution ($\sim 10 \ \mu s$) in near and far detector
 - Result: $(v-c)/c = 5.1 \pm 2.9 \times 10^{-5} (1.8 \sigma)$

Long baseline neutrino oscillation experiment Very pure $\nu_{\!_{\mu}}$ beam from CERN to LNGS

Goal: Observation of v $_{\tau}$ appearance

Björn Wonsak

υн

υн

Шi

Target Region:

ERA

- Target Tracker (Scintillator)
- Lead/Emulsion Bricks (75.000 per SM)

→ Target mass: ~1.25 kton

UΗ

<u>iii</u>

Target Region:

- Target Tracker (Scintillator)

- Lead/Emulsion Bricks (75.000 per SM)

⋆ Target mass: ~1.25 kton

UΗ

The CNGS Neutrino Beam

- SPS protons: 400 GeV/c
- Cycle length: 6 s
- Two 10.5 μ s extractions (by kicker magnet) separated by 50 ms
- Beam intensity: 2.4-10¹³ proton/extraction
- ~ pure muon neutrino beam ($\langle E \rangle = 17 \text{ GeV}$)

CNGS Event Selection

• Offline coincidence of SPS proton extractions (kicker time-tag) and OPERA events

$$|T_{OPERA} - (T_{Kicker} + TOF_{c})| < 20 \ \mu s$$

• Synchronisation with standard GPS systems ~100 ns (inadequate for our purposes)

PERA

UΗ

CNGS Event Selection

- OPERA data: narrow peaks of the order of the spill width (10.5 μ s)
- Negligible cosmic-ray background: $O(10^{-4})$
- Selection procedure kept unchanged since first events in 2006

From CNGS Event Selection to Neutrino Velocity Measurement

Typical neutrino event time distributions in 2008 w.r.t kicker magnet trigger pulse:

- Not flat
- Different timing for first and second extraction

υн

From CNGS Event Selection to Neutrino Velocity Measurement

Typical neutrino event time distributions in 2008 w.r.t kicker magnet trigger pulse:

- Not flat
- Different timing for first and second extraction

υн

Proton pulse digitization:

- Acqiris DP110 1GS/s waveform digitizer (WFD)
- WFD triggered by a replica of the kicker signal
- Waveforms UTC-stamped and stored in CNGS database for offline analysis

Proton Spill Shape

- Each event is associated to its proton spill waveform
- The "parent" proton is unknown within the 10.5 μ s extraction time
- \rightarrow Normalized waveform sum: PDF of predicted time distribution of neutrino events
- \rightarrow Compare to OPERA detected neutrino events

GPS Clocks at LNGS

Comparison to Cs clock:

- Large oscillations
- Uncertainties on CERN-OPERA synchronisation

GPS Clocks at LNGS

GPS Clocks at LNGS

- Collaboration with CERN timing team since 2003
- Major upgrade in 2008

CERN-OPERA Synchronisation

الالأل المشوعة فعدهم

UΗ

2008: installation of a twin high accuracy system calibrated by METAS (Swiss metrology institute)

 \rightarrow Septentrio GPS PolaRx2e + Symmetricom Cs-4000

PolaRx2e (GPS-Receiver):

- frequency reference from Cs clock
- internal time tagging of 1PPS with respect to individual satellite observations
- offline common-view analysis in CGGTTS format
- use ionosphere free P3 code

Standard technique for high accuracy time transfer

Permanent time link (~1 ns) between reference points at CERN and OPERA

Result: TOF Time-link Correction (Event by Event)

UΗ

i ii

CERN-OPERA Inter-calibration Crosscheck

Independent twin-system calibration by the Physikalisch-Technische Bundesanstalt (PTB)

High accuracy/stability portable timetransfer setup @ CERN and LNGS BNC connectors for measurement and reference signals GTR50 GPS receiver, thermalised, external Cs frequency source, embedded Time Interval Counter 269 Antenna connecto 268 LNGS CERN - TR / ns 267 266 265 CCD difference PolaRx 264 263 262 261 260 259 258 55762 55763 55764 55765 55766 55767 55768 55769 55770 55771 MJD

Correction to the time-link:

CERN-OPERA Inter-calibration Crosscheck

Independent twin-system calibration by the Physikalisch-Technische Bundesanstalt (PTB)

Geodesy at LNGS

UΗ

 CERN –LNGS measurements (different periods) combined in the ETRF2000 European Global system, accounting for earth dynamics (collaboration with CERN survey group)

Benchmark	X (m)	Y (m)	Z (m)
GPS1	4579518.745	1108193.650	4285874.215
GPS2	4579537.618	1108238.881	4285843.959
GPS3	4585824.371	1102829.275	4280651.125
GPS4	4585839.629	1102751.612	4280651.236

LNGS benchmarks In ETRF2000

 Cross-check: simultaneous CERN-LNGS measurement of GPS benchmarks, June 2011

> Resulting distance (BCT – OPERA reference frame) (731278.0 \pm 0.2) m

Overview CERN Timing

OPERA

υн

增

BCT Calibration

Delay between BCT and WFD:

<u>Standard Calibration Techniques (Oscilloscope+Cs-clock):</u>

 $\Delta t_{BCT} = t4 - t3 = (581 \pm 10) \text{ ns}$

- Dedicated beam experiment:
 - BCT plus two beam pick-ups (BPK) with ~1 ns time response with LHC beam (12 bunches, 50 ns spacing)

Overview CERN Timing

OPERA

υн

增

TT Time Response Measurement

Picosecond Injection Laser (PiLas) Scintillator, WLS fibers, PMT, analog FE chip (ROC) up to FPGA trigger input

UV laser excitation:

 \rightarrow delay from photo-cathode to FPGA input: 50.2 ± 2.3 ns

Average event time response: 59.6 ± 3.8 ns (sys)(including position and p.h. dependence, ROC time-walk, DAQ quantization effects accounted by simulations)

UΗ

Overview LNGS Timing

OPERA

Delay Calibrations Summary

Item	Result	Method
CERN UTC distribution (GMT)	10085 ± 2 ns	Portable CsTwo-ways
WFD trigger	30 ± 1 ns	Scope
BTC delay	580 ± 5 ns	Portable CsDedicated beam experiment
LNGS UTC distribution (fibers)	$40996 \pm 1 \text{ ns}$	 Two-ways Portable Cs
OPERA master clock distribution	4262.9 ± 1 ns	 Two-ways Portable Cs
FPGA latency, quantization curve	$24.5 \pm 1 \text{ ns}$	Scope vs DAQ delay scan (0.5 ns steps)
Target Tracker delay (Photocathode to FPGA)	50.2 ± 2.3 ns	UV picosecond laser
Target Tracker response (Scintillator-Photocathode, trigger time-walk, quantisation)	9.4 ± 3 ns	UV laser, time walk and photon arrival time parametrizations, full detector simulation
CERN-LNGS intercalibration	2.3 ± 1.7 ns	METAS PolaRx calibrationPTB direct measurement
Continuous Two-way Measurement of UTC Delay at CERN

OPERA

υн

Ĥ

Event Selection

Earliest TT hit of the event as "stop"

Individual Corrections:

- Time-link correction (synchronisation between CERN and LNGS)
- Position w.r.t common reference point (average correction: 140 cm \approx 4.7 ns)

Statistics: 2009-2010-2011 CNGS runs (~10²⁰ pot)

Internal Events:

Same selection procedure as for oscillation searches: 7586 events

External Events:

Rock interaction \rightarrow require muon 3D track: 8525 events

(Timing checked with full simulation, 2 ns systematic uncertainty by adding external events, otherwise agreement between data and MC)

Analysis Method

For each neutrino event in OPERA \rightarrow proton extraction waveform (normalised) Sum up and normalise: \rightarrow PDF w(t) \rightarrow separate likelihood for each extraction

Analysis Method

For each neutrino event in OPERA \rightarrow proton extraction waveform (normalised) Sum up and normalise: \rightarrow PDF w(t) \rightarrow separate likelihood for each extraction

 $L_k(\delta t_k) = \prod_j w_k(t_j + \delta t_k)$ k=1,2 extractions

(unbinned, 1 ns scan of δt)

25/10/11

PERA

Analysis Method

For each neutrino event in OPERA \rightarrow proton extraction waveform (normalised) Sum up and normalise: \rightarrow PDF w(t) \rightarrow separate likelihood for each extraction

 $L_k(\delta t_k) = \prod_i W_k(t_j + \delta t_k)$ k=1,2 extractions

(unbinned, 1 ns scan of δt)

<u>Maximised versus δt:</u>

 $\delta t = TOF_c - TOF_v$

Positive (negative) $\delta t \rightarrow$ neutrinos arrive earlier (later) than light

statistical error evaluated from log likelihood curves

Blind Analysis

Analysis deliberately conducted by referring to the obsolete timing of 2006:

- Wrong baseline, referred to an upstream BCT in the SPS, ignoring accurate geodesy
- Ignoring TT and DAQ time response in OPERA
- Using old GPS inter-calibration prior to the time-link
- Ignoring the BCT and WFD delays
- Ignoring UTC calibrations at CERN

- → Resulting δt by construction much larger than individual calibration contributions ~ 1000 ns
- → "Box" opened once all correction contributions reached satisfactory accuracy

Analysis Cross-checks

- $|(spring+fall) - summer| = (11.3 \pm 14.3) ns$

- Internal vs external events:
 - All events: δt (blind) = TOF_c -TOF_v = (1048.5 ± 6.9 (stat.)) ns
 - Internal events only: δt (blind) = (1047.4 ± 11.2 (stat.)) ns

Opening the Box

Timing and baseline corrections:

	Blind 2006	Final analysis	Correction (ns)
Baseline (ns) Correction baseline	2440079.6	2439280.9	-798.7
CNGS DELAYS : UTC calibration (ns)	10092.2	10085	-7.0
WFD (ns) Correction WFD	0	30	-7.2
BCT (ns) Correction BCT	0	-580	-580
OPERA DELAYS :			
TT response (ns) FPGA (ns)	0 0	59.6 -24.5	
DAQ clock (ns) Correction TT+FPGA+DAQ	-4245.2	-4262.9	17.4
GPS syncronization (ns)	-353	0	
Correction GPS	0	-2.5	350.7
Total			-987.8

Systematic uncertainties:

Systematic uncertainties	ns
Baseline (20 cm)	0.67
Decay point	0.2
Interaction point	2
UTC delay	2
LNGS fibres	1
DAQ clock transmission	1
FPGA calibration	1
FWD trigger delay	1
CNGS-OPERA GPS synchronization	1.7
MC simulation (TT timing)	3
TT time response	2.3
BCT calibration	5
Total uncertainty (in quadrature)	7.4

For CNGS
$$\underline{v}_{\mu}$$
 beam, $\langle E \rangle = 17$ GeV:

 $\delta t = TOF_c - TOF_v =$ (1048.5 ± 6.9 (stat.)) ns - 987.8 ns = (60.7 ± 6.9 (stat.) ± 7.4 (sys.)) ns

Relative difference of neutrino velocity w.r.t. c:

 $(v-c)/c = \delta t / (TOF_c - \delta t) = (2.49 \pm 0.28 \text{ (stat.)} \pm 0.30 \text{ (sys.)}) \times 10^{-5}$

(730085 m used as neutrino baseline from parent mesons average decay point)

 6.0σ significance

Study of the Energy Dependence

Reconstructed Event Energy

Only internal muon-neutrino CC events used for energy measurement (5489 events)

$$(\mathsf{E} = \mathsf{E}_{\mu} + \mathsf{E}_{had})$$

Full MC simulation: No energy bias in detector time response (<1 ns)
 → Systematic errors cancel out

 $\delta t = TOF_c - TOF_v = (60.3 \pm 13.1 \text{ (stat.)} \pm 7.4 \text{ (sys.)}) \text{ ns for } < E_v > = 28.1 \text{ GeV}$

(Result limited to events with measured energy)

Study of the Energy Dependence

UHI #

No clues for energy dependence within the present sensitivity in the energy domain explored by the measurement

PERA

Additional Considerations:

- Rotation of the Earth
- \rightarrow Sagnac Effect: a few ns, to be confirmed
- Gravitational field of Earth
- \rightarrow relative effect on Schwartzschild geodesics: 10⁻⁸
- Different gravitational potential at CERN and LNGS
- \rightarrow red-shift, relative effect on synchronisation: 10⁻¹³

From Proton Spill to Neutrino Time Distribution

Are their any unknown systematics here? If yes: Take care of them or introduce systematical error on fit!

Björn Wonsak

OPERA Detector Timing

الم الركان التي يا يا ي Anness Stansager

OPERA

A CARAGE ALL AND AND A

TRADADS &

Target Tracker Simulation

UHI #

Full GEANT simulation of detector response with detailed geometry and time response parametrization from experimental measurements

PERA

Target Tracker Simulation

UΗ

Full GEANT simulation of detector response with detailed geometry and time response parametrization from experimental measurements

PERA

41

Effects from the Beam

- No acceleration between BCT and target
- Only magnetic beam transfer
- Transfer practically lossless

PERA

UΗ

- No acceleration between BCT and target
- Only magnetic beam transfer
- Transfer practically lossless

Effects from the Beam

OPERA

.........

- Beam accurately aimed at center
- Excellent position stability : 50 (90) μm RMS on horizontal (vertical) position
 - \rightarrow Position stability of muon beam in 2nd pit is $\sim\!\!2\text{-}3\text{cm}$ rms

(max 0.3% \rightarrow small displacement of interaction point, but the target has 3.3 λ)

Effects from the Beam

Horn & Reflector

OPERA

Björn Wonsak

Current of Horn/Reflector Power System

- Continuously monitored
- Test: Shift pulse by 100 μ s
- \rightarrow Decrease of muon flux < 1%
- \rightarrow Pulse timing does not affect ν timing

UΗ

Current of Horn/Reflector Power System

- Continuously monitored
- Test: Shift pulse by 100 μ s
- \rightarrow Decrease of muon flux < 1%
- \rightarrow Pulse timing does not affect ν timing

10 ms for reflector

UΗ

Statistical Considerations

Several additional statistical tests performed

- χ^2 -test for different ranges of distribution
 - (front, back, central, total)
- ~90% of information in flanks
- All results in good agreement
- No systematic effect visible within statistical accuracy
- No deviation of χ^2 residuals over the range of the time distribution visible
- Goodness of fit for maximum likelyhood method also well within expectations
- Kolmogorov-Smirnov test
 - High probabilities for both with and without 60 ns
 - Higher for 60 ns

Statistical Considerations

Several additional statistical tests performed

- $\chi^{\text{2}}\text{-test}$ for different ranges of distribution
 - (front, back, central, total)
 - ~90% of information in flanks
- All results in good agreement
- No systema More tests ongoing!
- No deviation or construction visible
- Goodness of fit for maximum likelyhood method also well within expectations
- Kolmogorov-Smirnov test
 - High probabilities for both with and without 60 ns
 - Higher for 60 ns

Time Distribution in Muon Pit

Existing muon monitors:

- Two pits separated by 67 m rock
- Ionization chambers
- Very sensitive to any beam changes!
- \rightarrow Online feedback on quality of neutrino beam
- No information on time distribution
- Upgrade planned

From Proton Spill to Neutrino Time Distribution

So far no critical influence on measurement found here! Ultimate test could be a beam with finer structure.

ERA

Conclusions (1)

- OPERA uses a new method to measure the neutrino velocity
- Dedicated measurement campaign to understand systematics, including:
 - Synchronisation
 - Time calibration
 - Geodesy
- Compare v time distribution at OPERA and proton waveform at CERN

 $\rightarrow \delta t = TOF_c - TOF_v = (60.7 \pm 6.9 \text{ (stat.)} \pm 7.4 \text{ (sys.)}) \text{ ns}$

• Indicates a neutrino velocity higher than the speed of light: $(v-c)/c = \delta t / (TOF_c - \delta t) = (2.48 \pm 0.28 \text{ (stat.)} \pm 0.30 \text{ (sys.)}) \times 10^{-5}$ with an overall significance of 6.0 σ .

This has to be compared to former results:

Experiment	Energy	v-typ	(v-c)/c
FNAL	> 30 GeV	ν_{μ}	≤ 4×10-₅
SN1987A	~10 MeV	$\overline{\nu_{e}}$	≤ 2×10-9
MINOS	~3 GeV+tail	$ u_{\mu}$	5.1 ± 2.9×10⁵

- Within statistical errors no energy dependence found in OPERA
 - But it also can not be excluded
- Every input/criticism welcome

Thank you for your attention

Backup Slides

A Naive Way to Estimate the Statistical Error

- Idea: Fit each flank with a Gaussian
 - Slope \rightarrow Fit range
 - Average σ of Fits: 260 ns
 - Number of Events in all 4 flanks: 919

See: http://johncostella.webs.com/neutrino-blunder.pdf

The OPERA Detector

Björn Wonsak

υн

R'P

Magnetic Spectrometer:

Magnet Region: Iron & RPCs Precision Tracker: 6 planes of drift tubes

PERA

υн

Ĥ

Clock Distribution System

• UTC event time stamp with 10 ns granularity

PERA

UΗ

Measurement Principles

UHH

Definition of neutrino velocity:

ratio of precisely measured baseline and time of flight

Main Components:

- tagging of neutrino production time
- tagging of neutrino interaction time by a far detector
- accurate synchronisation of time tagging systems at both sides
- accurate determination of the baseline (geodesy)
- blind analysis: "box" opened after adequate level of systematic errors was reached

The Target Tracker (TT)

Task: Pre-location of neutrino interactions and event timing

- Extruded plastic scintillator strips (2.6 cm width)
- Light collections with WLS fibres
- Fibres read out at either side with multi-anode 64 pixels PMTs (H7546)
- Read out by 1 Front-End DAQ board per side

υн

Ĥ

Proton Spill Shape

- Reminiscence of the Continuous Turn extraction from PS (5 turns)
- SPS circumference = $11 \times PS$ circumference: SPS ring filled at 10/11
- Shapes varying with time and both extractions
- Precise accounting with WFD waveforms:

more accurate than: *e.g.* average neutrino distribution in a near detector

PERA

- High neutrino energy high statistics ~16000 events
- Sophisticated timing system: ~1 ns CNGS-OPERA synchronisation
- Accurate calibrations of CNGS and OPERA timing chains: ~ 1 ns level
- Precise measurement of neutrino time distribution at CERN through proton waveforms
- Measurement of 730 km baseline by global geodesy: 20 cm accuracy

 \rightarrow Result: ~10 ns overall accuracy on TOF with similar stat. & sys. errors

25/10/11

GPS Common-view Mode

Standard GPS operation:

 resolves x, y, z, t with ≥ 4 satellite observations

Common-view mode:

- The same satellite for the two sites, for each comparison
- x, y, z known from former dedicated measurements: determine time differences of local clocks (both sites) w.r.t. the satellite, by offline data exchange
- 730 km << 20000 km (satellite height)
 → similar paths in ionosphere

LNGS Position Monitoring

Monitor continent drift and important geological events (e.g. 2009 earthquake)

UН

77

BCT Calibration (2)

BCTFI.4000344 vs BPK.4000099 and BPK.4000207. 12 Bunches injected to LHC

Result: Signals comparison after $\Delta_{\rm BCT}$ compensation

OPERA

υн

ifi

Neutrino Production Point

Unknown neutrino production point:

wn neutrino production point:
accurate UTC time-stamp of protons
$$\Delta t = \frac{z}{\beta c} - \frac{z}{c} = \frac{z}{c} \left(\frac{1}{\beta} - 1\right) \approx \frac{z}{c} \frac{1}{2\gamma^2}$$

relativistic parent mesons (full FLUKA simulation)

TOF_c = assuming *c* from BCT to OPERA (2439280.9 ns)
TOF_{true} = accounting for speed of mesons down to decay point
$$\Delta t = TOF_{true} - TOF_{c} \longrightarrow \langle \Delta t \rangle = 1.4 \times 10^{-2} \text{ ns}$$

UΗ

Ϋ́́

Event Time Corrections

Correction due to the earliest hit position

average correction: 140 cm (4.7 ns)

υн

Zoom on the Extractions Leading and Trailing Edges

υн

茁

Zoom on the Extractions Leading and Trailing Edges

Extraction 1 50 40 $\delta t = 0 ns$ 30 20 10 0 -500250 -250-750 Ω (ns) 50 40 30 $\delta t = 60.7 \text{ ns}$ 20 10 0 -500 250 -250-750 n

υн

Ĥ

Zoom on the Extractions Leading and Trailing Edges

Extraction 2

 $\delta t = 0 ns$

 $\delta t = 60.7 \text{ ns}$

υн

НŤ

Study of the Energy Dependence

Only internal muon-neutrino CC events used for energy measurement (5489 events)

$$(\mathsf{E}=\mathsf{E}_{\mu}+\mathsf{E}_{had})$$

- Full MC simulation: No energy bias in detector time response (<1 ns)
 - \rightarrow Systematic errors cancel out

 $\delta t = TOF_c - TOF_v = (60.3 \pm 13.1 \text{ (stat.)} \pm 7.4 \text{ (sys.)}) \text{ ns for } < E_v > = 28.1 \text{ GeV}$

(Result limited to events with measured energy)

Overview LNGS Timing

Non Constant of State

υн

茁

- Earliest TT-signal due to noise
- \rightarrow Event cast away

Saaman af al

PERA