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Vertex reconstruction

Why a vertex reconstruction?

@ Novel track reconstruction has been developed

@ Holds great potential for any liquid scintillator detector
@ Has a limited number of fundamental assumptions

@ Gain topological energy deposition information

Novel track reconstruction needs a reference point

@ Providing vertex to the Novel track reconstruction
o Currently for LENA(low energy neutrino astronomy)
o Operation in an energy range of a few MeV to GeV
o Also works with a start point near the track
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Vertex reconstruction MeV range

Time of flight

Time of flight for photon i

o t; = Time of flight for photon i

;. — D(xi(0), xi(1)) @ vy = Group velocity
=
Vg @ D(x;(0), x;(t)) distance x;(0) to x;(t)
Not considered
i @ Scattering

@ Absorption with reemission
@ Scintillation decay time
@ Electronic effects

Figure : Time of flight for a photon.
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Vertex reconstruction MeV range

Time difference histogram

@ t; 4 = Difference in time for photon i
ti gif = tipit — & @ thit = Measured time for photon i
o t; = Time of flight for photon i
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(a) Near the true vertex (b) ~5 m away from true vertex

Figure : Examples for time difference histograms at the true vertex and 5 m
aside from the true vertex.
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Vertex reconstruction MeV range
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Figure : 2 dimensional example grid to illustrate the vertex finding.
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Vertex reconstruction MeV range

Angular acceptance of PMTs

@ «incident angle

p-n @ 71 PMT normal vector
COSa = ———= . .
[ - |n| @ p incident vector

o b b ey - PRI SRR AR
02 04 06 08 1 12 14
a [rad]
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Vertex reconstruction Time reconstruction

Time fitting and evaluation algorithm
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(a) Histogram at determined vertex (b) Fit for (a)

The fit considers:
@ Scintillation decay time i dit = i — ti hit
@ PMT time resolution
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Vertex reconstruction GeV range

High energy event development

Detector wall Detector wall

Light front of vertex light

Light front of track light

(a) A few nanoseconds after the (b) First hit distribution after the event
events start

Figure : Distribution of first hit information
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Results MeV range

LEVertex

Distance of MCVertex to RecoVertex per Energy
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Figure
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Results MeV range

MeV positional reconstruction results
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Results MeV range

Time reconstruction results

Reconstructed time of event

3 «xe [ @ Only results within 20 cm of
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oo around 0 ns expected
400—
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—1 0
Reconstructed time of event [ns]

Figure : Event time reconstruction
results in MeV range

11/17



Results GeV range

Reconstruction of a GeV muon

YZ-projection XZ-projection XY-projection
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Figure : Example muon event

@ 5.8 GeV Simulated event energy
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Results GeV range

GeV positional reconstruction results
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Results GeV range

GeV positional reconstruction near track
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Results GeV range

GeV time reconstruction

Reconstructed time of event

aoof- e waa| @ Only results within 20 cm of
aso- o = true vertex
300 21 ndf 75.01/20 .
(20F v s oors | @ From fit oy £0.27 ns
Sewt- @ Gaussian distribution
ok around 0 ns expected
s0F- @ Shift due to underestimated
b U O N I R TOFs and shift of
, _ _ reconstructed vertex along
Figure : Event time reconstruction track

results in GeV range
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Results GeV range

Summary & Outlook

Conclusion:

@ Determination of time and position is achieved

@ Applicable for a energy range of a few MeV to GeV

@ MeV range: position: oy, , = +14.34 cm, time o £0.33 ns

@ GeV range: position: oy, = £34.56 cm, time o; +0.27 ns
@ Direction determination 99.2% with in 25°
°

Build on Novel track reconstruction software foundation:

o Results can be provided to the Novel track reconstruction
o Simple integration is possible

Parallelization & Fast algorithm (a few seconds for GeV events)

©

Outlook:
@ Implementation of a energy reconstruction
@ Consideration of time delay effects
@ Full adaptation for JUNO detector
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Thank you for your attention.
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Literature

E Juno collaboration.
Neutrino physics with juno.

B S. Lorenz.
Topological Track Reconstruction in Liquid Scintillator and LENA
as a Far-Detector in an LBNO Experiment.

E T Stempfle.
Reconstruction of spatially extended events in borexino.
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Backup

For single energy at 3 MeV
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Approx resolution per energy
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Figure
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Shift along track
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Figure
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Backup

Reconstruction close to the track

YZ-projection XZ-projection XY-projection

540 40 50
520 20
500 00 00
430 80
460 60 50
410 40
420 20 0
400 00
360 80 50
360 50
340 " 00

B b I8P T TN TN Lot 1 B0 |

20 10 0 10 |20 30 40 50 60 20 10 0 10 20 30 40 50 60 20 100 1020

I[cm] 7 fem] fem)

Figure : Example for a reconstructed vertex near the track.
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Distance of MCVertex to RecoVertex per Energy
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Figure
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Backup

Example reconstruction in the JUNO detector

YZ-projection

XZ-projection XY-projection
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Figure : Example for a reconstructed vertex inside the JUNO detector.

@ True vertex simulated at the center
@ No adjustments for acrylic or water
@ Symmetry effects enable correct reconstruction
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Backup

uction of a MeV electron

YZ-projection XZ-projection XY-projection
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Figure : Example electron event. 6.70 MeV Simulated event energy

@ 5.32 cm Distance true (white) to reconstructed vertex (black)
@ 5.46 cm Approximated statistical resolution

@ ~9 cm for BOREXINO

@ ~3 cm for JUNO (simulated in center)

8/17



Backup

Direction determination

Assumed vertex
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Backup

Direction reconstruction

Difference of angle from true direction to reconstructed direction
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Figure : Direction determination for event GeV range

@ For 99.2% the direction was determined within 25°

o For 75.7% the direction was determined within 7°
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Charge barycenter

PMT = :
_ met:1 ppmt'H’tpmf
TPMT
met:1 Hitomt

ﬁbc(pmt) =
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Survival probability
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Figure : Photon survival probability. Psp(s) = exp(—2;)
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Hit probability
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Figure : Hit probability.
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Neutrino oscillation
Neutrino oscillation

@ Homestake Experiment => Solar neutrino problem
@ Solution: Neutrino oscillation

Pontecorvo—Maki—Nakagawa—Sakata matrix

1 0 0 C13 0 si3 e"5 Ci2 s2 0
Upmns = [0 co3  So3 o 1 0 —Si2 C12 0
0 —sx3 Co3 —8§13 e’ 0 C13 0 0 1

cj = cos(9y) sj = sin(©j) ©; = mixing angle 6 = CP-violating phase

Transition probability

An?
Pla— B;t) = Z |U,JZ,UBI|2 +2Rez UaiU,; U5 Ugj exp <_i > U é)

J>i

L= traveldistance =~ E = energy  Amj=m’—n}




Neutrino oscillation
Neutrino Mass Ordering

Parameters that have been determined are:
©12,013, 023, Am3, and |Am3, |
Sign of AmZ, is unknown:

m? 2

A Normal Inverted |
M2 I — —+m?
amg, 1 (amz,)
—+m?
(6m3,,) | am3, LR
| | Vp R ,
mi—— e——e— | V: ams, | (Am,,)
(Amzol) Am§1
M2
? ?
0 0

Figure : Neutrino Mass Ordering [2]
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Neutrino oscillation

Determining the Neutrino Mass Ordering
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Figure : Reactor antineutrino flux [1]
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Large liquid scintillator detectors

Jiangmen Underground Neutrino Observatory

@ Is being built in China

@ Antineutrino experiment
o IBD:ve+p— €t +n
@ Muon rate ~3 Hz

Target volume Top muon veto
« plastic scintillator strips

. « vertical muon trackin
LSc container S

* diameter: ~35.4 m

Central detector
« acrylic sphere

€ PMTs
(~12 cm thickness)
+ ~18,000 X 20"
Buffer volume + ~36,000 X 3"
+ water Water pool
* ~20 kt ultra-pure water
Outer vessel

« water Cherenkov veto

« diameter: ~40 m « fast neutron shield

* stainless-steel support

Veto PMTs
* ~1,600

Figure : Qutline of the JUNO detector [1]
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