# Group Report T 80.1: Neutrino Physics with JUNO

# Henning Rebber<sup>1</sup>

# on behalf of the JUNO Collaboration

<sup>1</sup>Universität Hamburg, Germany – Institut für Experimentalphysik

















# Mass Ordering (MO)



$$\Delta m_{sol}^2 = 7.5 \times \mathbf{10^{-5}} \text{eV}^2$$
  
$$\Delta m_{atm}^2 = 2.4 \times \mathbf{10^{-3}} \text{eV}^2$$

#### Why measure MO?

- helps to resolve  $\delta_{CP}$
- define 0vββ sector
- hint origin of neutrino masses

# ... and how to measure it

 $P_{\overline{\nu}_e \to \overline{\nu}_e} = 1 - \sin^2 2\Theta_{13} \left( \cos^2 \Theta_{12} \sin^2 \Delta_{31} + \sin^2 \Theta_{12} \sin^2 \Delta_{32} \right)$  $- \cos^4 \Theta_{13} \sin^2 2\Theta_{12} \sin^2 \Delta_{21}$ 

$$\Delta_{ij} = \Delta m_{ij} L / 4E$$

*E*: neutrino energy *L*: distance to source

- position with advantageous
   L/E ratio
- low energy threshold
- excellent energy resolution
- low energy scale uncertainty





; ii

# **JUNO Overview**

### JUNO Group Report

~53 km distance to two
 nuclear power plants
 (35.8 GW P<sub>th</sub>)





- position with advantageous L/E ratio
- low energy threshold
- excellent energy resolution
- low energy scale uncertainty



i ii

# **JUNO Overview**

### JUNO Group Report

- ~53 km distance to two nuclear power plants (35.8 GW P<sub>th</sub>)
- 20 kt liquid scintillator

- position with advantageous
   L/E ratio
- low energy threshold
- excellent energy resolution
- low energy scale uncertainty



; 1

# **JUNO Overview**

### JUNO Group Report

- ~53 km distance to two nuclear power plants (35.8 GW P<sub>th</sub>)
- 20 kt liquid scintillator
- acrylic tank: Ø 35.4 m (PMT sphere: Ø 40.1 m)
- ~18,000 20" PMTs,
   ~36,000 3" PMTs
   → 77% coverage
- $QE \approx 30\%$
- coils to shield EMF

 $\rightarrow \Delta E/E = 3\%/\sqrt{E(\text{MeV})}$ 

Requirements for measuring MO:

- position with advantageous
   L/E ratio
- low energy threshold
- excellent energy resolution
- low energy scale uncertainty



high photon statistics

: 1

# **JUNO Overview**

### JUNO Group Report

- ~53 km distance to two nuclear power plants (35.8 GW P<sub>th</sub>)
- 20 kt liquid scintillator
- acrylic tank: Ø 35.4 m (PMT sphere: Ø 40.1 m)
- ~18,000 20" PMTs,
   ~36,000 3" PMTs
   → 77% coverage
- $QE \approx 30\%$
- coils to shield EMF
- $\rightarrow \Delta E/E = 3\%/\sqrt{E(\text{MeV})}$
- energy scale uncertainty < 1%</li>

- position with advantageous L/E ratio
- low energy threshold
- excellent energy resolution
- low energy scale uncertainty\_



- high symmetry
- calibration



iti

## **JUNO Overview**

### JUNO Group Report



delayed coincidence signature



# **JUNO Overview**

### JUNO Group Report

- → T 57.9 "Waveform reconstruction with the deconvolution method for JUNO" by M. Schever
- → T 80.2 "Topological track reconstruction in unsegmented multi-kiloton liquid scintillator neutrino detectors" by S. Lorenz
- → T 80.4 "Studies on muon track reconstruction with the JUNO liquid scintillator neutrino detector" by C. Genster
- → T 80.9 "Vertex reconstruction in unsegmented liquid scintillator detectors" by D. Meyhöfer

#### signal channel:

- inverse beta decay (IBD)
- delayed coincidence signature

further background reduction:

- ~700 m rock
   overburden (≙1900 m.w.e.)
- $\rightarrow$  3 muons/s
  - top tracker (OPERA)
  - ultra pure water
     buffer as Cherenkov
     veto (2400 20" PMTs)
  - after cuts: 60 IBD/day vs 3.8 background events/day

# MO Sensitivity

 $P_{\overline{\nu}_e \to \overline{\nu}_e} = 1 - \sin^2 2\Theta_{13} (\cos^2 \Theta_{12} \sin^2 \Delta_{31} + \sin^2 \Theta_{12} \sin^2 \Delta_{32})$  $- \cos^4 \Theta_{13} \sin^2 2\Theta_{12} \sin^2 \Delta_{21}$ 

$$\Delta_{ij} = \Delta m_{ij} L / 4E$$

*E*: neutrino energy *L*: distance to source



median **sensitivity on MO** after 100k IBD (6 yr of running):

•  $\sim 3\sigma$  w/o external input

 $\coloneqq \Delta m_{ee}^2$ 

•  $3.7\sigma - 4.4\sigma$  w/ external input

precision of measurement of **solar oscillation parameters**:

- $\sin^2 \Theta_{12} : 0.54\%$  (current: 4.1%)
- $\Delta m_{21}^2$ : 0.59% (current: 2.6%)

# **Further Studies**





# Core-collapse supernovae 5000 IBD/10 s @10kpc

- huge statistics (~ Super K) separate detection of  $v_e$ ,  $\overline{v}_e$ ,  $v_x$ probe models w.r.t.
  - time evolution
  - energy spectra
    - flavor contents

| Channel                                                                       | Туре | Events for $\langle E_{ m v} angle = {f 14}$ MeV |  |  |
|-------------------------------------------------------------------------------|------|--------------------------------------------------|--|--|
| $\bar{\nu}_e + p \rightarrow e^+ + n$                                         | СС   | $5.0 \times 10^{3}$                              |  |  |
| $\nu_x + p \rightarrow \nu_x + p$                                             | NC   | $1.2 \times 10^{3}$                              |  |  |
| $\nu_x + e \rightarrow \nu_x + e$                                             | ES   | $3.6 \times 10^{2}$                              |  |  |
| $\nu_{\chi} + {}^{12}\mathrm{C} \rightarrow \nu_{\chi} + {}^{12}\mathrm{C}^*$ | NC   | $3.2 \times 10^{2}$                              |  |  |
| $v_e + {}^{12}\text{C} \rightarrow e^- + {}^{12}\text{N}$                     | СС   | $0.9 \times 10^{2}$                              |  |  |
| $\bar{\nu}_e + {}^{12}\mathrm{C} \rightarrow e^+ + {}^{12}\mathrm{B}$         | СС   | $1.1 \times 10^{2}$                              |  |  |



# **Physics Potential**





Solarv

tens of <sup>8</sup>B-v/day



15

# **Civil Construction**

Groundbreaking on Jan 10, 2015

slope tunnel: 1055m out of 1340m

vertical shaft: 513m out of 630m



![](_page_15_Picture_8.jpeg)

# Liquid Scintillator (LSc)

20 kt LSc: organic linear alkylbenzene (LAB) solvent
 + 3 g/l PPO

+ 15 mg/l **bis-MSB** 

- specifications:
  - high light yield: ~10<sup>4</sup> ph/MeV
     → 1,100 pe/MeV
  - high attenuation length  $L_{att}$ : > 20 m
  - low radioactivity: < 15<sup>-15</sup>g/g (U, Th)
- → T 57.6 "Determination of the kB parameter of LAB based scintillators for the JUNO experiment" by K. Schweizer
- → T 57.7 "Online monitoring system for the liquid scintillator transparency in the JUNO Central Detector" by W. Depnering
- → T 80.3 "Status of the PALM Experiment for JUNO" by S. Prummer
- → T 112.6 "Positronium Lifetime Determination in Linear Alkylbenyene based Scintillator for JUNO" by M. Schwarz

![](_page_16_Figure_14.jpeg)

- precise measurement of L<sub>att</sub> and quenching
- online monitoring of transparency

![](_page_16_Picture_17.jpeg)

- → T 57.8 "An On-line Attenuation length Monitor for JUNO" by H. Enzmann
- → T 112.5 "Radon Monitoring in gaseous Nitrogen used for the Filling of the Central Detector of JUNO" by P. Landgraf
- → T 112.7 "Monitoring Systems for the Filling of the Central Detector of JUNO" by H. Steiger

## LSc Filling

- gaseous nitrogen used to prevent radon contamination and contact with oxygen
- online monitoring of gas pressure, radon, L<sub>att</sub>, mech. stress, filling levels

### **Calibration System**

- **1D**: Automatic Calibration Unit (**ACU**)
- 2D: Cable Loop System (CLS), Guide Tube Calibration System (GTCS)
- **3D**: Remotely Operated Vehicle (**ROV**)

#### Sources

```
photons: <sup>40</sup>K, <sup>54</sup>M, <sup>60</sup>Co, <sup>137</sup>Cs
positrons: <sup>22</sup>Na, <sup>68</sup>Ge
neutrons: <sup>241</sup>Am-Be, <sup>241</sup>Am- <sup>13</sup>C, <sup>241</sup>Pu- <sup>13</sup>C, <sup>252</sup>Cf
```

![](_page_17_Figure_15.jpeg)

# **PMT System: Double Calorimetry**

| size         | 20"           | 20"       |  | 3"    |  |
|--------------|---------------|-----------|--|-------|--|
| manufacturer | NNVT          | Hamamatsu |  | ?     |  |
| type         | МСР           | dynode    |  |       |  |
| units        | 15k           | 5k        |  | 36k   |  |
| QE@400nm     | 26(T) + 4(R)% | 30%       |  |       |  |
| TTS          | 12 ns         | 3 ns      |  | short |  |
|              |               |           |  |       |  |

proposed PMT module

![](_page_18_Picture_6.jpeg)

![](_page_18_Picture_7.jpeg)

large PMTs:

- requires characterization of every single PMT
- mass testing about to start

![](_page_18_Picture_11.jpeg)

![](_page_18_Picture_12.jpeg)

small PMTs:

- better timing properties
- higher energy dynamic range
- no supplier chosen yet
- $\rightarrow$  T 57.5 "A PMT Mass Testing Setup for the JUNO Experiment using commercial shipping containers" by A. Tietzsch

# **Readout Electronics**

![](_page_19_Figure_4.jpeg)

![](_page_19_Picture_5.jpeg)

- control and readout integrated into PMT housing: intelligent PMTs
- highly-integrated receiver chip including FADC
- further data management in FPGA

- → T 96.5 "Development of intelligent Photomultipliers for the JUNO Detector" by F. Lenz
- → T 96.6 "A Highly-Integrated Receiver Chip for the JUNO Experiment" by A. Zambanini
- → T 96.7 "The Digital Control Unit of the highly-Integrated Receiver Chip for JUNO" by P. Muralidharan

• JUNO: A next generation, 20kt LSc detector in China with the purpose to determine the neutrino mass ordering with reactor anti-neutrinos

("*Neutrino physics with JUNO*" - J. Phys. G 43 (2016) 030401)

- Furthermore, high potential regarding terrestrial and astrophysical neutrinos
- Significance:  $\geq 3\sigma$  after **100k IBD events** ( $\triangleq$  6 yr of data taking)
- funded project
- Collaboration: 71 international member institutes, 486 scientists

![](_page_20_Figure_9.jpeg)