Advanced Reconstruction in Large Volume Liquid Scintillator Detectors

Applied to LENA

Björn Wonsak

Universität Hamburg

Overview

Tracking at high energies (GeV)

- Basic algorithm
- Performance

Application to low energies (MeV)

- New techniques to improve robustness
- Positron discrimination

Motivation: Tracking at High Energies

v_a appearance experiments:

NC-background

 \rightarrow Is it possible to identify the π_0 ?

Reactor experiments

Short-lived cosmogenics (⁹Li/⁸He) dangerous background

Full veto produces too much deadtime

- \rightarrow Identify places of high energy deposition
 - (showers induced by muon)

My Basic Idea

Assumption:

- One known reference-point (in space & time)
- Almost straight tracks
- Particle has speed of light

Concept:

• Take this point as reference for all signal times

The Drop-like Shape

Signal time = particle tof + photon tof

The Drop-like Shape

ct = $|VX| + n^*|XP| \rightarrow drop-like form$

The Drop-like Shape

ct = $|VX| + n^*|XP| \rightarrow drop-like form$

Time Distribution

Convolution of Gaus and Exponential-Function

Time Distribution

Convolution of Gaus and Exponential-Function

Result 1 PMT

Result a Few PMTs

Result 266 PMTs

y [cm]

Light Distribution (LD) Effects

Some parts of each drop-like shape are more likely the origin of light, because:

- they are closer
- directly in front of the PMT

\rightarrow Need to consider:

- solid angle of PMT area
- attenuation
- angular acceptance

Light Distribution (LD) Effects

Some parts of each drop-like shape are more likely the origin of light, because:

- they are closer
- directly in front of the PMT

\rightarrow Need to consider:

- solid angle of PMT area
- attenuation
- angular acceptance

Finally I have to normalise the resulting pdf !

Result all PMTs

Probability Mask

So far probabilities have been added! \rightarrow correct for **independent information**

However:

Light signals are **not completely independent** from each other, because they belong to the same track.

 \rightarrow Use "Result I" to **weight** all the single light contribution and re-normalise each of them!

Result I

Result 2nd Iteration

Result 3rd Iteration

Result 9th Iteration

3D Topology

Probability distribution projected into the xy plane

Color: Total photon emission probability in arbitrary units

 \rightarrow dE/dx seems accessible

Image Processing

Computing

One 3 GeV event, 20 cm bins, full light, 22 iterations in LENA \rightarrow **several hours** (despite usage of adaptive mesh refinement)

However:

- I'd like to go to 2 cm bins
 - because there should be enough light for this resolution
- In principle many more iterations are allowed

But algorithm highly parallisable \rightarrow GPUs, etc.

Current Status

Large reconstruction campaign ongoing!

Muons with 1-5 GeV: (first results)

- Robustness \rightarrow okay
- Angular resolution: ~1.5°

Electron events under production Other event classes still to be studied Paper under preparation!

Ph. D. student Sebastian Lorenz

Can also do it with Cherenkov Light

3 GeV muon, initial direction (1,-1,0)

Bachelor student David Meyhöfer

A few % of light in liquid Scintillator is Cherenkov light

 \rightarrow using both could help pattern and partical identification

Also suitable for water Cherenkov detectors! Perfect for WbLS!

Tracking at Low Energies (a few MeV)

Robust Iterations!?

New Procedure

- Divide detector in different parts
- Do reconstruction for each part
- Multiply results
- Use this as Probability Mask
- Go back to first step

Result 2nd Iteration

1MeV positron at center

Result 2nd Iteration (Zoom)

1MeV positron at center

Result 2nd Iteration Slice 241

Result 2nd Iteration Slice 240

Crystalisation of the Result

- Use well defined probability mask
- Do reconstruction for each photon
- Identify bin with highest probability
- Associate photon with this bin
 - \rightarrow number of photons from that bin

Crystalisation: 1 MeV Positron

Crystalisation: 2 MeV Electron

Crystalisation: 2 MeV Electron

Electron vs. Positron Discrimination: First Try Results I

Ratio R of light reconstructed near vertex vs. total light

- 3343 events of electron and positron events each
- Visible energy 1 5.5 MeV
- At the center of the detector \rightarrow worst place
- LENA-MC \rightarrow 250 photons per MeV

Notice: Used perfect vertex position for this analysis

Electron vs. Positron Discrimination: At C-11 Energy Region

Ratio R of light reconstructed near vertex vs. total light

- 111 events of electron and positron events each
- Visible energy 1 2 MeV
- At the center of the detector \rightarrow worst place
- LENA-MC \rightarrow 250 photons per MeV

Notice: Used perfect vertex position for this analysis

Remarks on Potential

Possible improvements:

- So far only 250 p.e/ MeV
 - \rightarrow Borexino: 500 p.e/ MeV, JUNO: 1200 p.e/ MeV
- Remove scattered light statistically
- Faster scintillator
- Multivariate analysis

• Other ideas:

- Use time as 4th dimension
- Gradient information (Sobel-Filter)

Remarks on Potential

Possible improvements:

- So far only 250 p.e/ MeV
 - \rightarrow Borexino: 500 p.e/ MeV, JUNO: 1200 p.e/ MeV
- Remove scattered light statistically
- Faster scintillator
- Multivariate analysis
- Other ideas:
 - Use time as 4th dimension
 - Gradient information (Sobel-Filter)

Eliminating Influence of Scattered Light

• **Idea:** Use probability mask and lookup tables to calculate for each signal the probability to be scattered

 \rightarrow reweigh signals after each iteration

Eliminating Influence of Scattered Light

• **Idea:** Use probability mask and lookup tables to calculate for each signal the probability to be scattered

 \rightarrow reweigh signals after each iteration

Eliminating Influence of Scattered Light

• **Idea:** Use probability mask and lookup tables to calculate for each signal the probability to be scattered

 \rightarrow reweigh signals after each iteration

Using the 4th Dimension

Observation:

- Contrast limited by influence of neighbour bins
- Idea:
 - Use time distribution at each point
 - Fit signal-function + background from neighbours

Example of a bad bin with a lot of noise!

Scattered light not removed!

Using the 4th Dimension: Result

First result:

• Very preliminary!

Using the 4th Dimension: Result

First result:

- Background estimate must be more robust
- Very preliminary!
- One possibility is to use probability mask to calculate background from neighbour bins

Other Possible Applications

• Improvement of:

- Position reconstruction
- Energy reconstruction

- Influence on non-stochastic term of energy resolution
- IBD directional information Supernova neutrinos
- Gamma identification ^{°B}

⁸B neutrinos (²⁰⁸Tl background at 2.6 MeV)

- Charge of stopping muons Atmospheric neutrinos
- Background reduction for $0\nu\beta\beta$ -experiments γ -cacade vs. point-like

(e.g. ^{110m}Ag in KamLAND-Zen)

Conclusion I

• My Tracking:

- Powerful new tool to increase physics potential
- At both high and low energies
- Wide range of applications

Liquid Scintillator, Water Cherenkov, Water based Liquid Scintillator, even Liquid Argon

Performance:

- Spatial resolution of less than 20cm
- dE/dx accessible
- Angular resolution for 1-5 GeV muon tracks ~1.5°

Used realistic vertex information

 \rightarrow As expected from backtracking algorithm

Conclusion II

Positron-Discrimination:

- Promising first results
- Separation seems possible at low energies
- Tracking at low energies:
 - Topological dE/dx will be challenging
 - Many possible applications

Used perfect vertex information so far

 \rightarrow Need to use existing vertex finding algorithms

Backup slides

Example: Real Borexino Data

Comment on Ortho-Positronium

Longer lifetime

 \rightarrow Additional time-offset

 \rightarrow Annihilation photons not (or badly) reconstructable

• But:

- Better separation in inside vs. outside analysis expected
- Residual asymmetry expected (deviation from spherical symmetry)

But what about the reference point?

Answer: Any point on track can be used if I know the time the particle passing!

2GeV Muon, First Hit Information

• Vertex (-500.,0.,0.), Orientation (1.,1.,0.)

2GeV Muon, First Hit, Backwards

• Vertex (-500.,0.,0.), Orientation (1.,1.,0.)

2GeV Muon, First Hit, from Middle

• Vertex (-500.,0.,0.), Orientation (1.,1.,0.)

2GeV Muon, First Hit, Back from Middle

• Vertex (-500.,0.,0.), Orientation (1.,1.,0.)

2GeV Muon, First Hit, Back from Middle

• Vertex (-500.,0.,0.), Orientation (1.,1.,0.)

So if I have an outer detector and a particle leaves the LS volume I will have a starting point!

Vertex Finding/Backtracking

Basic idea:

from Domenikus Hellgartner

- Calculate at every point the time correction needed for each first hit signal to match the flight time to that point
- Then look for peaks in this time distribution

Vertex Reconstruction I

Uses first hit time of each PMT and gaussian time distribution

How to improve Backtracking

Some regions on track do not produce many 'first hits'

 \rightarrow Need to look more closely at timing patter (tof corrected)

 \rightarrow whole track

Stopped Muon in Borexino

Double Muon Event in Borexino

Double Muon Event in Borexino

Both tracks cut out!
The power of the 4th dimension

4d Canny Algorithm

The Reco Result (266 PMTs)

4d-Sobel Result

Reco Result divided by 4d-Sobel

Minima of 4d-Sobel

Result after Follow-up

Some early examples with different particles

465 MeV π_0

• Vertex (0.,0.,0.), Orientation (-1.,0.,0.)

465 MeV π₀

• Vertex (0.,0.,0.), Orientation (-1.,0.,0.)

Muon 800 MeV

• Vertex (200.,100.,0.), Orientation (-1.,-1.,0.)

2 Muons with 750 MeV each

• Vertex (300.,0.,0.), Orientation +-45°

Ridge-Line Analysis

• Remark:

- The pictures seem to give only rough spatial information
- This is only because the single photon resolution is poor

• But we have a lot of light

- \rightarrow mean value should be very accurate
- → Need method to increase contrast/use the picture to find the track position

Ridge-Line Analysis

Idea: Track should be a kind of ridge (in 3d)
→ Take only bins, with more than 17 smaller neighbour bins

Resultat: 500 MeV Electron

• Vertex (0.,0.,0.), Orientation (-1.,0.,0.)

465 MeV π_0

• Vertex (0.,0.,0.), Orientation (-1.,0.,0.)

Muon 800 MeV

• Vertex (200.,100.,0.), Orientation (-1.,-1.,0.)

2 Muons with 750 MeV each

• Vertex (300.,0.,0.), Orientation +-45°

09/06/15

Event Signature for Tracking

