Positron discrimination in large-volume liquid scintillator detectors using 3D topological reconstruction

Björn Wonsak

Universität Hamburg

Motivation I: Reactor Neutrinos

- Inverse beta decay (IBD): $v_e + p \rightarrow n + e^+$
- Background does not contain possitrons

Motivation: Solar Neutrinos

- Neutrino-electron scattering: $v_e + e^- \rightarrow v_e + e^-$
- Important Background for CNO and pep v:

 $^{11}C \rightarrow ^{11}B + e^+ (Q = 1982.4 \text{ keV})$

My 3D Tracking in a Minute

- Need a reference point
- Draw drop-like probability surfaces for each PMT
 → 3D topological picture
- Iterative process using previous result to reevaluate probabilities
 - \rightarrow refined 3d picture

3D Topology

Probability distribution projected into the xy plane

(Z projection)

Color: Total photon emission probability in arbitrary units \rightarrow Measure for dE/dx

Result 2nd Iteration Sum (Zoom)

1MeV positron at center

Crystalisation of the Result

- Use well defined probability mask
- Do reconstruction for each photon
- Identify bin with highest probability
- Associate photon with this bin
 - \rightarrow number of photons from that bin

Crystalisation: 1 MeV Positron

Crystalisation: 2 MeV Electron

Electron vs. Positron Discrimination: First Try Results I

Ratio R of light reconstructed near vertex vs. total light

- 3343 events of electron and positron events each
- Visible energy 1 5.5 MeV
- At the center of the detector \rightarrow worst place
- LENA-MC \rightarrow 250 photons per MeV

Electron vs. Positron Discrimination: At C-11 Energy Region

Ratio R of light reconstructed near vertex vs. total light

- 111 events of electron and positron events each
- Visible energy 1 2 MeV
- At the center of the detector \rightarrow worst place
- LENA-MC \rightarrow 250 photons per MeV

Comment on Ortho-Positronium

Longer lifetime

 \rightarrow Additional time-offset

 \rightarrow Annihilation photons not (or badly) reconstructable

• But:

- Better separation in inside vs. outside analysis expected
- Residual asymmetry expected (deviation from spherical symmetry)

Remarks on Potential

Possible improvements:

- So far only 250 p.e/ MeV
 - \rightarrow Borexino: 500 p.e/ MeV, JUNO: 1200 p.e/ MeV
- Remove scattered light statistically
- Faster scintillator
- Multivariate analysis

• Other ideas:

- Gradient information (Sobel-Filter)
- Time variation

Other Possible Applications

• Improvement of:

- Position reconstruction
- Energy reconstruction

Influence on non-stochastic term of energy resolution

- IBD directional information Supernova neutrinos
- Charge of stopping muons Atmospheric neutrinos
- Background reduction for 0vββ-experiments
 γ-cacade vs. point-like
 (e.g. ^{110m}Ag in KamLAND-Zen)

Conclusion

Positron-Discrimination:

- Promising first results
- Separation seems possible at low energies
- Tracking at low energies:
 - Topological dE/dx will be challenging
 - Wide range of possible applications

Backup Slides

My Basic Idea

Assumption:

- One known reference-point (in space & time)
- Almost straight tracks
- Particle has speed of light

Concept:

• Take this point as reference for all signal times

The Drop-like Shape

Signal time = particle tof + photon tof

The Drop-like Shape

ct = $|VX| + n^*|XP| \rightarrow drop-like form$

The Drop-like Shape

ct = $|VX| + n^*|XP| \rightarrow drop-like form$

Time Distribution

Convolution of Gaus and Exponential-Function

Time Distribution

Convolution of Gaus and Exponential-Function

Result 1 PMT

Result a Few PMTs

Result 266 PMTs

Light Distribution (LD) Effects

Some parts of each drop-like shape are more likely the origin of light, because:

- they are closer
- directly in front of the PMT

\rightarrow Need to consider:

- solid angle of PMT area
- attenuation
- angular acceptance

Light Distribution (LD) Effects

Some parts of each drop-like shape are more likely the origin of light, because:

- they are closer
- directly in front of the PMT

\rightarrow Need to consider:

- solid angle of PMT area
- attenuation
- angular acceptance

Finally I have to normalise the resulting pdf !

Result all PMTs

Probability Mask

So far probabilities have been added! \rightarrow correct for **independent information**

However:

Light signals are **not completely independent** from each other, because they belong to the same track.

 \rightarrow Use "Result I" to **weight** all the single light contribution and re-normalise each of them!

Result I

Result 2nd Iteration

Result 3rd Iteration

Result 9th Iteration

Result 12th Iteration

Measurement of dE/dx is possible! \rightarrow Full kinematical analysis possible

Low Energy Reconstruction

Plan: Use my reconstruction to see linear shape of γ -e⁺- γ !

 \rightarrow Positron discrimination \rightarrow background reduction

Influence on Energy Resolution

Plan:

- only calculate the energy within a circle arround the reconstructed vertex
- Then add 1022 keV to it

Influence on Energy Resolution

Theoretical best case for improved energy resolution:

 $\Delta E/E \sim \sqrt{(E-1MeV)/E}$

Edge Event: Bad Result

3 GeV muon starting from (-800,1080,0) cm with direction (1,0,0); z-projection from 300 cm to -300 cm of 10th iteration and normalized w.r.t. maximum bin content of projection; 25 cm bin size; detected light only

Edge Event: After Recent Improvements

(Z projection)

Low Energy Reconstruction

Observation: Elongation of topology ≥ vertex resolution

Idea: Use my reconstruction to see linear shape of γ -e⁺- γ !

Image Processing

