

First results and status of the OPERA experiment

Focussed on the electronic detector, especially the presicion tracker (PT)

bmb+f - Förderschwerpunkt

OPERA

Großgeräte der physikalischen Grundlagenforschung

Detector

- Runs August/Oktober 2006
- Future Runs
- Conclusion

The CNGS Beam

Beam main features:

L	732 km	
< <u>E</u> v>	17GeV	
$L/$	43km/GeV	
$(v_e + v_e) / v_\mu$	0.87%	
$\overline{v_{\mu}} / v_{\mu}$	2.1%	
v_{τ} prompt	negligible	

Cern Neutrino to Gran Sasso

• Event rate :

OPERA

(~1.7 Kton, 4.5 · 10¹⁹ pot/year, 200 days/year)

- ~ 6200 events/year (CC+NC)
- ~ 30 events/day (CC+NC)
- → ~ 25 v_{τ} CC events/year for $\Delta m^2 = 2.4 \times 10^{-3} eV^2$

The Detector

Detector Concept

The OPERA detector

OPERA

The OPERA detector

Super Module 1

Super Module 2

Physics potential

τ decay	Signal		Destances
l channe	2.4 ⋅10 ⁻³ eV ²	3.0 ⋅ 10 ⁻³ eV ²	Background
$\tau \rightarrow \mu$	3.6	5.6	0.23
$\tau \rightarrow e$	4.3	6.7	0.23
$\tau \rightarrow h$	3.8	5.9	0.32
$\tau \rightarrow 3h$	1.1	1.7	0.22
ALL	12.8	19.9	1.0

Main background sources: charm production and decays

- hadron re-interactions in lead
- large-angle muon scattering in lead

full mixing, 5 years run @ 4.5x10¹⁹ p.o.t. / year

Brick Assembly Maschine (BAM)

Robotized parallel stations for automatic stacking and packaging of ~200.000 bricks

(dark room) operations start in the underground labs at LNGS (Hall B) in 2006

OPERA

Brick Manipulation System (BMS)

- Robotic system
 - fill detector
 - extract candidate bricks
- 1 systems on each detector side
- Drums with 246 bricks deliver from BAM
- Identifies brick by barcode
- Positions saved in database
- **Brick filling started !**
- ~ 2000 bricks already in the detector
- schedule:
- week 05-09: 05 drums/week week 10-13: 10 drums/week week 14 : 15 drums/week

Expected completion: end of march 2008

UΗ

Hamburg 9.3.2007

Target Tracker

7000m² in total (X,Y) 32256 sc. Strips 7m x 2.5cm x 1cm 496 modules (4X+4Y per plane) 1000 MaPMT (Hamamatsu 64ch.)

18 Marth

<u>Brick wall:</u> Mech. Accuracy <1mm 0.6% of target mass Target mass per wall: 30t UН

ΠÌ

Spectrometer

Hamburg 9.3.2007

OPERA

Björn Wonsak

Inner Tracker (RPC/XPC)

Resistive plate chambers(RPC)

- 462 (bakelite RPC) + 42 (XPC) × 2 ~ 1000
- tot. surface: 3326 m²
- digital channels: ~ 27000
- strip pitches: 2.6, 3.5 cm (Vert, Hor)
- Front-End Boards: 468
- Controller Boards: 52
- Gas: 76%Ar+20%TFE+4%Iso+0.6%SF₆
- 8 kV/2mm

cosmic ray efficiency map for 1 chamber (at surface!)

UΗ

Precision Tracker (PT)

- Momentum measurement dp/p ~25%
- determine charge of muon
- ~10000 drifttube
- 8m long without wire support
- 80% Argon + 20% CO₂
- In 6 planes per SM with 4 layers each
- Single tube spatial resolution 350µm

For details on gassystem and slow control see other talks in this session by Torben Ferber and Christoph Göllnitz

bmb+f - Förderschwerpunkt

Großgeräte der physikalischen Grundlagenforschung

Hamburg 9.3.2007

Björn Wonsak

UΗ

Status PT

of weeks

Mass production Hamburg done by technicians from ITEP(coordination Yuri Zaitsev)

- 200 modules needed
- 180 ready by now
- SM1 ready and commisioned
- One third of SM2 installed
- Production finishes in may
- Completion of SM2 by the end of may

PT performance

• 0.45% noisy

OPERA

- 0.28% dead
- Reconstruction running stable for MC and real data
- Single plane resolution ~ 500 μm

Hamburg 9.3.2007

Björn Wonsak

Event in HPT

Hamburg 9.3.2007

Björn Wonsak

Summary of August Data

- In august run CNGS deliver 7.6 · 10¹⁷ pot
- beam verified and electronic detectors comissioned
- The life time of the DAQ + detectors > 95%.
- 319 events in time with the beam (trigger + >20 hit):
- On average (42 ± 2) · 10⁻¹⁷ ev/pot
 - These number are not corrected for GPS and DAQ failures which affect the first half of the run.
- only dummy bricks in detector

Origin of beam events

uncertain : 8.5 %

OPERA

v_{cc} in rock (rock muon)

Hamburg 9.3.2007

A REAL PROPERTY OF THE PARTY OF

OPERA

........

assessed (

Björn Wonsak

UН

iii

v_{cc} in Target Tracker

Hamburg 9.3.2007

Björn Wonsak

UΗ

iii

Hamburg 9.3.2007

Björn Wonsak

UΗ

Ĥ

v_{NC} Canditate in Target

Hamburg 9.3.2007

The support of

.......

Research

Björn Wonsak

UН

iii

μ bundle (cosmics)

Hamburg 9.3.2007

Annang Panangangi

OPERA

BARAGES!

neessault (

ALL ADD DO

httpssaaa

Björn Wonsak

Beam Direction: August run

Select events around beam ($0 < \theta < 0.15$ rad) direction and check if there are on time

Time synchronsation

Event selection by using GPS timing informations

Searching events in O(ms) windows just yields a narrow peak of the order of the spill width (10.5 us) with practically no background $O(10^{E}-4)$

Hamburg 9.3.2007

Momentum

Measured with RPC only

Chargeidentification will be much better with the presision tracker (PT) misidentification 0.1-0.3%

Trigger + On Time + mu Id (> 10 RPC plane) + vertex in magnet OR first 2 TT2 + fiducial volume cut • no χ^2 cut on muon trk

- v_{cc} in magnets selection efficiency 52%
 very pure sample, NC contamination 4% (1,1 event)

Target Tracker - CS connection

Hamburg 9.3.2007

Björn Wonsak

Z (cm)

Z (cm)

Target Tracker - CS connection

Confirmed track position

Predicted track position + search area

UΗ

17

October run

- Oct. 26th at 8.00 <-> Oct 27th at 11.00
 - due to a water leak in the reflector
- 1.2 10¹³ pot/extraction (1.7 in Aug.)
- total 0.6 10¹⁷ pot (7.6 in Aug.)
- I event with OPERA + Borexino coincidence
- First bricks within Detector

Hamburg 9.3.2007

Björn Wonsak

Borexino coincidence

- One event in common with Borexino during the October run:
- 1 2909 11300 122 1161868864342099968.000 2407.000
- Evt 736526 1161868864344498530 332 49997802 4074
- Horizontal muon, 4074 ns after start of second extraction Considering the TOP of 2440079 ns The event should be at 2440 + 4.07 = 2447.07 μs Found in Borexino at 2407 μs , 40 μs missing

Hamburg 9.3.2007

Björn Wonsak

2007 CNGS run: Draft

SPS physics run: Start: 26/5/2007 End: 7/11/2007

- 141 days of physics runs, excluding machine development.
- restoring of CNGS beam at the beginning of the physics run
- This year OPERA will get something between 1.6-10¹⁹ p.o.t. and 2.1-10¹⁹ p.o.t.

UΗ

Plans for 2008

- The main aim of the OPERA experiment is to unambiguously confirm/disproof the $\nu_{\mu} \leftrightarrow \nu_{\tau}$ atmospheric oscillation channel
- The low intensity CNGS run operated smoothly for both beam and detector with good quality and stability
- The electronic detectors of OPERA took data almost continuously (95% live time) and with the expected tracking performances
- More than 300 in-spill events have been recorded with a clear time distribution
- The incoming angle of the neutrino beam has been measured and found in agreement with the expectation
- Electronic detector to changeable sheet connection tested with success
- The detector is ready for the next phase: observing neutrino interactions inside ECC bricks

- SM1 installed and commissioned
- More than 99% of channels running smoothly
- First reconstruction results in good agreement with expectations
- Alignment needed to improve resolution
- First Momentum measurement next month
- SM2 will be installed and ready at the end of May