Search for New Physics at a Future Beamdump Facility at the CERN SPS: The SHiP Experiment DPG Frühjahrstagung 2018 – Würzburg

Daniel Bick

March 21, 2018

Standard Model very successful, however...

Strong Evidence for BSM Physics

- Neutrino masses and oscillations
- The nature of non-baryonic Dark Matter
- Excess of matter over antimatter in the Universe

Mediators (portals) to the Hidden Sector Visible Sector $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{Mediator} + \mathcal{L}_{HS}$ Mediator/portals to the HS: vector, scalar, axial, neutrino Ability to couple to SM gives constraints from > Dark photons theory > Scalar and pseudoscalar mediators Not too many options > ALPs c.f. arXiv:1504.04855v1 > Heavy Neutral Leptons

All could be dark matter if very light (long-lived) or protected by symmetry

D. Bick (U<u>HH)</u>

UH

Ĥ

Where to Find New Physics

No new particles observerd, yet \triangleright could be too heavy or too weakly interacting

Image: CERN Courier 2/2016

D. Bick (UHH)

How to the Explore Hidden Sector?

- Phenomenologies of hidden sector models share a number of unique and common physics features
- \triangleright Production through meson decays (π , K, D, B)
- $\,\triangleright\,$ Production and decay rates are strongly suppressed relative to SM
 - Production branching ratios $\mathcal{O}(10^{-10})$
 - Long-lived objects $\mathcal{O}(\mu s)$
 - Travel unperturbed through ordinary matter
- Decay into two charged particles

Models	Final States
Neutrino portal, HNL, SUSY neutralino	$\ell^{\pm}\pi^+$, $\ell^{\pm}K^+$, $\ell^{\pm} ho^+$
Vector, scalar, axion portals, SUSY sgoldstino	e^+e^- , $\mu^+\mu^-$
Vector, scalar, axion portals, SUSY sgoldstino	$\pi^+\pi^-$, K^+K^-
Neutrino portal, HNL, SUSY neutralino, axino	$\ell^+\ell^-\nu$

UH

ĥŤ

ν Minimal Standard Model

SM: massless and left-handed neutrinos

ν Minimal Standard Model

 \rightarrow T.Asaka, M.Shaposhnikov PLB 620 (2005) 17

SM: massless and left-handed neutrinos ν **MSM:** extends SM by three right-handed heavy neutral leptons (HNLs)

- $N_1: \sim 10 \,\mathrm{keV}$
 - \triangleright DM candidate
- $N_{2,3}$: ~ GeV region
 - ▷ Neutrino masses
 - ▷ Baryon asymmetry of the Universe

${\sf HNL}$ Interaction with SM Particles

HNL Production

- $N_{2,3}$ mix with active u
- Produced in (semi-)leptonic decays e.g.: $K \rightarrow \mu\nu$, $D \rightarrow \mu\nu X$, $B \rightarrow \mu\nu X$, $Z \rightarrow \nu \bar{\nu}$

• Production $\propto \sigma_D imes |U|^2$

•
$$|U_2|^2 = |U_{2,\nu_e}|^2 + |U_{2,\nu_\mu}|^2 + |U_{2,\nu_\tau}|^2$$

UH

Ĥ

HNL Interaction with SM Particles

UHI #

HNL Production

- $N_{2,3}$ mix with active u
- Produced in (semi-)leptonic decays e.g.: $K \rightarrow \mu\nu$, $D \rightarrow \mu\nu X$, $B \rightarrow \mu\nu X$, $Z \rightarrow \nu \overline{\nu}$

• Production $\propto \sigma_D imes |U|^2$

•
$$|U_2|^2 = |U_{2,\nu_e}|^2 + |U_{2,\nu_\mu}|^2 + |U_{2,\nu_\tau}|^2$$

HNL Decay

• Into leptons and light mesons

 $\triangleright ct = \mathcal{O}(\mathrm{km})$

HNL Interaction with SM Particles

UHI #

HNL Production

- $N_{2,3}$ mix with active u
- Produced in (semi-)leptonic decays e.g.: $K \rightarrow \mu\nu$, $D \rightarrow \mu\nu X$, $B \rightarrow \mu\nu X$, $Z \rightarrow \nu \bar{\nu}$

• Production $\propto \sigma_D imes |U|^2$

•
$$|U_2|^2 = |U_{2,\nu_e}|^2 + |U_{2,\nu_\mu}|^2 + |U_{2,\nu_\tau}|^2$$

HNL Decay

• Into leptons and light mesons

• $\mathcal{B}(N \to \mu/e + \pi) \simeq 0.1 - 50\%$

•
$$\mathcal{B}(N \to \mu/e + \rho) \simeq 0.5 - 20\%$$

•
$$\mathcal{B}(N \rightarrow \nu + \mu + e) \simeq 1 - 10\%$$

- Hidden particles mainly produced in decays of (charmed, beauty) hadrons and proton bremsstrahlung
- $\triangleright\,$ Use of a Beam Dump facility providing e.g. lots of (charmed) mesons
- Detection of hidden particles through their decay in SM particles
 Detector must be sensitive to as many decay modes as possible
- ▷ Full reconstruction essential to minimize model dependence
- Branching ratios suppressed compared to SM couplings $\mathcal{O}(10^{-10})$
- $\triangleright\,$ Challenging background suppression \rightarrow estimated $\mathcal{O}(0.1)$ needed

New Beam Dump Facility @ SPS North Area

- 2013: Proposal to Search for Heavy Neutral Leptons at the SPS
- ▷ CERN-SPSC-2013-024 arXiv:1310.1762
- Huge R&D effort by CERN for a new BDF

- $400 \, \mathrm{GeV}$ protons
- $4 \times 10^{13} \text{ pot/spill}$
- 1 s long spill every 7 s
- $\triangleright~2\times10^{20}\,\text{pot}$ in 5 years

SHiF

• SHiP is a new proposed intensity-frontier experiment aiming to search for neutral hidden particles with mass up to $\mathcal{O}(10) \, \text{GeV}$ and extremely weak couplings down to 10^{-10} .

• SHiP is a new proposed intensity-frontier experiment aiming to search for neutral hidden particles with mass up to $\mathcal{O}(10) \, \text{GeV}$ and extremely weak couplings down to 10^{-10} .

Target

- High Z: 58 cm Mo (4 λ), 58 cm W (6 λ)
- > Optimized for heavy meson production
- Followed by hadron stopper

• Testbeam with replica this July

DPG 2018: SHiP

Active Muon Shield

- Deal with $10^{10} \ {\rm muons/spill}$
- Active magnetic muon shield and passive absorber
- Less than 100k $\mu/{\rm spill}$ remaining

Emulsion Spectrometer

- Magnetized neutrino targed
- OPERA-like detector
- \triangleright lead interleaved with photo emulsion
- Followed by spectrometer

$\triangleright \nu SHiP$

- (SM) neutrino physics
- ⊳ iSHiP
 - indirect searches
 - ⊳ LDM

Decay Vessel and Hidden Particle Detector

- $50\,\mathrm{m}$ long evacuated decay vessel \triangleright $10^{-3}\,\mathrm{bar}$
- Surrounded by liquid scintillator
 - ▷ background tagger and photon detection
- Straw Tube Spectrometer followed by calorimeters and muon detector

March 21, 2018 10 / 20

Spectrometer

- Area of 5 m \times 10 m
- 5 m long straw-tubes of 2 cm diameter
- ▷ operated horizontally
- \triangleright 18 000 straws
- 4 stations with 4 × 4 stereo layers (y-u-v-y views)
- Huge magnet (0.15 T)
- + $1\times 10^7\,\text{hits/station}$ per spill
- Resolution of $120 \, \mu m$
- Momentum resolution: better 1% up to 50 GeV

Timing Detector

- Needed to reduce combinatorial di-muon background (random crossing in the detector)
- $\triangleright\,$ timing resolution of 100 ps or less

Two options:

- Plastic scintillators read-out by SiPMs
- Multigap resistive plate chambers (MRPCs)

Calorimeters

- ECAL: pointing calorimeter based on scintillating fibers read out by SiPMs or MicroMegas
- $\triangleright\,$ Needed to identify $\gamma,\,e,\,\mu$ and π^0 and measure their energy
- HCAL: Tag neutral particles (K_L, n) for BG rejection

Muon Filter

- Identify muons in signal channels
- Scintillating bars with WLS fibers and SiPM readout

• Sensitivities depend on input parameters for U and hierarchy

 $\triangleright\,$ SHIP will scan most of the cosmologically allowed region below the charm mass

- SHiP covers unique parameter space
- $c\tau \simeq 0 \,\mathrm{m}$ region: τ too short for SHiP and too long for B-experiments

Dark Photons

• Complementary to regions studied by other experiments

 ν -production @ p-target

- $5.7\cdot 10^{15}~\nu_{ au}$ and $\bar{
 u}_{ au}$
- $5.7 \cdot 10^{18} \nu_{\mu}$ and $\bar{\nu}_{\mu}$
- $3.7 \cdot 10^{17} \ \nu_e$ and $\bar{\nu}_e$

- Production of large amounts of neutrinos
- $\triangleright~$ Study $\nu_{\tau}~$ and $\bar{\nu}_{\tau}~$ properties
- $\triangleright\,$ Test lepton flavor universality by comparing interactions of ν_{μ} and ν_{τ}
 - Target for neutrino interactions
 - $ho~\sim 10\,{
 m tons}$ lead
 - \triangleright 40 m behind *p*-target

Interactions in ν -target $\triangleright \nu_{\mu} + \bar{\nu}_{\mu}$: ~ 2 per spill $\triangleright \nu_{e} + \bar{\nu}_{e}$: ~ 0.2 per spill $\triangleright \nu_{\tau} + \bar{\nu}_{\tau}$: ~ 0.02 per spill

Emulsion Spectrometer

- Magnetized OPERA-like Pb/Emulsion Target
- \triangleright 26 000 m² emulsion films
- Followed by spectrometer and muon filter

$\nu_{ au}$ -physics

SHil

- $\mathcal{O}(4000) \ \nu_{\tau}/\bar{\nu}_{\tau}$ interactions
 - \triangleright DONUT: 9±1.5 events
 - \triangleright OPERA: 5 events
- $\triangleright~$ Study the properties and cross-section
- $\triangleright~{\sf First}$ observation of $\bar{\nu}_{\tau}$

Other SM-physics

- F_4 and F_5 structure functions
- $\mathit{s}\text{-}$ and $\bar{\mathit{s}}\text{-}\text{contents}$ of the nucleon
- Test nuTeV anomaly
- Search for charmed penta-quarks

Light Dark Matter production

- Decay of dark photon A' in the beam dump produces DM particle χ

Search for Light Dark Matter via elastic scattering

- Machine learning technique to identify isolated *e*-shower
- Background from ν-scattering
 - \triangleright About 300 events \triangleright different kinematics

UH #

- ${\sim}250~\text{physicists}$
- 57 institutions
- 18 countries +CERN +JINR
- Strong support from the theory community

German Contributions to SHiP

HU Berlin	Т 4.6, Т 4.7, Т 40.10, Т 65.7,	T 65.8, T 65.9
	 Liquid Scintillator Surround Background Tagger Studies of wavelength shifting optical modules 	
JGU Mainz	Т 65.6,	T 86.8, T 86.9
	 Electromagnetic Calorimeter (ECAL) with directional information Liquid Scintillator Studies for the Surround Background Tagger 	on
Universität Bonn		Т 89.9
UNIVERSITÄT	 Testbeam measurements to understand charm production in ta Pixel detectors for tracking 	rget
Forschungszentrum Jülich		
	 Officially became a member last week Read-out electronics for the central tracker 	
Universität Hamburg		T 4.5
Universität Hamburg DER FORSCHUNG DER LEHRE DER BELDUNG	Straw-tubes for the main spectrometerDrift-tubes for muon-flux and charm cc testbeam	
D. Bick (UHH)	DPG 2018: SHiP	March 21, 2018

Summary: Status and Outlook of SHiP

- 2014: Collaboration founded
- 2015: Technical Proposal arXiv:1504.04956v1 Physics Proposal arXiv:1504.04855v1
- 2016: Recognized as CERN experiment
- 2018: Four weeks of testbeam @ H4 (SPS)
 - ▷ Investigate muon flux after target
 - $\triangleright~$ Charm production in target

Comprehensive Design Report

- > Optimized detector layout
- $\triangleright~$ Improved background studies and sensitivities
- Input for the European Strategy of Particle Physics

2020: Approval!

- 2021: Start of civil engineering
 - $\triangleright~$ Linked to LHC shutdown phases
- 2026: Start of Data Taking

UH

H.