Detection of neutrinos from the primary proton-proton fusion process in the Sun with Borexino DESY Hamburg Seminar & DESY Zeuthen Physics Colloquium

Daniel Bick

October 14 & 15, 2014

1 Solar Neutrinos

- 2 The Borexino Experiment
- **3 Previous Borexino Solar Neutrino Results**
- 4 pp Neutrino Measurement
- **5** Conclusions

Solar Neutrinos: *pp*-chain

UHI #

- Energy Production in the Sun: Fusion
- $4p \to {}^{4}\text{He} + 2e^{+} + 2\nu_{e} + 26.7 \text{ MeV}$
- Main contribution: *pp*-chain

Solar Neutrinos: *pp*-chain

UHI H

- Energy Production in the Sun: Fusion
- $4p \to {}^{4}\text{He} + 2e^{+} + 2\nu_{e} + 26.7 \text{ MeV}$
- Main contribution: pp-chain

Solar Neutrinos: *pp*-chain

UHI H

- Energy Production in the Sun: Fusion
- $4p \to {}^{4}\text{He} + 2e^{+} + 2\nu_{e} + 26.7 \text{ MeV}$
- Main contribution: *pp*-chain

CNO I:

$$\label{eq:constraint} \begin{split} ^{12}\mathrm{C} &+ {}^{1}\mathrm{H} \rightarrow {}^{13}\mathrm{N} + \gamma \\ {}^{13}\mathrm{N} \rightarrow {}^{13}\mathrm{C} + e^+ + \nu_e \\ \\ ^{13}\mathrm{C} &+ {}^{1}\mathrm{H} \rightarrow {}^{14}\mathrm{N} + \gamma \\ \\ ^{14}\mathrm{N} &+ {}^{1}\mathrm{H} \rightarrow {}^{15}\mathrm{O} + \gamma \\ {}^{15}\mathrm{O} \rightarrow {}^{15}\mathrm{N} + e^+ + \nu_e \\ \\ \\ ^{15}\mathrm{N} &+ {}^{1}\mathrm{H} \rightarrow {}^{12}\mathrm{C} + {}^{4}\mathrm{He} \end{split}$$

CNO II:

$$\label{eq:15} \begin{split} ^{15}\mathrm{N} &+ {}^{1}\mathrm{H} \to {}^{16}\mathrm{O} + \gamma \\ ^{16}\mathrm{O} &+ {}^{1}\mathrm{H} \to {}^{17}\mathrm{F} + \gamma \\ {}^{17}\mathrm{F} \to {}^{17}\mathrm{O} + e^+ + \nu_e \\ \\ ^{17}\mathrm{O} &+ {}^{1}\mathrm{H} \to {}^{14}\mathrm{N} + {}^{4}\mathrm{He} \\ \\ ^{14}\mathrm{N} &+ {}^{1}\mathrm{H} \to {}^{15}\mathrm{O} + \gamma \\ {}^{15}\mathrm{O} \to {}^{15}\mathrm{N} + e^+ + \nu_e \end{split}$$

• CNO contribution to our Sun's energy production < 1% (theory) • Major contribution for heavier stars

Solar Neutrinos: CNO-cycle

UHI #

CNO I:

CNO II:

CNO contribution to our Sun's energy production < 1% (theory)
Major contribution for heavier stars

- $\ensuremath{{\rm 1}}\xspace{-1mu} {\rm Test \ our \ understanding \ of \ energy \ generation \ in \ the \ Sun}$
 - Conventional observation limited to surface
 - ${\, \circ \, pp}$ accounts for 99.76% of deuterium synthesis
 - $\rightarrow\,$ determines rate of solar energy generation
- 2 Oscillation physics
 - Measurement of u_e survival probabilities
- 3 Tests of solar variability
 - Test assumption that neutrino flux is consistent with solar luminosity

Name	High $Z \Phi_{GS98} [{\rm cm}^{-2} {\rm s}^{-1}]$	Low $Z \Phi_{AGSS09} [\mathrm{cm}^{-2} \mathrm{s}^{-1}]$	$E_{\nu,\max}$ [MeV]
pp	5.98×10^{10}	6.03×10^{10}	0.422
pep	1.44×10^{8}	1.47×10^{8}	1.442^{\dagger}
hep	7.91×10^3	8.18×10^3	18.8
$^{7}\mathrm{Be}$	5.00×10^{9}	4.56×10^{9}	$0.861^{\dagger}/0.384^{\dagger}$
^{8}B	5.58×10^6	4.59×10^{6}	16.34
^{13}N	2.96×10^{8}	2.17×10^{8}	1.199
$^{15}\mathrm{O}$	2.23×10^8	1.56×10^{8}	1.732

Oscillation Physics

Interaction Rate $R_{\nu} = N_e \int dE \frac{d\Phi}{dE} (P_{ee}\sigma_e + (1 - P_{ee})\sigma_{\mu,\tau})$

- Oscillations affected by matter effects (MSW effect)
- Oscillation survival probability P_{ee} energy dependent
- Transition region between vacuum- and matter dominated oscillations at a few MeV
- $\rightarrow\,$ Very sensitive to different models

 P_{ee} before Borexino D.8 Be LMA Prediction 0.7 Data Before Borexino 0.6 0.5 0.4 0.3 0.2 1 10_{E. [MeV]}

Solar Variability

UHI **#**

- Light emitted during fusion takes $> 100000~{\rm years}$ to get to the surface of the Sun
- Neutrinos can leave the core unhindered

- Is the flux of neutrinos consistent with solar luminosity?
- $\rightarrow\,$ Temperature needs to be stable on timescales of 100000 years

UΗ

譄

- Radiochemical experiments \rightarrow no spectral measurement.
- ${\rm \bullet}\,$ Water Cherenkov detectors ${\rightarrow}\,E>3.5\,{\rm MeV}$

Measuring Solar Neutrinos

UH #

- Radiochemical experiments \rightarrow no spectral measurement.
- ${\rm \bullet}\,$ Water Cherenkov detectors ${\rightarrow}\,E>3.5\,{\rm MeV}$
- Liquid Scintillator $\rightarrow E > 200 \, \mathrm{keV}$

- Neutrino electron scattering
- Scintillation light produced by recoil electron
- Compton like energy transfer
- $\, \bullet \,$ No energy threshold (limited by $^{14}{\rm C}$ background (156 keV))
- Cross-sections very well known!

Compton-like energy transfer:

$$T_e^{max} = \frac{E_\nu}{1 + \frac{m_e c^2}{2E_\nu}}$$

 $\,{\rm \circ}\,$ 862 keV mono-energetic $^7{\rm Be}$ neutrinos \rightarrow $T_e^{max}=665\,{\rm keV}$

D. Bick (UHH)

pp-Neutrinos in Borexino

Compton-like energy transfer:

$$T_e^{max} = \frac{E_\nu}{1 + \frac{m_e c^2}{2E_\nu}}$$

 $\,{\rm \circ}\,$ 862 keV mono-energetic $^7{\rm Be}$ neutrinos \rightarrow $T_e^{max}=665~{\rm keV}$

Borexino Detector Setup

Outer Detector 2100 tons ultra pure water • Active shielding

208 PMTs ⇒ Cherenkov veto

Steel dome: Ø18 m - 16.9 m high

UH

ΪÌ

Inner Detector

Graded shielding

- 278 tons pseudocumene
- $\sim 1.5\,{\rm g}/\ell$ PPO
- Two 125 μm nylon vessels (Ø8.5 m and 11 m)
- Barrier against radon
- Buffer: light quencher DMP
- Stainless steel sphere (Ø13.7 m)
- 2212 inward facing 8" PMTs

Borexino Detecor Site

LNGS Underground Lab

- Located at Gran Sasso
- 1400 m of rock shielding
- 3800 m.w.e.
- 1.2 muons per m^2 and hour

A View Inside

22 Institutes from 6 Countries

Phase I – May 2007 - May 2010

- First observation of ⁷Be neutrinos
- Day-night asymmetry
- \circ $^8{
 m B}$ neutrinos
- pep neutrinos
- Limit on CNO
- geo-neutrinos
- Muon seasonal variations
- Limits on rare processes

Purification campaigns

- May 2010
- Aug-Oct 2011

Phase II – ongoing since 2012

- pp neutrinos
- CNO neutrinos
- Short baseline oscillations (SOX)

All phases

Neutrons and other cosmogenics, $^7\mathrm{Be}$ seasonal variations, update on geo- ν

- Scintillation light emitted isotropically
- Record time t and charge q of all hit PMTs

• Particle identification by pulse shape

UH

Dark rate 400-500 kHz

Trigger threshold

25 PMTs detect light within 100 ns

- ightarrow Trigger rate: $\sim 30\,{\rm Hz}$
 - No coincidence with muon events
 - 300 ms veto (ID)
 - Clusters of hit PMTs within 230 ns gate

Four energy estimators

- N_p: Number of PMTs that detect light
- N_h : Number of detected hits
- N_{pe}: Number of photoelectrons (pe)
- N_{pe}^d : Correction of dark-noise
- Normalization to number of live channels $f_{eq}(t)$
- Response functions to true energy deposit
 - correct for event position
 - particle specific quenching
- Roughly 500 pe per MeV

$\alpha - \beta$ discrimination

- Time distribution of emitted photons depends on particle type
- Simple discrimination: tail-to-total ratio
- More advanced: *Gatti*-filter

Gatti Parameter - Simplified

 Comparison of binned and normalized time distribution to reference data

Real data

Radiopurity

High radiopurity is the key to success

- ${
 m ^{14}C}$ inherent to the scintillator
- Dedicated prototype in the 90s (CTF)
- Careful choice and handling of all gasses, liquids and materials
- World record radiopurity levels reached

Isotope	Phase I	Rate $[cpt/100 t]$	Method
$^{238}\mathrm{U}$	$(5.3\pm0.5)\times10^{-18}~{\rm g/g}$	(0.57 ± 0.05)	measured (Bi-Po)
232 Th	$(3.8\pm0.8) imes10^{-18}~{ m g/g}$	(0.13 ± 0.03)	measured (Bi-Po)
$^{14}{\rm C}/^{12}{\rm C}$	$(2.69\pm0.06) imes10^{-18}~{ m g/g}$	$(3.46 \pm 0.09) \times 10^6$	measured (CTF)/Fit
40 K	$\leq 0.04 imes 10^{-18} \mathrm{~g/g}$	< 0.42	Fit
85 Kr	$(30\pm5)~{\rm cpd}/100~{\rm t}$	$(30.4 \pm 5.3 \pm 1.5)$	measured (85 Rb eta - γ)
$^{39}\mathrm{Ar}$	$\ll {}^{85}{ m Kr}$	~ 0.4	estimated from 85 Kr
²¹⁰ Po	(70) 1 dpd/100 t	$5\times 10^2 - 8\times 10^3$	Fit
²¹⁰ Bi	(20) 70 dpd/100 t	$(41.0 \pm 1.5 \pm 2.3)$	Fit

UH

UΗ

畄

⁷Be Interaction Rate

$^7\mathrm{Be}$ Interaction Rate - Results

⁷Be Day-Night Assymetry excluded (Phys. Lett. 707, 1 (2011) 22-26) $A_{DN} = \frac{N - D}{(N + D)/2} = 0.001 \pm 0.012 (\text{stat}) \pm 0.007 (\text{sys})$

SSM Metallicity

arXiv:1308.0443

- ${\ensuremath{\, \circ }}\xspace^{-7} Be$ and ${\ensuremath{^8 B}}\xspace$ data cannot discriminate models
- \Rightarrow CNO measurement needed!

Main contribution

$$\mu + {}^{12}\mathrm{C} \to \mu + {}^{11}\mathrm{C} + n$$

- $\tau_{1/2} = 20.3 \min$
- Not related to incident muon
- β^+ -decay $Q = 0.96 \,\mathrm{MeV}$
- $ho
 ightarrow 1 extsf{--2}\, extsf{MeV}$ visible energy
- covers CNO and pep range
- $\Rightarrow\,$ Need to go deep underground to reduce muon flux
 - Borexino: $\approx 4000~{\rm muons}~{\rm per}~{\rm day}$

Reducing $^{11}\mathrm{C}$

Three-fold coincidence

- Cylinder around muon track
- Sphere around captured neutron
- Veto for 2 h
- 48.5% exposure remains

Reduction of $^{11}\mathrm{C}$ background

- ${\ensuremath{\,\circ\,}}$ TFC reduces 89.4 % of $^{11}{\rm C}$
- β^+/β^- pulse shapes
- Boosted decision tree

First measurement of *pep* solar neutrino rate (Phys. Rev. Lett. 108 (2012) 051302)

pep results:

- $R = (3.1 \pm 0.6 \pm 0.3) \, \text{cpd}/100 \, \text{t}$
- $\phi = (1.6 \pm 0.3) \times 10^8 \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$
- $P_{ee} = 0.62 \pm 0.17$ at 1.44 MeV
- Limit on CNO rate • Best limit so far • $\phi_{\text{CNO}} < 7.7 \times 10^8 \, \text{cm}^{-2} \text{s}^{-1}$

Phase I Borexino Results for P_{ee}

What's missing?

- ${\rm \circ}\,$ Lower threshold on $^8{\rm B}-\nu$ to see upturn in transition region
- CNO measuremnt
- Direct pp neutrino measurement

D. Bick (UHH)

pp-Neutrinos in Borexino

Challanges for the $pp\ {\rm measurement}$

- pp end point $422\,{\rm keV} \rightarrow {\rm recoil\ energy} < 261\,{\rm keV}$
- $^{14}\mathrm{C}~\beta\text{-decay}$ spectral shape: end point 156 keV
- ¹⁴C pile-up
- \circ 85 Kr and 210 Bi reach similar level in ROI

UΗ

茁

Purification Campaign

UHI H

Loop-mode purification

- Extract at the bottom
- Refill at the top
- Try to keep re-mixing inside low
- 1 Nitrogen purging
 - Bubbling LS with ultra-pure nitrogen
 - $\rightarrow\,$ removes $^{210}\mathrm{Pb}$
 - $\rightarrow\,$ adds $^{210}\mathrm{Po}$?
- 2 Water extraction
 - Washing LS with ultra-pure water
 - \rightarrow removes $^{85}{
 m Kr}$

Effects of Purifications

UΗ

Ĥ

- $\bullet\,$ Intrinsic to the scintillator (pseudocumene ${\sf C}_9{\sf H}_{12})$
- Very low concentration ($^{14}{\rm C}/^{12}{\rm C}\sim 2.7\times 10^{-18})$
- $\rightarrow \mbox{ still } \sim 10^2 \, \mbox{Bq}$ in 100 tons

Approaching ¹⁴C

- Mostly below threshold
- $\rightarrow\,$ hard to fit spectral shape
- $\rightarrow\,$ actual decay rate?
 - forms pile-up due to hight rate
- $\rightarrow\,$ additional signals in $pp\mbox{-}region$

True $^{14}\mbox{C}$ spectrum based on random events

- length of Bx tigger gate is 16 μs
- ${\rm \circ}\,$ at low probability, a second event is included \rightarrow mostly $^{14}{\rm C}$

- trigger threshold does not apply to second event
- \rightarrow undistorted spectrum!

- spectrum of 1st triggers
- spectrum of random in-gate events

Fit to ¹⁴C Rate

Synthetic method: overlay of

- Random event
- ${}^{14}C$ event

• Reconstructed using regular procedure

Data from January 2012 to May 2013 (408 days) Reduced threshold (20 PMTs) starting from 15.02.2013

- Energy estimator: N_p
- Range: [60-220 $N_p]$ (corresponds to 165-590 $\rm keV)$
- ${\circ}\,$ Free spectral components: ${}^{14}{\rm C},\,{}^{210}{\rm Bi},\,{}^{210}{\rm Po},\,pp,\,{}^{85}{\rm Kr}$
- Constrained spectral components: ⁷Be (paper central value)
- Fixed spectral components: pep+CNO+⁸B (SSM/LMA(HM))
- Energy scale variables: LY free, quenching fixed, f_{eq} calculated
- Synthetic pile-up constrained

Robustness of Fit

Different values obtained by varying fit conditions

- Fit energy range
- Energy estimator
- Data selection criteria
- Pile-up evaluation method

RMS gives an estimate of the systematic error

pp Measurement

Systematic uncertainties

- energy estimator
- fit energy range
- data selection
- pile-up avaluation
- fiducial mass

2%

7%

Resulting pp-rate

 $144 \pm 13_{\rm (stat)} \pm 10_{\rm (sys)}/{\rm d} \cdot 100\,{\rm t}$

The absence of pp solar neutrinos is excluded @ 10σ Nature 512, 383–386 28 August 2014 doi:10.1038/nature13702

UH

1 Survival probability

- $P_{ee}=0.612\pm0.133~{\rm measured}$
- $P_{ee} = 0.543 \pm 0.013$ expected
- $\mathbf{2}\ pp$ neutrino flux measurement, verification of the SSM
 - $(6.42\pm 0.85)\times 10^{10}\,{\rm cm}^{-2}{\rm s}^{-1}$ measured
 - $(5.98\pm0.04)\times10^{10}\,{\rm cm}^{-2}{\rm s}^{-1}$ expected (high Z)
 - $(6.03 \pm 0.04) \times 10^{10} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$ expected (low Z)
- 3 Solar variability
 - Solar fusion long-term stability confirmed

Outlook

UHH M

- Precision pep neutrino measurement (> 3σ) (2015)
- Measurement or stronger limits on CNO (2015)
- $^7\mathrm{Be}$ neutrino flux at 3% (2016-17)
- Geo-neutrinos with higher statistics (2016-17)
- ${\ensuremath{\,\circ\,}}^8 B$ neutrino flux with $4\times$ higher statistics (aiming 10%) (2016-17)
- SOX will test reactor antineutrino anomaly
 - $\, \bullet \,$ Search for sterile neutrinos with an intense $\bar{\nu}_e$ source
 - Measurement of neutrino magnetic moment
 - Search for non standard ν interactions

Beyond Borexino

- Long-term: bigger detector needed
- LENA design: 50 kt detector possible 200 CNO neutrinos per day
- JUNO: 20 kt soon starting construction in China

UH

Ш

- 0.9 pep pp 0.8 ⁷Be o (v_e → v_e) 0.6 ⁸R 0.5 0.4 0.1 ot 102 104 Energy (keV)
- Borexino performed first • real-time measurement of the solar pp-neutrino flux.
 - Broad range of solar ν fluxes (⁷Be, ⁸B, pep, CNO, pp) and geo neutrinos.
 - Unprecedented radiopurity. •
 - *pp* result confirms vacuum oscillation probabilities.
 - Full agreement with standard solar model.

Conclusions

- 104 Thank You!
 - Full agreement with standard solar model.

- Borexino performed first • real-time measurement of the solar pp-neutrino flux.
- Broad range of solar ν fluxes (⁷Be, ⁸B, pep, CNO, pp) and geo neutrinos.
- Unprecedented radiopurity.
- *pp* result confirms vacuum oscillation probabilities.

pep

0.9

Borexino data only

pp

