u_{τ} -physics with the SHiP experiment DPG Frühjahrstagung 2016 Hamburg

Daniel Bick

March 1, 2015

- 1 The SHiP Experiment
- 2 The SHiP- ν_{τ} Detector
- 3 Drift-Tubes for the SHiP- u_{τ} Detector
- 4 Conclusions

Scientific Motivation

explore the domain of very weakly interacting particles

Experimental realization

- new beam-dump facility at the SPS
- 50 m long 10 m wide vacuum decay volume instrumented with magnetic spectrometer

Perfect environment for $\tau\text{-neutrino}$ production

- neutrino detector in front of hidden particle detector
- ${\scriptstyle \bullet}$ measurement of ν_{τ} and $\bar{\nu}_{\tau}$ cross-sections and more
- positive review from SPSC
- $\rightarrow\,$ recommendation to prepare a Comprehensive Design Report
- $\rightarrow\,$ will provide input into the next update of the European Strategy for Particle Physics in 2018/2019

Technical Proposal

Particles (SHiP) at the CERN SPS The SHP Collaboration¹

etract

A new general purpose fixed toget facility is proposed at the CERN SFS accelerates which is alread or exploring the duration of haddin particles on make non-more with the matteria. Hilden particles are predicted by a king number of models beyond the Standard Model. The high numerical particles with moments of the star of the st

Authors are listed on the following pages

- project started 2014 with CERN taskforce
- Technical Proposal and Physics Proposal published last spring
- Comprehensive Design Report in 2018
- construction and installation 2021-2026
- data taking and analysis starting 2026

 \sim 250 physicists from 47 institutions / 15 countries

D. Bick (UHH)

 ν_{τ} -physics with SHiP

The SHiP Experiment

Fixed Target Facility @ SPS (North Area)

- 400 GeV protons
- Target: 58 cm Mo (4 λ), 58 cm W (6 λ)
- $4 \cdot 10^{13} \text{ pot/spill}$
- 1 s spill every 7 s
- ${\ensuremath{\, \circ }}\xspace 2 \cdot 10^{20}$ pot in 5 years

Neutrino Production

Tau-Neutrino Physics

Direct measurements of tau neutrino CC-interaction fairly recent

- DONUT: 9 \pm 1.5 events
 - no distinction between ν_τ and $\bar{\nu}_\tau$
- OPERA: 5 events
 - ${\scriptstyle \circ }$ only $\nu _{\tau }$

SM Physics opportunity for SHiP

- $\mathcal{O}(10000) \
 u_{ au}/ar{
 u}_{ au}$ interactions
- study the properties and cross-section
- first observation of $ar{
 u}_{ au}$
- extraction of F_4 and F_6 structure functions

UH

Neutrino Target

- magnetized, modular target based on Emulsion Cloud Chamber technique
- 9.6 tons emulsion target
- planes of real-time detectors for timing and event identification

Magnetic Spectrometer

- identification of muons
 - discrimination of background from charm events
- mainly reuse of OPERA spectrometer

Neutrino Target

ECC Brick

- 57 emulsion films (AgBr) with sub-micron resolution
- interleaved with 56 lead plates
- $128 \times 102 \times 79\,\text{mm}^3$, 8.3 kg

Compact Emulsion Spectrometer

- behind each brick
- light material to minimize multiple scattering
- 11 walls of 15 \times 7 bricks \rightarrow 1155 bricks
- bricks will be exchanged every 6 months (10 replacements total)
- 8700 m² total area of emulsion film
- \sim 300 $\nu\text{-interactions/brick}$ $\sim 10^3 \text{ particles/mm}^2$
- \rightarrow automated scanning of all emulsions D. Bick (UHH) $\nu_{\tau-physics with SHIP}$

Muon Magnetic Spectrometer

- (partial) re-use of the OPERA spectrometer
- 🔀 drift-tubes for precision tracking
- new: 3D reconstruction of muons
 - deal with occupanccy
 - conncet muon tracks to target
 - use of Goliath as part of the spectrometer

Drift-tube Setup

- aluminum tubes of 3.8 cm diameter
 45 µm gold-plated tungsten sense wire
- ${\scriptstyle \bullet} \,$ modules of 4 \times 12 staggered drift-tubes
- ten planes containing 8 modules each \rightarrow 3840 drift-tubes
- total width: 4 m @ center, 4.5 m @ ends

Modifications needed

- $\, \bullet \,$ stereo planes at angles of $\pm 3.6^\circ$
- $\bullet\,$ test of faster and more linear drift gas by adding N_2
- new read-out electronics
 - read-out of all signals w/o a trigger
 - faster read-out times
- \Rightarrow R&D ongoing in Hamburg

Impressions of the Drift-Tubes

dismantling of OPERA has begun
drift-tubes are stored in containers
Waiting for SHiP!

- SHiP experiment now proposed at CERN / SPS
- BSM-physics
 - can test a variety of models
- τ -neutrino physics (sturdy SM physics)
 - ${\scriptstyle \bullet}\,$ improvement of sensitivity by ${\cal O}(200)$
- Technical Proposal submitted last spring
- Positive feedback from SPSC
- Next step: CDR
- Begin of data taking end of 2026

UН