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Abstract

JUNO, an acronym for Jiangmen Underground Neutrino Observatory, is a 20 kt liquid scintil-

lator (LS) neutrino detector currently under construction in Jiangmen, China. With a planned

energy resolution of 3% at 1 MeV, JUNO aims to answer the question of the ordering of the neu-

trino mass eigenstates and measure oscillation parameters with unprecedented precision. With

the initial goal of reducing the background in large liquid scintillator detectors, the 3-D topolog-

ical track reconstruction (TTR) was developed. It uses the time information of the scintillation

light to reconstruct the original event topology, which it describes with a 3-D probability density

function for the emission of scintillation light in the detector. This thesis deals with the imple-

mentation of the negative logarithmic likelihood (NLL) into the the TTR under JUNOs geome-

try. Applied to the TTR, the NLL compares the signature resulting from the reconstructed event

topology with the detected event signature. The NLL hereby produces lower values the better

and higher values the worse the signatures match up. Therefore, the NLL can be used as a mea-

sure of quality for the TTR results. The implementation of the method is approached by separat-

ing the combined-NLL Lcombined = Lcharge + Ltime into two independent likelihoods describing

the charge distribution, Lcharge, and the time distribution, Ltime detected by the photomultiplier

tubes (PMTs) of JUNO. A statistical analysis of the charge-NLL, using a toy-Monte-Carlo, with

10,000 simulated 3.5 MeV electron events, shows a resolution for the vertex reconstruction of

low energy events (E < 5 MeV) of± 28.2 cm for the X-direction, ± 28.0 cm for the Y-direction

and ± 32.9 cm for the Z-direction. The time-NLL is tested by comparing its behaviour to the

expected behaviour, with the results showing a correctly working method. Furthermore, an anal-

ysis, using a toy-Monte-Carlo, of a small sample of 100 events indicates a resolution for the

vertex Reconstruction of low energy events of ± 20.3 cm for the X-direction, ± 21.1 cm for the

Y-direction and ± 19.6 cm for the Z-direction. Application of the NLL on a well reconstructed

event shows promising results, as the NLL is decreasing with each iteration, as expected, and

additionally, the alternation between even and odd numbered PMTs, used in the TTR, is visible

in course of the NLL. Application to an erroneous reconstruction shows a significant increase of

the NLL in the final iteration, in which the artifact is most pronounced.
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Zusammenfassung

JUNO, ein Akronym für Jiangmen Underground Neutrino Observatory, ist ein 20 kt Flüssigs-

zintillator Neutrino Detektor in Jiangmen, China, der sich momentan im Bau befindet. Mit einer

geplanten Energieauflösung von 3% bei 1 MeV zielt JUNO auf die Beantwortung der Frage nach

der Massenordnung der Neutrino Masseneigenzustände und auf die Messung von Oszillations-

parametern mit noch nie erreichter Präzision. Die 3-D topologische Spur Rekonstruktion (TTR)

wurde mit dem initialen Ziel den Hintergrund in großen Flüssigszintillator Detektoren zu redu-

zieren, entwickelt. Sie benutzt die Zeitinformationen des Szintillationslichtes um die ursprüngli-

che Ereignistopologie zu rekonstruieren, welche sie durch eine 3-D Wahrscheinlichkeitsdichte-

funktion der Emissionswahrscheinlichkeit von Szintillationslicht im Detektor beschreibt. Diese

Bachelorarbeit beschäftigt sich mit der Implementierung der negative logarithmic likelihood

(NLL) in die TTR unter JUNOs Geometrie. Angewendet auf die TTR vergleicht die NLL die

Signatur, die durch die rekonstruierte Ereignistopologie entsteht, mit der detektierten Ereignissi-

gnatur. Die NLL produziert hierbei umso niedrigere Werte, desto besser und umso höhere Werte,

desto schlechter die Signaturen zueinander passen. Somit kann die NLL als Qualitätsmaß der Er-

gebnisse der TTR benutzt werden. Die Implementierung der Methode wird durch das Aufteilen

der kombinierten-NLL Lcombined = Lcharge + Ltime in zwei unabhängige likelihoods angegan-

gen, welche die Ladungsverteilung, Lcharge, und die Zeitverteilung, Ltime, die von den Photo-

multiplier tubes (PMTs) von JUNO gemessen werden, beschreiben. Eine statistische Analyse

der Ladungs-NLL, unter Benutzung einer toy-Monte-Carlo, mit 10,000 simulierten 3.5 MeV

Elektronen Ereignissen zeigt eine Auflösung der Vertexrekonstruktion von niederenergetischen

Events (E < 5 MeV) von ± 28.2 cm in X-Richtung, ± 28.0 cm in Y-Richtung und ± 32.9 cm

in Z-Richtung. Die Zeit-NLL wird durch den Vergleich von ihrem Verhalten zu dem erwarte-

ten Verhalten getestet, wobei die Ergebnisse eine funktionierende Methode zeigen. Zusätzlich

deutet eine Analyse, unter Benutzung einer toy-Monte-Varlo, einer kleinen Stichprobe von 100

Ereignissen auf eine Auflösung bei der Vertexkonstruktion niederenergetischer Ereignisse von

± 20.3 cm in X-Richtung, ± 21.1 cm in Y-Richtung und ± 19.6 cm in Z-Richtung hin. Die An-

wendung der NLL auf ein gut rekonstruiertes Event zeigt vielversprechende Resultate, da die

NLL mit jeder Iteration sinkt, wie erwartet, und zusätzlich die Alternierung zwischen gerade

und ungerade nummerierten PMTs, die in der TTR stattfindet, im Verlauf NLL erkennbar ist.

Anwendung auf eine fehlerhafte Rekonstruktion zeigt einen signifikanten Anstieg der NLL in

der letzten Iteration, in der das Artefakt am stärksten ausgeprägt ist.
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Chapter 1

Introduction

Neutrino physics has gathered a lot of interest in the recent years. Beside the possi-
bility of studying weak interactions, the discovery of neutrino oscillations opened an
interesting field of study for physics beyond the Standard Model. Additionally, neutri-
nos provide the possibility of studying many other objects and phenomenons including
solar models, supernovae and the inner earth. In the current state of understanding,
multiple big questions about neutrinos remain unanswered, namely the ordering of the
neutrino mass eigenstates, if neutrinos are their own anti particles and the possibility of
CP-violation. To investigate neutrinos, determine the parameters of interest and answer
the open questions, different detector types have been deployed. Of those, large liquid
scintillator detectors have exceeded old expectations of their directional resolution and
proven an effective and popular way to study neutrino behaviour. Detectors like Kam-
LAND [1] and Double-Chooz [2] have contributed greatly to the current understanding
of neutrino physics and the limit of liquid scintillator detectors is yet to be reached.
With the Jiangmen Underground Neutrino Observatory (JUNO) detector, a 20 kt liquid
scintillator detector, currently under construction in Jiangmen, China, a new milestone
in energy resolution of 3% at 1 MeV is aimed for to answer the question of the ordering
of the neutrino mass eigenstates. JUNO is strategically placed at a distance of 53 km to
two nuclear power plants, which act as sources of reactor electron antineutrinos. Being
the main signal of JUNO, the electron antineutrinos are detected via the inverse beta
decay, occurring when an electron antineutrino interacts with a proton. Precise mea-
surements of the energy spectrum of these reactor antineutrinos allow the determination
of the mass ordering. Even with their enormous size, neutrino detectors usually have to
measure over a period of multiple years to acquire a sufficient amount of data, due to
the small cross-section of neutrino interactions. Vetoing detector space to reduce back-
ground is therefore costly and efforts are made to minimize the vetoed volume and the
veto duration. JUNO will mostly struggle with cosmogenic Li9 and He8, produced by
transiting muons, which can mimic the inverse beta decay signal in their decay. These
cosmogenics are long lived and hard to locate. resulting in large volumes around the
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path of tracked muons to be vetoed for several seconds to counteract the false signals.
In this thesis, a possible improvement to the 3-D topological track reconstruction (TTR)
is introduced. The TTR is a method developed to analyse data from large-volume liquid
scintillator experiments, with the original purpose of reconstructing hadronic showers
along muon tracks to reduce the required vetoes. By using the information provided
by the hit times and hit charges on each light detector, the topology of the event is re-
constructed. Its application on JUNO is currently developed. The original goal of the
TTR has been expanded, as it shows potential for many different applications, includ-
ing vertex reconstruction and particle discrimination. Implemented in this thesis, the
negative logarithmic likelihood (NLL) is tested as a means of monitoring the quality of
the TTR, with the future goal of improving the reconstruction by adjusting it, based on
minimizing the NLL. Using the NLL, the event signature can be compared to the signa-
ture resulting from the reconstructed event topology from the TTR, giving a quantitative
measure for the quality of the reconstruction. Additionally, the NLL can be used as a
criterion of termination of the iterative process of the TTR, which it is currently miss-
ing, and help prevent or notice artifacts and overfitting. Furthermore, the NLL holds
potential for improving vertex reconstructions of low energy events.
The first chapter of this thesis will give an overview of the basics of neutrino physics,
consisting of a brief introduction to the Standard Model, followed by a short explanation
of the history of neutrinos and their characteristics. The overview is concluded by intro-
ducing the phenomenon of neutrino oscillations and its consequences. Afterwards the
concept of liquid scintillator detectors will be explained, including a section going into
more detail about photomultiplier tubes, which are commonly used in LS detectors. As
the relevant LS detector of this thesis, JUNO will be introduced and explained, address-
ing not only its design but also its physics goals, main signal and backgrounds for that
main signal. Subsequently, the TTR is explained, establishing the basis for the work of
this thesis. Being the key component of this bachelor thesis, a short section is dedicated
to define the NLL and clarify its functionality. Following the definition, the implemen-
tation of the NLL into the TTR is motivated, touching on immediate and future benefits
it can provide. Next, the presentation of the results is separated into the charge-NLL,
describing the charge distribution detected by the PMTs, and the time-NLL, describing
the hit time distribution detected by the PMTs. Furthermore, a method of testing the
implemented NLL using a toy-Monte-Carlo simulation is presented before the results
of the application of the method to the TTR-results are shown. Finally, the results are
interpreted in the conclusion, in which the successes and shortcomings of this thesis are
discussed.
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Chapter 2

Neutrino physics

2.1 Standard Model of particle physics

The Standard Model of particle physics is the umbrella term for current theoretical de-
scriptions of all known elementary particles and three of the four fundamental forces.
Being an umbrella term, its constituents were added over multiple decades and are
meant to combine into a consistent description of the fundamental physics of parti-
cles and their interactions. In spite of the impressive record of experimentally verified
predictions, the Standard Model fails to explain multiple important phenomena. At-
tempts to integrate gravity, the fourth fundamental force, into the Standard Model have
not been successful and findings over the last few years, like the detection of neutrino
oscillations, have repeatedly indicated that there is physics beyond the Standard Model.
The Standard Model categorizes the fundamental particles into three groups: Twelve
Fermions, which are further separated into quarks and leptons as well as thirteen Gauge
bosons. Quarks and leptons each are further divided into three, so-called, families.
These three quark families contain a pair of two quarks each, while the three lepton
families each contain a pair of leptons. Lepton families consist of a charged lepton (e,
µ , τ) and a neutral neutrino (νe, νµ , ντ ), while the quark families contain two quarks
with different fractional charge each (up/down, charm/strange, top/bottom). This cat-
egorization is visualized in Figure 2.1. For each quark (lepton) there is an antiquark
(antilepton) which has almost the same characteristics as its counterpart, but for non-
neutral particles, the antiparticle has the opposite charge. For the neutral neutrinos, the
nature of their antiparticles is still in question, as it is uncertain if they are Majorana
particles, meaning that they are their own antiparticles.
Within the Standard Model, forces are described via the exchange of virtual particles.
Therefore, each force has one or multiple exchange particles, the gauge bosons, as-
sociated with it. As mentioned above, the Standard Model includes three fundamen-
tal forces: electromagnetism, the strong force and the weak force with their gauge
bosons the photon, the gluons and the W± and Z0 bosons, respectively. The electro-

7



Figure 2.1: Overview of the particles of the Standard Model of particle physics. Neu-
trino mass limits, which are not part of the Standard Model, are included [3].

magnetic force is transmitted via the neutral and massless photon, with an unlimited
range. The strong interaction is propagated by eight gluons (rḡ, rb̄, gb̄, gr̄, br̄,

bḡ, 1√
2
(rr̄−gḡ) 1√

6
(rr̄+gḡ−2bb̄)), which carry the so called color charges (c), com-

posed of red (r), green (g) and blue (b) with their respective anti-charges (c̄) antired (r̄),
antigreen (ḡ) and antiblue (b̄) . Despite gluons being massless, the range of the strong
interaction is very short (≈ 10−15 m) and rapidly increasing in strength with distance
due to gluon-gluon interactions, as they carry color charge themselves. Quarks can not
be found as free particles because of the short range of the strong force. Instead color
neutral (cc̄, rgb or r̄ḡb̄) hadrons form, which are particles composed of quarks.
Weak charge is carried by every fundamental fermion, making the weak force the only
force to change the flavour of quarks and interact with the otherwise neutral neutrinos.
It is exchanged through the massive W± and Z0 bosons. Its range (≈ 10−18 m) and,
for low particle energies, coupling strength are small due to the high mass of its gauge
bosons (MW± ≈ 80.379 ± 0.012 GeV

c2 and M0
Z ≈ 91.1876 ± 0.0021 GeV

c2 [4]) [5]. A
prominent example for the change of quark flavor is the β− decay, in which a neutron
decays into a proton, an electron and an anti-electron neutrino

n→ p+ e−+ ν̄e. (2.1)

Looking at the β− decay on quark level, a down quark of the neutron weakly decays via
a W− boson, changing flavor to an up quark, and the W− boson decays into an electron
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and an electron antineutrino, visualized in Figure 2.2.

d d

u u

d u

ν̄e

e−

W−

n p

Figure 2.2: Feynman diagram of the β− decay on quark level. A down (d) quark of the
neutron (n) weakly decays via a W− boson, changing flavour to an up quark (u), and the
W− decays into an electron (e−) and and an electron antineutrino (ν̄e).

2.2 Neutrinos

Neutrinos have been postulated in 1930 by Wolfgang Pauli, to explain the observed
continuous energy spectrum of the electron in a β− decay (Equation 2.1). Without the
neutrino, the β− decay would be a three particle interaction,

n→ p+ e−, (2.2)

and the decay in a nucleus would lead to discrete kinetic energies of the electron.
Proposing a third particle, here the neutrino, which escapes detection would solve this
discrepancy, as the neutrino could carry any fraction of the overall kinetic energy, result-
ing in the observed continuous electron energy spectrum. The discovery of the Neutrino
occured in 1956 by Reines and Cowan, by detecting the inverse beta decay (IBD) (Equa-
tion 2.3) [6]. More detail on the experiment is given later in this section.
There are three flavours of neutrinos (antineutrinos), each grouped in a family with one
of the charged leptons (antileptons). In the Standard Model, neutrinos are assumed to
be massless, which was proven wrong by the observation of neutrino oscillations, a
phenomenon requiring massive neutrinos. So far the masses could not be measured but
an upper limit, valid for all three flavours, has been established to mν ≤ 1.1 eV

c2 [7].
To set this limit, the KATRIN experiment made high precision measurements near the
maximum of the electron energy spectrum of the beta decay (Equation 2.1) of tritium.
The electron and electron antineutrino emitted by this decay have a combined energy
of 18.6 keV distributed between the rest mass of the antineutrino and the kinetic energy
of the electron and antineutrino. By precisely measuring the electron energy spectrum
close to the maximum energy, an upper limit for the neutrino mass can be determined,
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as the maximum kinetic energy of the electron is limited by the rest mass of the antineu-
trino [8].
Neutrinos are produced by many different sources and neutrinos used in experiments are
usually named based on their source. The most prominent neutrino sources include the
sun (solar neutrinos), cosmic radiation (cosmic neutrinos), atmospheric showers pro-
duced by cosmic radiation (atmospheric neutrinos) and nuclear reactors (reactor neutri-
nos). Some experiments are also performed on high intensity neutrino beams produced
by particle accelerators. As neutrinos only interact weakly, reaction cross sections are
small and direct detection is technically not possible. Instead, detectors, shielded from
unwanted radiation, detect particles resulting from neutrinos interacting within a large
target mass. An example for neutrino detection is the initial discovery of neutrinos by
Reines and Cowan, mentioned above, using reactor neutrinos. The experiment con-
sisted of a container filled with cadmium chloride solved in water, which was placed in
between two liquid scintillators (explained in chapter 3) equipped with photomultipliers
(explained in section 3.1) to detect the emitted photons. The idea was, that a reactor
antineutrino interacts with a proton within the container, resulting in the inverse beta
decay

ν̄e + p→ e++n (2.3)

and producing a positron and a neutron in the process. The positron quickly annihilates
with an electron

e++ e−→ γ + γ, (2.4)

producing two gammas with Eγ = me = 0.511 MeV each, which are detected by the
scintillation counters. The neutron slows down over the course of a few microseconds
before being caught by a cadmium core, leading to the emission of gammas by the
cadmium due to relaxation processes. This leads to a unique, characteristic signature of
the monochromatic gamma pair followed by a delayed signal of the relaxation gammas,
which allowed Reines and Cowan to prove the existence of neutrinos and measure the
cross section for the observed inverse beta decay. [6]

2.3 Neutrino oscillations

Neutrino oscillation labels the phenomenon of neutrino flavour-transitions. They are
described by the PMNS (Pontecorvo-Maki-Nakagawa-Sakata) matrix U, expressing the
flavour eigenstates νe,µ,τ as a linear combination of three mass eigenstates ν1,2,3 (Equa-
tion 2.5), whereby the flavour eigenstates are the observables:

∣∣νe〉∣∣νµ〉∣∣ντ〉

=

 Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ2

Uτ1 Uτ2 Uτ3

 ·

∣∣ν1〉∣∣ν2〉∣∣ν3〉

 . (2.5)
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Following the structure of [5] and [9], a simplified case of only two flavour and mass
states (Equation 2.6) can be used to explain the matrix and its implications. For this the
mixing angle θ is introduced:( ∣∣νe〉∣∣νµ〉

)
=

(
cosθ sinθ

−sinθ cosθ

)
·

( ∣∣ν1〉∣∣ν2〉

)
. (2.6)

With this Matrix (Equation 2.6) the electron neutrino flavour state can therefore be writ-
ten as ∣∣νe〉= cos(θ)

∣∣ν1〉+ sin(θ)
∣∣ν2〉 (2.7)

and its time development as

∣∣νe(t)〉= cos(θ) e−iEν1 t/h̄ ∣∣ν1〉+ sin(θ) e−iEν2 t/h̄ ∣∣ν2〉, (2.8)

where t is the time and h̄ is the reduced Planck constant. Being ultra-relativistic, the
energy of the neutrino Eνi can be approximated to

Eν i =
√

p2c2 +m2
ν ic4 ≈ pc

(
1+

1
2

m2
ν ic

4

p2c2

)
, (2.9)

where p is the momentum of the neutrino, c is the speed of light in a vacuum and mνi is
the mass of the neutrino νi. Finally, we can calculate the probability for the transition
electron neutrino to electron neutrino (νe→ νe) after a time t:

Pνe→νe =
∣∣〈νe(t)

∣∣νe〉
∣∣2 = 1− sin2 (2θ)sin2

(
1
4

∆m2
21c4

h̄c
L
E

)
. (2.10)

Where
∆m2

21 = m2
ν2−m2

ν1 (2.11)

is the difference of the square of the masses (in the following simply referred to as mass
difference) of the mass eigenstates ν1,2 and L = ct is the distance covered in time t, be-
tween the creation of the neutrino and the measurement and E = pc is the kinetic energy
of the neutrino. This means that the transition probability oscillates with a frequency
depending on L

E . The mixing angle defines the amplitude, while the mass difference de-
fines the frequency of the oscillation. From this the probability for the transition electron
neutrino to muon neutrino (νe→ νµ ) follows as

Pνe→νµ
= 1−Pνe→νe = sin2 (2θ)sin2

(
1
4

∆m2
21c4

h̄c
L
pc

)
. (2.12)

The PMNS matrix can also be parametrized with mixing angles. In addition, it contains
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a phase angle δCP for the possibility of charge-parity violations.

U =

 c12c13 s12c13 s13e−iδCP

−s23c23− c12s23s13eiδCP c12c23− s12s23s13eiδCP s23c13

s12s23− c12c23s13eiδCP −c12s23− s12c23s13eiδCP c23c13

 , (2.13)

where ci j = cosθi j, si j = sinθi j, i,j = 1,2,3. To further account for the possibility of
Majorana neutrinos, two free ρ and φ parameters are introduced:

UM =U ·

 1 0 0
0 eiρ 0
0 0 eiφ

 . (2.14)

The CP-phase δCP, as well as the free parameters for Majorana neutrinos are not to be
expanded upon here. The three flavour case, though more complex, is analogous to the
two flavour case. The flavour states νe,µ,τ can be written as a superposition of the mass
eigenstates ν1,2,3. The time development of a neutrino with flavour να , emitted at t = 0,
can be written as

∣∣ν(x, t)〉= ∑
i

Uα,ie−iEit
∣∣νi〉= ∑

i,β
Uα,iU∗β ,ie

ipxe−iEit , (2.15)

where α and β represent flavours and i represents mass eigenstates with Ei being the
energy of that eigenstate [9]. The probability for a flavour transition να → νβ can then
be written as

P(α → β )(t) =
∣∣〈νβ

∣∣ν(x, t)〉∣∣2 = ∑
i

∑
j

Uα,iU∗α, jU
∗
β ,iUβ , je

−i(Ei−E j)t

= ∑
i

∣∣Uα,iU∗β ,i
∣∣2 +Re

(
∑
j>i

Uα,iU∗α, jU
∗
β ,iUβ , jexp(−i

∆m2
i j

2
)

L
E

)
,

(2.16)

with the distance to the source L, the energy of the neutrino E and the squared mass
difference ∆m2.

With this, it is possible to determine the elements of U, as well as the difference of the
squared masses of the mass eigenstates by measuring the probability of survival or the
appearance of the different flavours. For this purpose, detectors can be build at specific
distances L from nuclear reactors or neutrino beams to maximize sensitivity and test
predictions made by this model.
Multiple mixing angles as well as mass differences have been measured at varying pre-
cision. While the value of mass differences has been determined, only the sign of ∆m2

21

is known. This results in the current question of ordering of the mass eigenstates, which
is either the normal ordering or the inverted ordering, depending on the sign of ∆m2

32.
The normal and inverted oderings are visualized in Figure 2.3, showing the squared
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mass eigenstates m2
1, m2

2, m2
3 and their relative composition, if written as a superposition

of the flavor eigenstates νe,νµ ,ντ . Knowing the mass ordering is important for further
understanding of neutrinos, as, e.g., the measurement of the CP-violating phase δ is
dependant on the correct ordering [10].

Figure 2.3: Visualization of the normal ordering (left) and the inverted ordering (right)
of the neutrino masses [11].
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Chapter 3

Liquid scintillator detectors

Conceptually, liquid scintillator detectors use a large volume of liquid scintillator as
their target mass, which is surrounded by light detectors (commonly PMTs) to capture
the scintillation light, which is produced when energy is deposited by transiting ionizing
particles. An ionizing particle produced within or traveling through the detector volume
excites scintillator molecules along its path, resulting in the emission of scintillation
light. To be detected, this scintillation light has to travel from its point of emission to one
of the PMTs of the detector. On its way, the light can be completely absorbed, absorbed
and re-emitted or scattered, loosing or smearing all or parts of its initial temporal and
spatial information of the event. For this, the attenuation length of the light in the fluid
is important. The attenuation length L defines the penetration depth x of a material, at
which the probability of a particle not being absorbed or scattered has dropped to 1

e :

P(x) = e
−x
L (3.1)

Since the attenuation length is dependant on the wavelength of the photons, wavelength-
shifters are added to the liquid scintillator to increase the attenuation length, decreasing
absorption and scattering and therefore increasing the yield of detected photons. Since
the scintillator is resonant at the emitted wavelengths and would therefore reabsorb the
emitted light, wavelenght-shifters are a necessary component. Energy transfer between
the scintillator and the wavelength-shifter can happen through non-radiant transitions,
further reducing the potential for reabsorbtion of scintillation light. Furthermore, the ad-
dition of wavelength-shifters can be used to shift the scintillation light, which is usually
at a wavelength in the region around ultraviolet, to a wavelength, at which the used light
detectors are sensitive. Scintillation light is emitted isotropically and therefore does not
carry any directional information.
The time spectrum of the scintillation light can be approximated by a weighted sum of
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exponential function with different decay parameters:

Fscint(t,τ,ω) =
n

∑
i=1

ωi

τi
· e−

t−t0
τi , (3.2)

where t is the time, τi are different decay time constants and ωi are weights that sum up
to 1 [12].
While scintillation light makes up over 90 % of the light yield of liquid scintillator
detectors, the particles passing through also produce Cherenkov radiation. Cherenkov
light is the optical equivalent of a sonic boom and is produced whenever a charged
particle transits a medium at a speed that exceeds that medium’s speed of light. The
speed of a photon is dependant on its wavelength λ and the refractive index n of the
medium given by

vphase =
c

n(λ )
. (3.3)

The charged particle polarizes the molecules along its path, which promptly emit pho-
tons as they relax. As visualized in Figure 3.1, the particle induced the emission of
radial waves, which propagate slower than the source-particle, resulting in a shock front
of light. The angle of the cone is given by

cos(θ) =
1

n(λ )β
, (3.4)

where β is the relativistic factor defined by the particle velocity vparticle and c

β =
vparticle

c
. (3.5)

Cherenkov light therefore contains directional information of the particle of interest. In
LS detectors this potential directional information is difficult to use, as the proportion
of Cherenkov light is very small. In contrast to the scintillation light, Cherenkov light is
promptly emitted. This distinction could aid in seperating Cherenkov and scintillation
light during data analysis. Utilizing Cherenkov light in the analysis of LS detector data
is subject of current research and could become a relevant part of the data analysis in
LS detectors in the future.
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Figure 3.1: Illustration of idealised Cherenkov radiation.

3.1 Photomultiplier Tubes

A photomultiplier tube (PMT) is a sensitive electronic setup for the detection of pho-
tons, capable of resolving singular photons. The general design includes a photocadode,
working as the light sensitive trigger, followed by a multiplying mechanism to amplify
the final signal reaching the anode, where it is registered as a drop in voltage. This setup
is usually contained in a vacuous glass tube or bulb. The basic idea is the emission of a
photoelectron by the photocatode when hit by a photon, which triggers the multiplying
mechanism. The multiplying mechanism drastically increases the number of electrons
that hit the anode, resulting in a measurable voltage drop. The amplification is usually
around a factor of 106−107.
For the purpose of this thesis, two types of PMTs are of interest:
Dynode PMTs, schematic illustration in Figure 3.2, use a series of electrodes, called
dynodes, as a multiplying meachnism. Measurements begin with a photon hitting the
photocathode of the PMT, resulting in the emission of an electron according to the pho-
toelectric effect. The photoelectron is accelerated onto a dynode by an acceleration
voltage, where it produces multiple secondary electrons. The secondary electrons are
then accelerated onto another dynode. This process is repeated around 10 times before
the resulting electron avalanche hits the anode.
Microchannel plates (MCPs), schematic illustration in Figure 3.3, use a semiconducting
material, which is perforated at a slight angle, resulting in a number of tunnels, only
a few micrometer in diameter, reaching from one end to the other. This block is posi-
tioned between a photocathode and an anode. The photoelectron enters a tunnel of the
MCP and hits the slightly angled wall, producing secondary electrons. Repeating this
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throughout the length of the holes results in the mentioned electron avalanche.

Figure 3.2: Schematic representation of a dynode PMT. (Edited [13])

Figure 3.3: Schematic representation of a MCP PMT. [14]

When working with PMTs it is important to know sources of errors and their signifi-
cance. For example, making up a predictable part of the noise, the dark count rate is the
count rate of a PMT in the absence of light, mostly having its origin in thermal effects.
The transit time spread (TTS) defines the inaccuracy of the detection of the time of a
hit. The main factor is the extended photocathode, which results in slightly different
travel times for the photoelectrons, based on the position of the photon hit. The TTS is
described as a Gaussian smearing all measured hit times, with its width depending on
the PMT in question. Given by the ratio of photons N hitting the PMT and the number
of photons detected Ndet by the PMT the photo detection efficiency (PDE),

PDE =
Ndet

N
, (3.6)

gives a measure for the amount of photons detected out of all photons that hit the PMT,
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constituting an important factor in reconstructing a detected event. Exemplary values
for these factors can be found in Table 3.1.

3.2 JUNO

JUNO, an acronym for Jiangmen Underground Neutrino Observatory, is a liquid scin-
tillator based neutrino observatory currently under construction in Jiangmen, China. It
is located 700 meters underground at a distance of 53 kilometers to the Yangjiang and
the Taishan nuclear power plant [11], which are acting as sources of reactor neutrinos.

Detector layout

The detector layout, here described from inside to outside, begins with the central detec-
tor. The target mass, about 20 kilotons of a mixture of liquid scintillator and wavelength-
shifter, fills a 35.4 meter diameter acrylic sphere. This acrylic sphere is supported by
a surrounding stainless-steel scaffolding with a diameter of 40 meters. On the scaf-
folding, ∼18,000 20" PMTs and ∼25,000 3.1" PMTs are installed, achieving a cov-
erage of ∼77 %. They are separated from the inner sphere by 1.7 meters. The TTS,
dark count rates and PDE of the PMTs used in JUNO are summarized in Table 3.1.
This setup is submerged in a cylindrical pool of ultra pure water, acting as a radiation
shield. Additionally, the pool is outfitted with ∼1500 20" PMTs, making it a water
Cherenkov detector able to veto muons entering the central detector volume from the
outside [15] [16] [11]. On top of the cylindrical water volume a, top tracker, consisiting
of six layers of plastic scintillator, is installed to gather additional information on muon
tracks.

Figure 3.4: Schematic view of the JUNO Detector [17].

JUNO will use a liquid scintillator based on linear alkyl benzene (LAB) mixed with
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a two-component Fluor (PPO) and an additional wavelength-shifter (Bis-MSB) [15].
After being wavelength-shifted, the light will be at a wavelength of around 430 nm,
at which the PMTs are especially sensitive and the attenuation length will be over
22 meters. JUNO aims to achieve an energy resolution of 3% at 1 MeV, with about
12,000 emitted scintillation photons/MeV while measuring at least 1200 photoelectrons
per MeV of deposited energy [15]. In JUNO, Cherenkov radiation will make up only
around 3% of the light yield, having little impact on the analysis of scintillation light.

Table 3.1: Summary of important PMT-properties [10].

Type Hamamatsu R12860 HQE NNVT model HZC XP72B22
quantity ~5,000 ~13,000 ~25,000

size 20 inch 20 inch 3.1 inch
multiplier dynode MCP dynode

PDE at λphoton =420 nm 24 % - 35 % 24 % - 35 % 22 % - 27 %
TTS (FWHM) 3 ns 20 ns 4.5 ns
Darkcountrate < 50 kHz < 100 kHz < 1.8 kHz

Physics program

The main goal of JUNO is to answer the question of the neutrino mass ordering, which is
explained at the end of section 2.3. Additionally, ∆m2

21 and sin2(θ12) are to be measured
with unprecedented precision. To give an overview, Table 3.2 summarizes the current
measurements of the parameters of interest, including the targeted precision of JUNO.

Table 3.2: Best fit values, as well as 1σ range in percent and the expected sensitivity of
JUNO for the oscillation parameters of interest [11] [18].

Parameter Best fit 1σ range JUNO
∆m2

21/10−5 eV 2 7.39 ≈ 2.8 % < 1 %
sin2

θ12 0.310 ≈ 4.2 % < 1 %

Additionally, JUNO provides the potential to study atmospheric neutrinos, geo neutrinos
and supernova neutrinos [19].

JUNOs main signal is the inverse beta decay (Equation 2.3), where a reactor electron-
antineutrino reacts with a proton of the target mass. That means JUNO uses the same
coincidental signature of the prompt positron annihilation into two gammas and the
delayed neutron energy deposit as Reines and Cowan utilized in their discovery of the
neutrino (explained in section 2.2). The positron carries the majority of the energy of
the antineutrino, enabling the measurement of the antineutrino spectrum via the prompt
signal, as the positron produces scintillation light before annihilating [11]. Figure 3.5
shows the probability of survival for electron antineutrinos P(ν̄e→ ν̄e) at different L/E
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Figure 3.5: Representation of the relative quantity of surviving electron antineutrinos at
different L/E. To be published in [20].

according to

P(ν̄e→ ν̄e) =1− sin2(2θ12) · c4
13 · sin2(

∆m2
21L

4E
)

− sin2(2θ13) ·
[

c2
12 · sin2(

∆m2
31L

4E
)+ s2

12 · sin2(
∆m2

32L
4E

)

]
,

(3.7)

using the same definitions as introduced in section 2.3. Its basis is the electron an-
tineutrino spectrum JUNO will see based on the reactor flux and the reaction cross-
section, visualized by the dotted line, which shows the predicted spectrum without
the phenomenon of neutrino oscillations. The solid black line shows the develop-
ment according to the transition probability given by only the first and second term,
1− sin2(2θ12) · c4

13 · sin2(
∆m2

21L
4E ), in Equation 3.7. Recognizable as a finer oscillation

structure imprinted on the general form of the oscillation, the difference between the
normal ordering and the inverted ordering is overlayed as a solid blue and red line, re-
spectively. This finer oscillation is due to the third term in Equation 3.7, which includes
∆m2

31. A precise measurement of the neutrino spectrum can therefore be subject to a
spectral analysis in order to answer the question of mass ordering. The mentioned en-
ergy resolution of 3 % at 1 MeV is essential for this process. The more in-depth and
complex calculations regarding the determination of the mass ordering from the energy
spectrum can be found in [11]. It is predicted that JUNO has to measure for about 6
years to achieve the determination of the mass ordering and the targeted precision.
In JUNO, five main sources of background obscure the main signal [11]:

• Accidental: The accidental background is composed two uncorrelated signals
occurring in a short time frame at any distance to each other, mimicking the signal
of an inverse beta decay.
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• 9Li/8He: Cosmogenic isotopes, commonly referred to as cosmogenics, are atomic
isotopes, expelled from atoms in interaction with high-energy cosmic rays. In
JUON, cosmogenic 9Li and 8He is produced, which can decay in a β -n decay,
mimicking the main signal.

• Fast neutrons: Untagged muons can produce energetic neutrons by interacting
with atoms in the detector. These neutrons can then scatter off a proton producing
a recoil proton, which can be detected as a prompt signal. Either an independent
or the inducing neutron can then be detected, resulting in a signal mimicking the
inverse beta decay signal [21].

• 13C + α →16O∗ + n: Alpha particles from detector components can react with
the 13C in the LS, producing a neutron and leaving an excited 16O. If this reaction
produces a fast neutron or if the 16O∗ deexcites under the emission of a gamma,
the produced signal mimics the inverse beta decay [11].

• Geo-neutrinos: Radioactive decays within the earth producing antineutrinos can
lead to inverse beta decay signals in the detector. Since, for the determination of
the mass ordering, the distance L to the source is crucial, these signals muddle the
desired spectrum.

To quantify the impact of the mentioned types of background, as well as to give an
idea of the reduction of those backgrounds with the help of selection cuts, Table 3.3 is
included. The details to each cut can be found in [11]. While the accidental background

Table 3.3: Efficiency of the selection cuts, as well as quantities for the signal and each
background after each cut [11].

Selection IBD eff. IBD Geo-νs Accidental 9Li/8He Fast n α+13C

- - 83 1.5 ∼ 5.7×104 84 - -

Fiducial volume 91.8 % 76 1.4 410 77 0.1 0.05

Energy cut 97.8 % 73 1.3 71

Time cut 99.1 %

Vertex cut 98.7 % 1.1

Muon veto 83 % 60 1.1 0.9 1.6

Combined 73 % 60 3.8

has the highest occurrence, it is efficiently reducible to ≈ 3 × 10−3 of its original count
rate. The most efficiency is lost due to the muon veto, which is essential for reducing
the cosmogenics background. The muon veto consists of the following cases [11]:

• A muon tagged by the water pool→ The whole LS volume is vetoed for 1.5 ms.
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• A muon that is well tagged in the water Cherenkov veto and the central detector
→A cylindrical detector volume with R < 3 m around the track is vetoed for 1.2 s.

• A tagged, non-trackable muon in the central detector→ The whole LS volume is
vetoed for 1.2 s.

Reducing the volume and/or time these vetoes have to be applied, without loosing back-
ground suppression, can significantly increase the statistic JUNO can accumulate.
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Chapter 4

Topological Track Reconstruction

Developed for large-volume liquid scintillator experiments, the Topological Track Re-
construction (TTR) utilizes the time-information of the detected scintillation light to
draw inferences about the topology of the event’s light emission. Its original purpose
is the reconstruction of hadronic showers along muon tracks to reduce vetoed detector
space and therefore increase efficiency.
The TTR requires only few assumptions: A point in space is known, at which the parti-
cle was located at a known time (called reference point and reference time) and that the
particle travels through that reference point on a straight track with the speed of light in
vacuum. Under these assumptions, the time tsignal it takes for an unscattered scintillation
photon to reach a PMT can be described by [22]

tsignal =
1
c
·
(∣∣V X

∣∣±n ·
∣∣XP

∣∣) (4.1)

as the sum of the time it takes the particle to travel from the reference point V to the
point of emission X and the time it takes the scintillation light to travel from the point
of emission to the PMT position P, as visualized in Figure 4.1. The ± in Equation 4.1

~vparticle = c∣∣V X
∣∣

PMT P

Photon∣∣XP
∣∣

Reference point V Point of emission X

Figure 4.1: Illustration of the physics of Equation 4.1. A transiting particle with veloc-
ity and direction ~vparticle induces the emission of a scintillation photon at point X at a
distance of

∣∣V X
∣∣ to the reference point V. The photon then hits a PMT P, after traveling

the distance
∣∣XP

∣∣ through the detector.

depends on whether the emission at X happened after (+) or before (-) the reference
time. Solving this equation results in a sharp isochronous surface on which possible
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points of emissions for the individual PMT-hit are located. Examples for different times
tsignal for both cases are presented in Figure 4.2. In reality, the time the scintillation light

Figure 4.2: Two-dimensional isochrones in the LENA-detector for different values of
tsignal as given by eq:travelTime, with a plus sign (left) and a minus sign (right) [12].

takes to hit the PMT is described by a time distribution because statistical processes like
the emission of scintillation light and the time resolution of the PMT are involved and
produce an uncertainty. In the TTR the time distribution

F(t) = ∑ ai ·
1

τi ·2
· e−

1
τi

(
(t−tsignal−σ2

τi2

)
·

[
1+ erf

(
(t− tsignal)− 1

τi
σ2

√
2σ2

)]
(4.2)

is calculated as the convolution of the exponential scintillation spectrum and the Gaus-
sian TTS of the PMTs, where τi is the i-th half-life of the scintillator and ai is the fraction
of the corresponding decay component with ∑i ai = 1 [22]. The error function hereby
suppresses the exponential function for t < t0, since the exponential decay starts at t0 and
therefore values before that point are nonsensical. Applying this equation to the concept
presented above, a probability density distribution P(~x) based on tsignal is obtained

P(~x) = F(t(~x)) = F
( 1

c0
· (
∣∣V~x∣∣+n ·

∣∣~xP
∣∣)), (4.3)

producing a washed out isochrone instead of a sharp one. This probability density how-
ever does not take effects like the attenuation within the detector or limitations of detec-
tion efficiency of the PMTs, e.g. due to angular acceptance, into account. Therefore the
local detection efficiency LD(~x) is introduced and Equation 4.3 is modified to

P(~x) = F(t(~x)) ·LD(~x) (4.4)

to include a factor that allows for these effects. In Figure 4.3 the difference of Equa-
tion 4.3 and Equation 4.4 is visible. On the left, the initially sharp isochrone resulting
from Equation 4.1 (solid black line) is washed out and a drop-like probability distribu-
tion describes the scintillation emission probability. On the right, the local detection
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efficiency limits the possible area of emission and the attenuation pulls the probability
closer to the PMT. With the purpose of weighing each PMT-hit in an event as such, a

Figure 4.3: Unnormalized two-dimensional probability density distribution in the
LENA-detector without (left, Equation 4.3) and with (right, Equation 4.4) the inclu-
sion of the local detection efficiency. The black line indicates the sharp isochrone given
by Equation 4.1 [12]

single hit, Equation 4.4 is normalized:

P(~x) =
F(t(~x)) ·LD(~x)∫ ∫ ∫
F(t(~x)) ·LD(~x) ·d~x

(4.5)

Now, the probability density distributions for each PMT-hit can be combined, overlap-
ping them, to receive the 3D topology of the event. As the origins of the detected pho-
tons are unknown, the PMT-hits have to be treated as independent and the probability
density distributions need to be summed up

P(~xtotal) = ∑
i

Pi(~x) = ∑
i

[
Fi(t(~x)) ·LDi(~x)∫ ∫ ∫
Fi(t(~x)) ·LDi(~x) ·d~x

]
, (4.6)

where i describes the individual signals [22]. With Equation 4.6 a 3D representation of
probability distribution of photons detected at each point in the detector is possible. To
reconstruct the event topology, the emitted photons are required instead of the detected
photons. This is achieved by weighting the number of detected photons with the inverse
of total signal detection efficiency η(~x):

〈Nemitted(~x)〉=
〈Ndetected(~x)〉

η(~x)
=

P(~xtotal)

∑PMT LDPMT (~x)
(4.7)

Knowing that the photons are correlated, as they belong to the same event, a so called
probability mask PM(~x) is introduced. This probability mask consists of a weight allo-
cated to each voxel in the detector, reflecting the probability that a photon emitted at that
point is part of the event topology of interest. To accommodate this probability mask,
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Equation 4.4 is modified:

P(~x) =
F(t(~x)) ·LD(~x) ·PM(~x)∫ ∫ ∫
F(t(~x)) ·LD(~x) ·d~x ·PM(~x)

. (4.8)

Making the TTR an iterative method, the first significant probability mask used is the
result of the first iteration, which is working without a uniform mask. Afterwards each
iteration uses its prior result as its probability mask. With this, an accurate and robust
reconstruction of the event topology is achieved over the course of around 10 iterations
for point-like events and around 20 iterations for muon tracks. An example of the results
of this process is presented in Figure 4.4, showing a slice of the detector volume for 0,
8 and 21 iterations over a muon event. The method finds the area of interest with the
uniform probability mask and hones in on the event topology, here the original track
shown in red, over the iterations. After the iterative process, the event topology is
reconstructed with a resolution of ≈ 10 cm.
The NLL algorithm introduced in this bachelor thesis aims at improving the TTR. One
of the goals of the introduction of the negative logarithmic likelihood algorithm is its
potential use as a criterion of termination for the iterative loop, which it currently lacks.
Missing a criterion for the termination can lead to overfitting, reducing the accuracy of
the reconstruction with higher iterations.

(a) Iteration 0. (b) Iteration 8.

(c) Iteration 21.

Figure 4.4: Results of the reconstruction after different iteration steps, for a simulated
3 GeV muon in the cylindrical LENA detector. The red line indicates the track of the
primary particle, while the black lines show secondary particles [12].
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For a more detailed explanation of this method, consider reading [22] or [12], whose
contents have been summarized here.
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Chapter 5

Application of the negative logarithmic
likelihood to the 3-D topological
reconstruction in JUNO

5.1 Negative Logarithmic Likelihood

Likelihood functions are used to determine the quality of a fit. They determine which
parameters best match the mathematical description of the case of interest. For a prob-
ability density function Pη (x), with variable x and dependant on a parameter η , the
likelihood function is defined as:

Lx(η) = Pη(x), (5.1)

treating the parameter of the probability density function as a variable and its variable
as a parameter. A tangible explanation would be that the likelihood function treats the
hypothesis as the truth and finds under which parameter η it best fits the observed value
at x. If a specific parameter η is proposed, a high likelihood means a good agreement
between hypothesis and measurement, while a low likelihood expresses the opposite.
The Negative Logarithmic Likelihood (NLL) is then defined as the negative of the log-
arithm of a likelihood function:

Lx(η) =− ln(Lx(η)) =− ln(Pη(x)). (5.2)

This means that the logarithms of independent probabilities can be summed instead of
multiplied for a total probability (Equation 5.3), which is faster and easier to handle for
computers.

Lx,tot(η) =− ln
(

∏
i

Pη(xi)

)
=−∑

i
ln
(
Pη(xi)

)
(5.3)
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Since the inserted probabilities Pη (x) will be between zero and one, their logarithm
ln(Pη (x)) will result in values between negative infinity and zero, with higher negative
values corresponding to lower probabilities. Since computers are faster at finding min-
ima instead of maxima, the negative of these values is taken, leaving positive values
between zero and infinity, with a lower NLL corresponding to a higher probability.

5.2 Motivation

This thesis deals with the implementation of the NLL method into the TTR. The main
goal being the testing of the NLL as a means of improving the TTR overall in the future.
The goal of this thesis will be the study of the NLL method as a quantitative criterion of
termination for the iterative process of the TTR (chapter 4), as well as its properties as
a quantifiable measure of quality for the reconstruction. On top of that, the NLL holds
the potential of improving the vertex reconstruction for point-like events. Future appli-
cations can also include the alternating iteration of the TTR and the NLL, in which case
the bin content of some bins can be adjusted to minimize the NLL before returning to
another iteration of the TTR, improving the probability mask. Implementing a measure
of quality for the TTR will allow for an easier assessment of its accuracy and the impact
of potential changes. Establishing a well-founded criterion of termination will increases
the efficiency of the reconstruction, as time is saved when further iterations only lead to
negligible improvement or if they are detrimental, for example by overfitting or enhanc-
ing artifacts. In addition, the change of the quality over each iteration can be monitored,
increasing the robustness of the TTR, as a (continual) decrease of the NLL is easily
noticeable.
Improving the accuracy of the TTR and the vertex location can improve particle identi-
fication methods for low energy events (< 10 MeV), for example the recently presented
electron-positron discrimination [10]. For high energy events it also provides the pos-
sibility of dampening or removing background which is otherwise difficult to separate
from the signal, like the neutral current background in LS long baseline neutrino experi-
ments, which is explained in more details in a later paragraph. Additionally, an accurate
reconstruction allows minimizing the vetoes imposed on the detector for cosmogenics
produced by transiting muons. This can increase the signal statistic as more detector
volume becomes available for measurements.
Differentiating a low energy electron and a low energy positron is a difficult task in a
liquid scintillator detector, as the reconstructed probability density for low energy events
is a diffuse cloud around the actual vertex. A recent approach utilizing the TTR shows
promising results, comparing the topological signature of reconstructed electron and
positron events. The method uses the so-called radial event profile, which is established
by beginning with the maximum bin within the diffuse cloud and then, going radially
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outward, calculating the average bin content for each radius. Different criteria of differ-
entiation are established based on the radial event profile. One of these criteria is based
on comparing the derivative of the radial event profile of electron and positron events,
where a difference can be established, as the positron clouds tend to be more diffuse due
to the annihilation of the positron into two gammas, which move away from the center
while producing scintillation light. This results in a more shallow flank for positron
events [10]. The difference in steepness can then be used to discriminate the two event
types. Improvements of the TTR could help improve this method, as a more accurate
vertex location helps to center the radial event profile on the actual vertex, increasing its
overlap with the event. Moreover, a general increase in accuracy of the reconstructed
event topology could allow for a higher degree of separation between positron and elec-
tron events, as the steepness of the slope of point-like events would be more pronounced.
Ideally, future resolutions allow the identification of the individual gammas of the event.
This would allow for an easier, more efficient electron-positron discrimination.
As mentioned, future application of the TTR can also include long baseline LS neutrino
detectors and it is therefore important and interesting to consider applications that go
beyond the current application for JUNO. Long baseline neutrino experiments are set
up to use a high flux νµ/ν̄µ neutrino beam as their source, placing the detector at a
distance L to the beam which maximizes sensitivity of the desired parameters. With
this, appearance or disappearance experiments can be performed. Interfering at νe/ν̄e

appearance experiments, the source of neutral current background is the production of
π0 in neutral current processes that don’t result in additional leptons. The resonant pion
production

νl(ν̄l)+N→ νl(ν̄l)+N +π
0, (5.4)

where l = e,ν ,τ are the possible flavours and N is a nucleon, is responsible for the
majority of the neutral pions [23]. With its mean life time of τπ0 = (8.52 ± 0.18)
×10−17 s [4], the distance covered by the π0 is so short that the assumption of a point-
like decay is justified [23]. The π0 decays into two gammas with a branching ratio of
98.8 % [4] [23],

π
0→ γ + γ, (5.5)

which is the channel responsible for the neutral current background. The energy of
each of the gammas is Eγ < mπ0 , with the mass of the pion mπ0 ≈ 134.98 MeV [4].
As the kinetic energy of the pion can be asymmetrically distributed between the gam-
mas, the energy of each can only be expressed by an upper limit with the implication
Eγ1 + Eγ2 = mπ0 . As the photons are strongly boosted in the flight direction of the π0,
due to the particles high momentum, it is possible that the gammas can not be recog-
nized as separate particles in the detector. This results in a signal, which is difficult to
distinguish from an electron event, as the signature of electrons and gammas are very
similar [23]. Since νe/ν̄e appearances are measured with channels involving electrons,
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this inability to differentiate between gamma and electron is problematic. Future ap-
plication of a more developed and improved TTR could be a way to counteract the
NC-Background. If the TTR is precise enough it could be possible to separate the two
gammas or at least have a consistent method of differentiating the π0-decay from an
electron.
For the TTRs application in JUNO, the cosmogenics Li9 and He8 are a major back-
ground source (Table 3.3), due to their difficult to determine point of origin and their
non-negligible lifetimes. As cosmogenics are primarily produced in secondary vertices
of muons tracks, a big volume around each track is usually vetoed for a significant du-
ration (see Table 3.2). Improving the reconstruction of muon tracks can help to deploy
more efficient vetoes. Under sufficient resolution, a reconstruction of the event topology
of a muon track could allow the discernment of point of origin of secondary vertices and
therefore enable vetoing only areas with a high probability of producing cosmogenics.
This reduction of vetoed volume directly increases the statistic of the detector and there-
fore decrease the time span of its measurements. For this case, the NLL can either be
used to determine the quality of future algorithms implemented to determine secondary
vertices or be directly deployed to increase the precision of the TTR. Here, the alterna-
tion between the reconstruction and the NLL method, mentioned above, can be used to
adjust the content of individual bins to maximize the NLL and therefore provide a better
probability mask for further iterations.

5.3 Basic idea and implementation

The basic idea can be presented in form of a question: "If the reconstruction is true,
how likely is it to see the detected hit times as well as the number of photon hits on each
PMT?" We can answer this question using the NLL, which in this case can be separated
into the charge-NLL Lcharge and the time-NLL Ltime, due to their independent nature.
As the final step, the combined NLL Lcombined is obtained by summing up the charge-
NLL and the time-NLL:

Lcombined = Lcharge +Ltime. (5.6)

The process of calculating these two NLLs is discussed in section 5.3.1 and section 5.3.2.
Since performing these calculations over a continuous detector volume would be im-
practical, the detector is divided into smaller uniform volumes, which will be referred
to as bins. The value obtained in the center of each volume is representative for it as a
whole and will be referred to as the content of the bin. In the application multiple Look-
Up-Tables (LUTs) are used to reduce processing time. LUTs are 1- to 3-dimensional
tables (or histograms), containing prior calculated or simulated data relevant for pro-
cesses of interest. The mean detection probability for scattered and direct light of a
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PMT at distance d and angle α , as well as the time distribution a PMT sees at distance
d and angle α are saved in and read out of LUTs. The center of the coordinate system
is placed in the center of the detector.

5.3.1 Charge-NLL

The charge-NLL represents the probability that the detected charge distribution is pro-
duced by the reconstructed event topology. Assuming the result of the reconstruction as
the true event topology, the hits on each PMT are calculated. The result is a statistical
charge distribution, which can then be compared to the measured distribution to deter-
mine the likelihood that the reconstruction accurately describes the original event. Its
calculation can be broken down into the following steps:

1. Calculating the total charge on each PMT i, given the reconstruction.

2. Calculating the total probability Pc,i for each PMT i.

3. Calculating the NLL from the Pc,i.

1. Total charge on a PMT: The total charge on a PMT i is the integral over the hits
from each individual point~x in the detector:

qrec,i =
∫

A(~x) · εi ·Di(~x) d~x, (5.7)

where A(~x) is the result of the TTR at point~x, εi is the photo detection efficiency of PMT
i and Di(~x) = Ddirect,(~x) + Dscatt,i(~x) is the combined detection probability for direct and
scattered light, dependant on distance and angle between ~x to the PMT. For this, all
PMTs, including the ones with no registered hit, are taken into account.

2. Calculating Pc,i: The probability Pc,i that the detected charge on a PMT qdet,i is
realised if the result of step 1 represents the event, can be calculated with a poisson
distribution

Pλ (k) =
λ k

k!
· exp(−λ ), (5.8)

with a parameter λ and a variable k and λ ,k ∈ R ≥ 0. Hereby, the reconstructed charge
is the parameter λ = qrec,i and the detected charge is the variable k = qdet,i.

3. Calculating the NLL: As a last step for the charge-NLL, the logarithm of each
probability Pc,i is formed, summed up and the result is multiplied by -1:

Lcharge =−∑
i

ln(Pc,i) (5.9)

35



5.3.2 Time-NLL

The time-NLL represents the probability that the detected hit times stem from the re-
constructed event topology. Its calculation can be broken down into the following steps:

1. Calculating the statistical time distribution the ith PMT detects from each point in
the detector.

2. Calculating the complete statistical time distribution the ith PMT detects of the
event.

3. Obtaining the probability Pt,i for each hit time.

4. Calculating the NLL from the probabilities Pt,i.

1. Time distribution of each PMT for each point: Based on Equation 4.5, the sta-
tistical time distribution Ti,~x(t) detected by a PMT i for each point ~x in the detector is
described by a continuous, statistical spectrum. For this Traw,~x, a hit time spectrum com-
posed of the mean propagation time of photons of different wavelengths emitted at~x and
a spectrum of scattered light, is convolved with the time distribution of a hit F(t), given
by Equation 4.2 in chapter 4:

Ti,~x(t) = Traw,~x(t)∗F(t). (5.10)

To account for the fact that the emission of photons is more probable at some points in
the detector than at others, based on the event topology, the time distribution is weighted
with the charge detected from point~x, calculated with Equation 5.7 :

Ti,~x,weighted(t) = qrec,i ·
Ti,~x(t)∫
Ti,~x(t) dt

. (5.11)

2.Time distribution for each PMT for the event: Summing the individual weighted
time distributions Ti,~x,weighted(t) results in a time distribution Ti,Event(t) that describes the
ith PMTs hit time spectrum for the entire event:

Ti,Event(t) = ∑
~x

Ti,~x,weighted. (5.12)

3. Obtaining the probabilities Pi(ti,hit): Normalized, the time distribution Ti,Event(t)
acts as a probability density function for the hit times detected by PMT i:

Pi(t) =
Ti,Event(t)∫
Ti,Event(t) dt

(5.13)
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Therefore, the probability that a hit time ti,hit registered by PMT i is associated with the
reconstructed event topology is given by the value of Equation 5.13 at ti,hit :

Pi(ti,hit). (5.14)

3. Calculating the NLL: The logarithm of each probability Pi,~x(ti,hit) is formed,
summed up and the result is multiplied by -1:

Ltime =−∑
i

ln(Pi(ti,hit)) (5.15)

5.4 Results

All the results presented are based on simulated data sets that account for scattered light
in the detector and the TTS of PMTs, but exclude dark hits and . In the following, events
with an energy of EEvent < 10 MeV are referred to as low energy events.

5.4.1 Toy-Monte-Carlo point-sources

To test the functionality and accuracy of the charge- and time-NLL described in sec-
tion 5.3, a toy-Monte-Carlo for point-sources was established and used. The charge and
time distributions resulting from the simulated point-sources are compared to a distri-
bution of a point-like event by calculating the NLL. The idea of this test is, that the
NLL-method should be able to find the position of the actual vertex, as the charge and
time distributions of a perfect point-source are similar to the near point-like low energy
events. Therefore, a simulated point-source located closer to the true vertex should have
a lower NLL, being a better fit to the simulated distribution, than the ones further away.
In practice, a photon point-source is simulated at a point ~x in the detector and for that
point, the charge- and time-NLL are calculated, allocating their result to the point ~x.
Iterating this process over all or parts of the detector volume results in a 3-D histogram
that visualizes the likelihood of the vertex position in the detector. Resulting histograms
should then show a likelihood minimum around the true vertex. Examples of results of
this are given in figure Figure 5.1, Figure 5.2 and Figure 5.3.
In order to save time, only a part of the detector volume is used for the calculations. To
get a realistic starting point while analysing the area of interest, a crude estimation of
the vertex was implemented:

#      »
COC =

∑i~pi ·qdet,i

∑i qdet,i
, (5.16)

where ~pi is the position of PMT i and qdet,i is the charge detected by PMT i. This vector
describes the center of charge of an event and will be referred to as COC in the following
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text. It’s accuracy decreases with vertex locations closer to the edge of the detector,
meaning usually a radial correction is desirable. This correction is not yet implemented,
resulting in a big inaccuracy of up to 130 cm. As the COC is only used to reduce the
considered detector volume to the area of interest this has no significant impact on the
NLL, if the deviation is considered when choosing the size of the examined area around
the COC.
To make sure the point-source emits an amount of photons similar to the simulated
event, it was assumed to emit≈ 12,000 photons/MeV, which is comparable to the actual
photo emission in the LS. This is possible, since the energy of the simulated event is
known.
As an example, resulting histograms from the same event are presented for the charge-
NLL (Figure 5.1), time-NLL (Figure 5.2) and combined-NLL (Figure 5.3). The results
are presented as slices of the X-Y-, X-Z- and Y-Z-plane through the true vertex of the
event, which is marked with a red dot. The NLL was calculated for a 600 cm × 600 cm
× 600 cm cubic volume, which is centered on the COC, marked with a green triangle.
This cube is separated into 27,000 cubic bins, each being 20 cm × 20 cm × 20 cm.
The bin with the lowest content, meaning the lowest NLL, is marked with a black cross.
This minimum is defined by locating the bin with the lowest content and taking its
center. Therefore, the accuracy is limited by the size of the bins. Implementing a
weighted minimum, allowing the minimum to be located at any point between bins,
could potentially reduce this problem. In all three images a NLL minimum around the
true vertex is visible, representing the desirable outcome. While the charge-NLL is
able to find general vertex location, the time-NLL is able to precisely pinpoint it in this
sample. For this example, the combined-NLL is dominated by the time-NLL.
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Figure 5.1: Result of Toy-Monte-Carlo charge-NLL for a 3 MeV electron event. The NLL is
calculated for 27,000 bins (20 cm× 20 cm× 20 cm) over a range of± 300 cm in each direction,
centered on the COC. Red dot: True Vertex, Black cross: Minimum likelihood, Green triangle:
COC.
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Figure 5.2: Result of Toy-Monte-Carlo time-NLL for a 3 MeV electron electron event. The
NLL is calculated for 27,000 bins (20 cm × 20 cm × 20 cm) over a range of ± 300 cm in each
direction, centered on the COC. Red dot: True Vertex, Black cross: Minimum likelihood, Green
triangle: COC.
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Figure 5.3: Result of Toy-Monte-Carlo combined-NLL for a 3 MeV electron event. The NLL
is calculated for 27,000 bins (20 cm × 20 cm × 20 cm) over a range of ± 300 cm in each
direction, centered on the COC. Red dot: True Vertex, Black cross: Minimum likelihood, Green
triangle: COC.

The distances between true vertex and the bin with the NLL-minimum for this sample
event are summarized in Table 5.1.

Table 5.1: Summary of the vertex resolution for a sample Event of a 3 MeV electron.

∆X ∆Y ∆Z

charge-NLL -5.7 cm -45.3 cm 22.5 cm

time-NLL -5.7 cm -5.3 cm 2.5 cm

combined-NLL -5.7 cm -5.3 cm 2.5 cm

Following, the results of the charge- and time-NLL are discussed separately. Due to the
simple nature of adding the result of the charge- and time-NLL , the combined-NLL is
not given its own subsection.

Charge-NLL The charge-NLL was tested by determining its capabilities of finding
the correct vertex position. This was done before the COC was implemented and in-
stead the true vertex position was used as the center of the 3-D histogram. For this, the
distance of the bin with the lowest charge-NLL to the true vertex was calculated and
saved for each dimension (∆X ,∆Y,∆Z). Testing if the method was able to find the gen-
eral location of the vertex was successful in a small sample of events. These first results
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were followed by a statistical analysis to determine the resolution. To increase resolu-
tion while keeping an acceptable run time of the method, the considered volume for the
analysis was reduced to a 200 cm× 200 cm× 200 cm cube around the true vertex. The
size of the volume was based off a conservative estimate of the resolution acquired in
the manual analysis of the previous sample events. Segmenting the volume into 64,000
smaller volumes, 5 cm × 5 cm × 5 cm bins (40 along the length of each axis) were
used. The bin size was chosen to be much smaller than the estimated resolution to not
impose an artificial limit on it, while not being too small to maintain an acceptable run
time. Using these configurations, the charge-NLL was calculated for a set of 10,000
3.5 MeV electron events, randomly located in the detector. Results are shown in Fig-
ure 5.4 for X, Y, Z as 1-D histograms fitted with a Gaussian using a fit function provided
by ROOT [24]. A Gaussian fit, which is the theoretical expectation, is decently realised
except for an excessive peak around 0 for all three directions. In all three histograms
the maximum is located around 0, which is the desirable outcome. The accuracy of the
method is similar for all directions but slightly worse in Z, summarized in Table 5.2.
Visible in the histogram for ∆Z is that the higher deviations are more common than for
∆X and ∆Y . Why the results for Z are slightly worse is unclear. A possible explanation
is the asymmetry of the PMT distribution, as the acrylic sphere has an opening at the
top, on its Z-axis, to fill and maintain the LS.
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Figure 5.4: Results of the statistical analysis of the charge-NLL for 10000 3.5 MeV
electron events, fitted with a Gaussian.
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Table 5.2: Summary of the vertex resolution of the charge-NLL.

Coordinate Mean 1σ range
∆X -0.4 cm 28.2 cm
∆Y 0.1 cm 28 cm
∆Z 4.6 cm 32.9 cm

Time-NLL To test the time-NLL, its behaviour is compared to the expected behaviour
under correct implementation. As a first step for this, a point-like event and a sin-
gle PMT located on the same axis of the detector were chosen to exploit the resulting
symmetry of the NLL. Then, the PMT was artificially given hit times around the most
probable hit time for the true vertex (Figure 5.6) as the detected hit time ti,hit . With
this artificial hit time, the expected result is a NLL minimum around the true vertex
in the plane orthogonal to the symmetry axis. If the time is then adjusted by adding
a few nanoseconds, the NLL distribution will change accordingly and turn into a ring
around the vertex. This can be visualized by thinking of a washed out spherical surface
representing the likelihood minimum spanned by the time-NLL. Hit times closer to the
maximum result in a sphere with a radius similar to the distance of the PMT to the true
vertex, therefore looking at a slice of the time-NLL distribution going through the true
vertex, the expected results is disk around the true vertex. This disk is representing the
cut through the sphere at a distance close to its radius. Ideally, the disk has a gradient of
lower NLL values towards its center, as only the true vertex and its immediate surround-
ing is overlayed perfectly by the sphere. Hit times that are located after the maximum
of the time distribution can be thought of as cuts of the sphere at a distance smaller than
its radius, leaving a ring of its surface. The size of this ring will therefore change with
the hit time given to the PMT, getting bigger for times after away from the maximum.
Times before the maximum result in an increase in the NLL, as the sphere is not cut at
all and therefore the probability at the true vertex is lower than at points closer to the
PMT. Observing this behaviour in the implemented likelihood method shows whether
the method works as intended or mistakes in the implementation have been made.
To demonstrate the time-NLL in this thesis, a sample event that was used to test the func-
tionality is discussed. The true vertex of the event is located on the Z-axis (~V = (0,0,-100) cm),
with the chosen PMT also being located on the Z-axis (

#        »
PMT = (0,0,-1950) cm). The

time fed to the PMT as ti,hit is based on the time distribution the PMT detects from
the point of the true vertex and is shown in Figure 5.6 and acquired by normalizing
Equation 5.10

TPMT,~V ,Norm(t) =
TPMT,~V (t)∫
TPMT,~V (t) dt

. (5.17)

Beginning at 95.8 ns, before the maximum, ti,hit was increased in ten steps of 1 ns,
reaching 104.8 ns located after the maximum. As seen in Figure 5.5, the time-NLL
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has a disk-like minimum around the true vertex when given the most probable hit time
(e). While the slices for the hit times before the maximum, especially (a) and (d), look
similar to (a), the NLL values increase the lower the time. This is further visible due to
the minimum bin. For (e) and (f), true vertex is found with a slight deviation, while for
(a), (b), (c) and (d) the minimum is located far from the true vertex. Increasing the hit
time beyond the maximum first leads to an expansion of the disk (f) until the likelihood
minimum is described by a ring around the true vertex (g). With increasing hit time,
the ring expands (h),(i),(j). The X-Z- and Y-Z-slices for each time can be found in the
appendix (A).
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(f) Result of the time-NLL for
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(g) Result of the time-NLL for
ti,hit = 101.8 ns.
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(h) Result of the time-NLL for
ti,hit = 102.8 ns.
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(i) Result of the time-NLL for
ti,hit = 103.8 ns.
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Figure 5.5: Results of the time-NLL test of a single PMT (
#        »
PMT = (0,0, -1950) cm) for

a 4 MeV electron event at ~V = (0,0,-100) cm). The PMT was manually given different
ti,hit . The true vertex is shown as a red dot. The bin with the minimum NLL is marked
with a black cross.
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Figure 5.6: Time distribution detected from the true vertex~V = (0,0,-100) cm by a PMT
at

#        »
PMT = (0,0,-1950) cm. The left and right vertical black line mark the beginning

(95.8 ns) and the end (104.8 ns) of the looked at time span respectively. The black line
in the middle marks the maximum of the distribution at 99.8 ns.

After confirming the expected behaviour of the time-NLL for a sample of events, all
PMTs were used to without artificial hit times. Figure 5.7 shows the result of the time-
NLL using all PMTs for the same event.
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Figure 5.7: Result of Toy-Monte-Carlo time-NLL for a 4 MeV electron event located at
~V = (0,0,-100). The NLL is calculated for 125,000 bins (20 cm × 20 cm × 20 cm) over
a range of ± 500 cm in each direction, centered on COC. Red dot: True Vertex, Black
cross: Minimum likelihood, Green triangle: COC.
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As the run time of the time-NLL for one event is around 1 hour when using 20 ×
20 × 20 bins, a statistical analysis with a large number of events has not been car-
ried out. To estimate the vertex resolution of the time-NLL statistical analysis with
a small batch of 100 3.5 MeV electron events, randomly located in the detector, was
done. A 200 cm × 200 cm × 200 cm volume around the true vertex was used with
10 cm × 10 cm × 10 cm bins. Analogous to the charge-NLL, the distributions have
been fitted with a Gaussian. With the low number of data points for the time-NLL, the
Gaussian is mostly used to give an idea of the vertex resolution in this case.
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Figure 5.8: Results of the statistical analysis of the time-NLL for 100 3.5 MeV electron
events, fitted with a Gaussian.

Table 5.3: Summary of the vertex resolution of the time-NLL.

Coordinate Mean 1σ range
∆X -0.2 cm 20.32 cm
∆Y -1.4 cm 21.1 cm
∆Z 0.6 cm 19.61 cm
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5.4.2 Application to TTR results

After establishing and testing the NLL method with the help of the toy-Monte-Carlo
point-sources introduced in section 5.4.1, it can be applied to the results of the TTR. For
this a pair of a simulated event and its reconstruction with the TTR is taken. According
to the description in section 5.3, the charge-, time- and combined-NLL are calculated.
Doing this for all iterations of the TTR allows for the examination of the changes. Due
to the long run time of the current version of the NLL-method no statistical analysis
can be presented in this thesis. Two samples are provided for a 3.5 MeV electron event,
Table 5.4, and a 1 MeV alpha event, Table 5.5. To reduce run time, the volume examined
by the NLL method was reduced to 150 cm× 150 cm× 150 cm around the true vertex,
corresponding to 12 bins with a volume of 12.5 cm × 12.5 cm × 12.5 cm. To make the
difference in NLL easier to read ∆Combined is introduced, defined as

∆Combined,i = 100 ·
Lcombined,i−Lcombined,i−1

Lcombined,i−1
, (5.18)

where Lcombined,i is the combined-NLL of iteration i. Therefore positive values of
∆Combined correspond to a worsening and negative values correspond to an improve-
ment of the TTR results. For the electron event, being a point-like event, the TTR was

Table 5.4: Summary TTR-application results of the NLL method for a 3.5 MeV electron
sample event. For all iterations after the thick black line the TTR used the same volume,
bin size and amount of bins.

Iteration Charge-NLL Time-NLL Combined-NLL ∆Combined
0 12696.7 18431.2 31127.9 -
1 17899.3 18482.1 36381.4 (+16.9%)
2 40388.1 18480.9 58869.0 (+61.8%)
3 21892.1 18479.2 40371.3 -31.4%
4 21429.4 18477.2 39906.6 -1.2%
5 21326.6 18475.4 39802.1 -0.3%
6 20868.2 18473.3 39341.4 -1.6%
7 20773.8 18471.5 39245.3 -0.2%
8 20321.9 18469.2 38791.1 -1.2%
9 20240.2 18467.4 38707.7 -0.2%

10 17430.6 18465.4 35896.0 -7.3%

stopped after its 10th iteration. For a complete overview, iteration 0 and 1 are included.
Comparing them to iterations 2-10 is meaningless, as the volume, bin size and amount of
bins differ greatly. Iteration 0 of the TTR begins with a 1770 cm× 1770 cm× 1770 cm
cube and 18 × 18 × 18 bins, representing the entire detector. Iteration 1 then limits the
volume to a smaller cube, ≈ 786 cm × 590 cm × 590 cm, around the barycenter. The
barycenter can be explained as a more complex version of the COC achieving accu-
racies of vertex locations of around 20 cm. This volume is separated into only 8 × 6
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× 6 bins. Beginning with iteration 2, the volume, bin size and amount of bins stays
constant, meaning that the difference in NLL between each iteration can be used as an
indicator of quality improvement or deterioration. Iteration 2-10 use the same volume
as iteration 1, but are instead separating it into 64 × 43 × 43 cubic bins with an edge
length of 12.5 cm. Looking at iteration 2-10 in Table 5.4, a consistent decrease in the
NLL with each iteration is visible. Especially the first iteration with uniform volume,
bin size and amount of bins, from iteration 2→ 3, results in a significant drop of the
NLL. After iteration 3 a pattern is visible, as every other iteration leads to a decrease
much larger than its predecessor. This difference, of approximately a factor 4, continues
until iteration 10, where another significant drop in the NLL occurs. A likely explana-
tion of this pattern is the alternation between PMTs with even IDs and odd IDs in the
TTR, when iterating. Alternating between the even and odd numbered PMTs helps to
prevent self-enhancement of erroneous areas, as PMTs are not fed their own data as a
probability mask. This sample event seems to show the desired outcome, as results of
subsequent iterations lower the NLL and therefore match the event better. To visual-
ize the improvement of the reconstruction, slices of the X-Y-plane running through the
true vertex of the reconstructed event topology are presented in Figure 5.9 for iteration
2, 6 and 10. The corresponding slices of the X-Z- and Y-Z-plane can be found in the
appendix. (A).

600− 550− 500− 450− 400− 350−
 x [cm] 

750

800

850

900

950

1000

 y
 [c

m
] 

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

6−10×
X-YSlice of TTR result of Iteration 2

(a) Iteration 2.

600− 550− 500− 450− 400− 350−
 x [cm] 

750

800

850

900

950

1000

 y
 [c

m
] 

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

3−10×
X-YSlice of TTR result of Iteration 6

(b) Iteration 6.

600− 550− 500− 450− 400− 350−
 x [cm] 

750

800

850

900

950

1000

 y
 [c

m
] 

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

3−10×
X-YSlice of TTR result of Iteration 10

(c) Iteration 10.

Figure 5.9: X-Y-slices of TTR results of a 3 MeV electron event for different iterations.
The true vertex is marked with a red dot.

The alpha event was chosen to represent an erroneous reconstruction of an event. The
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reconstruction of the simulated 1 MeV alpha event resulted in an artifact, a miss placed
maximum, that was contrasted more in comparison to the position around the true vertex
with increasing iterations. This is visible in the X-Y-slices of the reconstructed topology,
presented for iterations 2, 6, 8 and 9. Hereby the artifact most distinct in iteration 9,
which is the final iteration of the events reconstruction. The slices of the X-Z- and
Y-Z-plane can be found in the appendix (A).
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Figure 5.10: X-Y-slices of erroneous TTR results of a 1 MeV alpha event for different
iterations. The true vertex is marked with a red dot.

The charge-, time- and combined-NLL for each iteration are summarized in Table 5.5.
As iteration 0 and 1 are not comparable to iteration 2-9, the extreme behaviour be-
tween iterations 0-3 can be disregarded for this sample analysis. For iterations 2-8, the
combined-NLL is decreasing slowly despite the artifact. This can be explained by the
relative nature of the analysis. While the event is not reconstructed well, the topology
presented by an iteration still describes the true event topology better than its prede-
cessor. A significant jump (+45.4%) of the combined-NLL can then be observed going
from iteration 8 to 9. This can be understood by looking at Figure 5.10. While (c) and
(d) differ only slightly visually, a notable increase in emission probability, by a factor
of 2, is recognizable in the color scale. This increase stems from the probability mask,
reducing the volume in which light emission is assumed. Due to the limitation to a
150 cm × 150 cm × 150 cm cube around the true vertex, this constriction of the emis-
sion probability is only visible as an increase of the emission probability in the visible
volume.
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Table 5.5: Summary TTR-application results of the NLL method for a 1 MeV alpha
sample event. For all iterations after the thick black line the TTR used the same volume,
bin size and amount of bins.

Iteration Charge-NLL Time-NLL Combined-NLL ∆Combined
0 10274.5 10272.8 20547.3 -
1 4.78128 × 1062 10275.7 4.79155 × 106 (+23219.6%)
2 17576.2 10330.8 27907.0 (-99417578.9%)
3 16170.2 10330.8 26501.0 -5.0%
4 16085.5 10331.2 26416.8 -0.3%
5 14842.7 10331.2 25173.9 -4.7%
6 14743.3 10331.5 25074.9 -0.4%
7 13641.3 10331.4 23972.7 -0.4%
8 13555.9 10331.7 23887.5 -0.4%
9 24390.1 10331.7 34721.7 +45.4%
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Chapter 6

Conclusion

In this thesis, the NLL-method was established for use in the TTR in the JUNO detector,
to allow the evaluation of the quality of TTR results. It does so, by giving a quantita-
tive measure of how likely the detected event signature is, given the reconstructed event
topology. The NLL-method can therefore be used as a measure of quality of the TTR,
as well as a quantitative criterion of termination of the iterative process. Furthermore,
future applications can help to improve the TTR results by adjusting the probability
mask between iterations, based on minimizing the NLL. For the implementation, the
NLL was separated into the charge- and time-NLL, describing the charge distribution
and time distribution produced by an event, respectively. The sum of the two NLLs
defines the combined-NLL. For the purpose of testing the functionality of the method, a
toy-Monte-Carlo simulation for point-sources was created. It was used to determine the
resolution at which the charge-, and time-NLL can find the vertex for point-like events
and to compare the behaviour of the time-NLL with its expected behaviour under cor-
rect implementation. Lastly, the NLL-method was applied to results of the TTR.
Implementation of the NLL-method in this thesis demonstrates its use as a measure of
quality, criterion of termination and its potential for improving the TTR in the future.
Testing of the charge- and time-NLL with the toy-Monte-Carlo point-sources was suc-
cessful. Both methods showed behaviour that matched the expected behaviour under
correct implementation. The tests with the toy-Monte-Carlo point-sources also show-
case the possible application as a method for vertex reconstructions of point-like events.
Using just the charge-NLL allows for a limitation of the vertex location, with a resolu-
tion of ≈ 30 cm in each direction (Table 5.2). Indicated by the analysis of 100 events,
the time-NLL can resolve the true vertex with a resolution of ≈ 20 cm. Carrying out
an analysis of the time-NLL with a larger number of events while using finer binning
would lead to a more conclusive statement about its capabilities. Adding coupling with
other methods of vertex reconstruction in the future, e.g. by cross-checking results,
could lead to better and more robust vertex reconstructions.
Application of the NLL-method on events reconstructed by the TTR shows promising
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results. When used on a well reconstructed point-like event, the NLL showed a con-
tinuous improvement with each iteration, which is the expected and desirable outcome.
Additionally, the development of the NLL over the iterations also resolved the alternat-
ing between even and odd numbered PMTs used by the TTR, as well as the switch to
using all PMTs in the last iteration. Upon application on an erroneous reconstruction
the NLL showed a significant drop in the last iteration, in which the artifact was most
contrasted. Nevertheless, a statistical analysis is necessary to draw a meaningful con-
clusion as the sample results can be outliers.
In the future, the NLL-method can be improved further and even branched out, de-
pending on its application. A sensible first step to improve the NLL-method will be
a parallelization, which could easily reduce the run time by a factor 10, depending on
how many cores are available to the program. This improvement is essential in the ap-
plication of the method within the TTR, as the current run time would slow down the
TTR significantly. Therefore, the application of the NLL-method as a measure of qual-
ity and a criterion of termination of the iterative process, while theoretically possible,
would be impractical until this issue is resolved. Once the run time is reduced, the NLL-
method can also be applied on more complex events like muon tracks. For this, another
toy-Monte-Carlo, simulating a perfect track, could be used to first test the functionality.
This is not strictly necessary though, as the application on the TTR results does not
make any assumption about the track topology.
In this thesis a working NLL-algorithm, capable of being the basis for the discussed
(section 5.2) short- and long-term applications, has been established, which can be im-
plemented in the TTR software package in the future.
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Appendix A

Additional figures
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Figure A.1: Results of the time-NLL test of a single PMT (
#        »
PMT = (0,0,-1950)) for a

4 MeV electron event at ~V = (0,0,-100). The PMT was manually given the hit time ti,hit
= 99.8 ns. The true vertex is shown as a red dot. (Belongs to ??)
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(a) Slice of the X-Z-plane.
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Figure A.2: Results of the time-NLL test of a single PMT (
#        »
PMT = (0,0,-1950)) for a

4 MeV electron event at ~V = (0,0,-100). The PMT was manually given the hit time ti,hit
= 100.8 ns. The true vertex is shown as a red dot. (Belongs to ??)
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Figure A.3: Results of the time-NLL test of a single PMT (
#        »
PMT = (0,0,-1950)) for a

4 MeV electron event at ~V = (0,0,-100). The PMT was manually given the hit time ti,hit
= 101.8 ns. The true vertex is shown as a red dot. (Belongs to ??)
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(a) Slice of the X-Z-plane.
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Figure A.4: Results of the time-NLL test of a single PMT (
#        »
PMT = (0,0,-1950)) for a

4 MeV electron event at ~V = (0,0,-100). The PMT was manually given the hit time ti,hit
= 102.8 ns. The true vertex is shown as a red dot. (Belongs to ??)
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(a) Slice of the X-Z-plane.
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Figure A.5: Results of the time-NLL test of a single PMT (
#        »
PMT = (0,0,-1950)) for a

4 MeV electron event at ~V = (0,0,-100). The PMT was manually given the hit time ti,hit
= 103.8 ns. The true vertex is shown as a red dot. (Belongs to ??)
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Figure A.6: Results of the time-NLL test of a single PMT (
#        »
PMT = (0,0,-1950)) for a

4 MeV electron event at ~V = (0,0,-100). The PMT was manually given the hit time ti,hit
= 104.8 ns. The true vertex is shown as a red dot. (Belongs to ??)
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Figure A.7: Slices of iteration 2 of TTR result for a 3 MeV electron event. The true
vertex is marked with a red dot. (Belongs to Figure 5.9)
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Figure A.8: Slices of iteration 6 of TTR result for a 3 MeV electron event. The true
vertex is marked with a red dot. (Belongs to Figure 5.9)
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Figure A.9: Slices of iteration 10 of TTR result for a 3 MeV electron event. The true
vertex is marked with a red dot. (Belongs to Figure 5.9)
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Figure A.10: Slices of iteration 2 of erroneous an TTR result for a 1 MeV alpha event.
The true vertex is marked with a red dot. (Belongs to Figure 5.10)
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Figure A.11: Slices of iteration 6 of erroneous an TTR result for a 1 MeV alpha event.
The true vertex is marked with a red dot. (Belongs to Figure 5.10)
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Figure A.12: Slices of iteration 8 of erroneous an TTR result for a 1 MeV alpha event.
The true vertex is marked with a red dot. (Belongs to Figure 5.10)
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Figure A.13: Slices of iteration 9 of erroneous an TTR result for a 1 MeV alpha event.
The true vertex is marked with a red dot. (Belongs to Figure 5.10)
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