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Abstract

The Jiangmen Underground Neutrino Observatory (JUNO) aims to determine the mass
ordering of the neutrino mass eigenstates. In order to fulfill its primary target, an energy
resolution of 3 % at 1 MeV must be reached. JUNO is a liquid scintillator experiment
with 20 kton linear alkyl benzene (LAB) and 45,000 PhotoMultiplier Tubes (PMTs). Tests
determined that the PMTs used for enery measurements have a broad charge spectrum.
The influence of the charge distribution on the energy resolution is analysed with a Toy-
Monte-Carlo simulation. A likelihood method to improve energy resolution is tested as
well. It was determined that the long tail of the charge distribution alone worsens the
energy resolution by ∼ 0.4 % at 1 MeV. The likelihood method showed nearly maximum
energy resolution.

Zusammenfassung

Das Ziel vom Jiangmen Underground Neutrino Observatory (JUNO) ist es, die Massenord-
nung der Neutrino Masseneigenzustände zu bestimmen. Dafür muss eine Energieauflösung
von 3 % bei 1 MeV erreicht werden. Dazu ist JUNO mit 20 kilotonnen Linear Alkyl Ben-
zen (LAB) Flüssigszintillator und 45,000 PhotoMultiplier Tubes (PMTs) ausgestattet. Es
hat sich herausgestellt, dass die PMTs eine breite Ladungsverteilung besitzen. Deren Ein-
fluss auf die Energieauflösung wird mit Hilfe einer Toy-Monte-Carlo Simulation überprüft.
Zudem wird eine Likelihood Methode getestet, die die Energieauflösung verbessern soll.
Es hat sich herausgestellt, dass allein das ausgedehnte Ende der Ladungsverteilung eine
Verschlechterung von 0.4% bei 1 MeV mit sich bringt. Die Likelihood Methode erzielte
die nahezu bestmögliche Energieauflösung.
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Introduction

Neutrinos make up a special field in the scope of elementary particle physics. With their
tiny, still undisclosed masses and small cross sections, detecting these leptons is a challeng-
ing task. However, neutrino experiments do not only yield knowledge on particle physics,
but also on geothermal activity, the sun, stellar collapse and possibly dark matter.

In the Standard Model of particle physics it was proposed that neutrinos are massless. An-
other neutrino phenomena has shown otherwise: Neutrinos transition into another flavour
eigenstate over time, which was first discovered in the Homestake experiment, where a
deficit of electron neutrinos in the solar neutrino flux has been observed. The missing neu-
trinos were not actually absent, they just appeared in a different flavour. This neutrino
oscillation is heavily dependant on the square mass differences of the mass eigenstates
which shows that the neutrino mass cannot be zero. Furthermore, the absolute mass
differences have been resolved, although the absolute neutrino masses are still unknown.
This leaves us with two possibilities for the ordering of the square mass differences of the
mass eigenstates, also known as mass hierarchy or mass ordering.

Many neutrino experiments revolve around questions on neutrino mass and oscillation.
The Jiangmen Underground Neutrino Observatory (JUNO) is one of them. It is a spher-
ical detector with a diameter of 35m holding 20 kton of Liquid Scintillator (LS). Passing
particles create light signals in the LS that will be counted by 45,000 Photo Multiplier
Tubes (PMTs). The Central Detector (CD) is surrounded by a pure water tank and
located underground with a total overburden of 700 m to shield the detector from atmo-
spheric muons. This is needed to detect reactor neutrinos generated in two 53 km distant
nuclear power plants with sufficient certainty.

Primarily, JUNO aims to determine the mass ordering by measuring the oscillation pattern
of the reactor neutrinos. In order to do so, an energy resolution of 3 % at 1 MeV is needed.
This is heavily dependant on the number of photons created in the LS and on the precise
detection of photons by the PMTs. Tests show that the majority of used PMTs possess
a broad charge distribution for single photon hits. This reduces the possibility of reliable
energy reconstruction.

In the scope of this thesis, the influence of the charge distribution on the energy reso-
lution at JUNO will be examined. Different methods of estimating the energy will be
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tested, including a likelihood method that combines several information and is expected
to improve the energy resolution. To do so, a Toy Monte Carlo simulation of the JUNO
detector and the resulting signals at the PMTs will be conducted.

The underlying neutrino physics including neutrino oscillation is discussed in chapter 1.
Chapter 2 outlines the basic setup of JUNO and details relevant for this thesis. The
Toy Monte Carlo simulation is explained in chapter 3. The results of the simulation are
presented in chapter 4, a summary and an outlook is provided in chapter 5.
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1 Neutrino Physics

In this chapter, the physics and interactions of neutrinos are explained. At first, the
sources and the discovery of the neutrino are outlined. In section 1.1 the standard model,
including the neutrino types νe, ν̄e, νµ, ν̄µ, ντ , ν̄τ is explained. Section 1.2 outlines the phe-
nomena of neutrino oscillation, which is the foundation for the JUNO experiment.

Neutrinos are elementary spin-1
2
particles. They are very light even compared to other

elementary particles and carry no electric charge. These attributes result in low proba-
bilities of neutrinos to interact with matter. Therefore, neutrinos can travel through a
vast amount of matter and are very difficult to detect. However, neutrinos have various
sources and can yield information on numerous phenomena in the universe. Neutrinos are
commonly distinct through their sources:

• Geo-neutrinos (νe, ν̄e) originate from natural β-decay in the earth’s interior. The
isotopes 238U, 232Th, and 40K are the main contributors to both geo-neutrino flux and
radiogenic heat in the earth’s crust and mantles [2]. Thus, analyzing geo-neutrinos
will improve models of the earth.

• Reactor neutrinos (ν̄e) are anti-electron-neutrinos from β-decay in nuclear power
plants. One expects about 2 × 1020 ν/s emitted isotropically from a reactor with
1 GW thermal power [3]. Reactor neutrinos are measured in JUNO to achieve its
main goal. More information on reactor neutrinos in JUNO is provided in chapter
2.

• Neutrinos can also be produced in particle accelerator experiments (νµ, ν̄µ). They
are produced in the decay of high energy mesons [30] and are also used for neutrino
oscillation experiments [27].

• Atmospheric neutrinos (νe, ν̄e, νµ, ν̄µ) are produced when cosmic particles (mostly
protons) collide with nuclei in earth’s atmosphere. They then form mesons, which
decay and result in neutrinos along with other particles [30].
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• Solar neutrinos (νe) originate from nuclear fusion of hydrogen in the sun. Since
they leave the sun without interacting with matter, solar neutrinos provide real-
time insights to processes inside the sun. More on solar neutrinos can be found in
section 1.2.

• 99% of the energy produced in a supernova core-collapse is carried away by neutri-
nos [32]. Studying these supernova neutrinos (νe, ν̄e, νµ, ν̄µ, ντ , ν̄τ ) will improve the
understanding of stellar collapses. A nearby supernova burst may be seen because
of the immense neutrino flux, but they are very rare. However, from many super-
nova bursts of the past, a diffuse supernova neutrino background (DSNB) should be
present. The DSNB has not been observed yet [9].

• The rare high energy cosmic neutrinos (νe, ν̄e, νµ, ν̄µ) originate from the decay of
mesons that are products of collisions of high energy particles with nucleons or
photons [30]. Even though these neutrinos are very rare, the IceCube experiment
was able to backtrack one of these to a blazar in 2018 [15].

• Cosmic background neutrinos (νe, ν̄e, νµ, ν̄µ, ντ , ν̄τ ) are remnants from a neutrino gas
that formed shortly after the big bang. They possess little energy 〈E〉 = 5.3 · 10−4

eV and are thus difficult to detect. These neutrinos are candidates for a portion of
the dark matter [30]. Determining the absolute neutrino masses is crucial for further
propositions regarding this theory.

Neutrino physics was born in 1914, when James Chadwick examined the β-decay [37]

n→ p+ e− + ν̄e , (1.1)

where n is the neutron which was not detected until 1932, p the proton, e− the electron
and finally ν̄e, the electron-antineutrino.
Chadwick measured a continuous energy spectrum of the electron below the total released
energy, which was the expected value, shown in fig. 1.1. This can be explained if the
measured electron is the product of a secondary process, which would broaden the energy
spectrum. However, it was determined that the electron is, in fact, the primary electron.
A primary electron with continuous energy distribution can be explained by a violation of
energy conservation or by another yet undiscovered product. In December 1930, Wolfgang
Pauli then proposed the solution: A new spin-1

2
particle, at first called neutron. The

additional particle, later known as the neutrino, carries the missing energy.
The discovery of the neutrino finally took place in 1956. Frederick Reines and Clyde L.
Cowan Jr. measured characteristic signals from the inverse β-decay (IBD)

ν̄e + p −→ e+ + n (1.2)
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Figure 1.1: The energy spectrum of the resulting electron from β-decay [18]. The black
curve shows the measured spectrum, the red peak shows the expected electron
energy.

induced by electron-antineutrinos coming from the β-decay in nuclear power plants. This
method is also the main detection channel in JUNO and will be discussed in section 2.3.

1.1 Standard Model

The Standard Model (SM) delivers classification of elementary particles and their in-
teractions via three of the four fundamental forces: Strong, weak and electromagnetic
interaction with gravity being ignored. The theoretical foundation is the requirement of
local symmetry of the gauge group [29]

SU(3)c × SU(2)L × U(1)γ . (1.3)

The SM includes fermions with spin S = 1
2
, which are separated into quarks and fermions,

the Higgs boson (S = 0) and the gauge bosons (S = 1). The SM also includes all
antiparticles to the fermions. Antiparticles share almost all physical attributes with their
counterparts, but carry opposite charges [33].
The Higgs boson, discovered in 2012, takes a special place in the SM theory. Interaction
with the Higgs boson is responsible for the masses of fermions [33]. In the following, the
masses of particles are expressed in natural units c = 1, where c is the speed of light.

In the SM, or more precisely in Quantum Field Theory (QFT), the forces between parti-
cles are described as the exchange of Spin-1 particles, the gauge bosons. An overview of
gauge bosons and their corresponding forces is given in table 1.1. Electromagnetic force
is discussed within the scope of Quantum Electro Dynamics (QED) as the exchange of
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Table 1.1: The gauge bosons with their corresponding force, charge and mass [7].
Name, Symbol Photon, γ W-Boson, W± Z-Boson, Z0 Gluon, g
Force Electromagnetic Weak Weak Strong
Mass 0 80.4 GeV 91.2 GeV 0
Electric charge [e] 0 ±1 0 0

Table 1.2: The Quarks in the SM with their corresponding mass and charge [7]
Generation 1st 2nd 3rd
Name up charm top
Symbol u c t
Charge [e] +2

3
+2

3
+2

3

Mass 2.4 MeV 1.27 GeV 171.2 GeV
Name down strange bottom
Symbol d s b
Charge [e] −1

3
−1

3
−1

3

Mass 4.8 MeV 1.04 GeV 4.2 GeV

massless photons (γ) between particles that carry an electric charge. This corresponds to
the local symmetry of the group U(1)γ in eq. (1.3). Gauge bosons of the weak interactions
are the W+,W− bosons with mass m = 80.5 GeV and the Z0 boson with m = 91.2 GeV.
The W -bosons carry the elementary electric charge ±e. All fermions possess isospin, the
charge of weak interaction, and thus interact via the weak force (SU(2)L in eq. (1.3)). All
particles with electric charge interact electromagnetically and only the quarks additionally
interact via the gauge bosons of the strong interaction, the gluons. Strong interaction is
described in Quantum Chromo Dynamics (QCD). The quarks carry a color charge (r, g
or b), which results in 8 flavors of gluons under local symmetry of SU(3)C [33]. Gluons
are massless and have first been discovered at DESY in Hamburg [17].
The quarks (abbreviated as q) form three generations with increasing masses: The first
generation is the up-quark u with electric charge Q = +2

3
e and down-quark d with

Q = −1
3
e which make up protons p (uud) and neutrons n (udd). Other quarks are

strange, charm, top and bottom (s, c, t, b). An overview of quarks and their attributes
is given in table 1.2. Quarks only appear in bound states, the hadrons, and never as
free particles. Hadrons can be baryons (qqq or q̄q̄q̄) or mesons (qq̄). An example for the
baryons is the proton p (uud) and for the mesons the pion π+ (ud̄).
Similar to quarks, the leptons are also structured into three generations. These gen-
erations consist of one of the charged particles electron e−, muon µ−, and tau τ− and
their corresponding neutrinos νe, νµ, ντ . The charged particles all carry the electric charge
Q = −e and only differ in mass. An overview on leptons including their charge mass
and lepton number is provided in table 1.3. So-called Lepton numbers have to be con-
served during an interaction. For example, for the electron e− and electron neutrino νe
the Lepton number is L = 1, Le = 1, Lµ = 0, Lτ = 0. For the antiparticles e+ and ν̄e:
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Table 1.3: Leptons in the SM [7]. Note: neutrinos are massless in the SM. Lepton numbers
are negative for antileptons.

Generation 1st 2nd 3rd
Symbol e− µ− τ−

Charge [e] -1 -1 -1
Mass 511 keV 106 MeV 1.78 GeV
Symbol νe νµ ντ
Charge [e] 0 0 0
Mass < 2.2 eV < 0.17 MeV < 15.5 MeV
L 1 1 1
Le 1 0 0
Lµ 0 1 0
Lτ 0 0 1

L = −1, Le = −1, Lµ = 0, Lτ = 0 [30]. This is concluded with the experiment that proved
that νe 6= νµ [16]. Lederman, Schwartz, and Steinberger accelerated 15 GeV protons on
a Beryllium target, which produced pions and kaons (mesons) decaying into muons and
(muon-)neutrinos (or their respective antiparticles). The detector is shielded from the
muons and hadrons so that only neutrinos interact with the detector where they would
produce muons or (if νe = νµ) muons and electrons. There was evidence for 51 muons
from ν̄µn → µ+p or νµn → µ−p, but none for an electron or positron. Thus, νe and νµ
are not identical and the Lepton flavor numbers have been introduced. An overview of
Lepton numbers is also given in table 1.3.
There are still many open questions regarding the neutrino. The general Lepton number
L has been introduced after similar experiments (comparison of cross-sections) concluded
that νe 6= ν̄e. However, the results can also be explained by the helicity, which is the
projection of spin onto the momentum, which always have been observed to be -1 for ν
and +1 for ν̄. In order to resolve this, the mass of the neutrinos is highly relevant. In the
scope of SM, neutrinos are massless.Especially the observation of neutrino oscillation has
indicated otherwise.
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Figure 1.2: The solar neutrino energy spectrum [31]. The energy ranges of famous solar
neutrino experiments are indicated at the top of the graph.

1.2 Neutrino Oscillation

Solar Neutrinos

The dominating nuclear fusion process in the sun, the pp-chain, releases neutrinos at
various stages throughout the process of fusing protons into helium nuclei. The majority of
neutrinos carries an energy Eν < 0.5 MeV and is difficult to detect. The much rarer decay
of boron-8, produced in the fusion of two helium nuclei, releases neutrinos with energies
up to 15 MeV [33]. The solar neutrino energy spectrum is shown in figure 1.2. These
neutrinos were measured in the famous Homestake experiment [8]. The expectation of 1.7
interactions with solar neutrinos per day was not fulfilled, only 0.48 ± 0.04 interactions
per day have been measured. This deficit became known as the solar neutrino problem.
The SNO and the Super-Kamiokande experiments then provided evidence that this can
be explained by neutrino oscillations [33]: The neutrino flux is consistent when regarding
the sum of all three flavours; the solar neutrino deficit is apparent when observing only
electron neutrinos.

General Explanation

Neutrino Oscillation is the process of one neutrino flavour transitioning into another
neutrino flavour,

να ←→ νβ with α, β = e, µ, τ . (1.4)

In order for this to be possible, the Lepton numbers of neutrino flavours must not strictly
conserved and there must be differences of masses between the flavours [30]. The latter
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also indicates that not all neutrinos can be massless. Both of these requirements leave
the theory of SM. However, they do not violate the fundamental physical principles of the
SM [30].
Neutrinos always interact in their flavour eigenstates. There is no mathematical require-
ment for them to be identical with the mass eigenstates. The flavour eigenstates are rather
linear combinations of the mass eigenstates. Because of the different masses, the mass
eigenstates propagate in time with different phases. As a result, a pure flavour eigen-
state propagating in time will result in a time-dependent mixing of flavour eigenstates.
Therefore, a neutrino |να〉 can be detected as |νβ〉 , α 6= β at a later time. Consider the
following notation

|να〉 orthonormal flavour eigenstates α = e, µ, τ (1.5)

|νi〉 orthonormal mass eigenstates i = 1, 2, 3 . (1.6)

The eigenstates correspond to each other via a unitary transformation matrix U with
entries Uαi

|να〉 =
∑
i

Uαi |νi〉 , |νi〉 =
∑
α

U∗αi |να〉 (1.7)

with U∗ being the conjugate transpose of U . The mass eigenstates have time t depen-
dency

|νi(t)〉 = e−iEit |νi〉 (1.8)

with the total neutrino energy Ei and imaginary number i in the exponent.

Ei =
√
p2 +m2

i ≈ p+
m2
i

2p
≈ E +

m2
i

2E
, (1.9)

since p � mi, E ≈ p , with kinetic energy E, momentum p, and mass eigenvalues mi of
the mass eigenstates. A state |να〉 =

∑
i Uαi |νi〉 at time t = 0 therefore propagates with

|ν(t)〉 =
∑
i

Uαie
−iEit |νi〉 =

∑
i,β

UαiU
∗
βie
−iEit |νβ〉 . (1.10)

The transition amplitude for flavour transition να → νβ is

A(α→ β; t) = 〈νβ|ν(t)〉 =
∑
i

UαiU
∗
βie
−iEit (1.11)

=
∑
i

UαiU
∗
βi exp

(
−im

2
i

2

L

E

)
= A(α→ β;L) (1.12)

with the propagation length L = ct, c = 1. This leads to the transition probability

P (α→ β; t) = |A(α→ β; t)|2 =
∑
i

|UαiU∗βi|2 + 2Re
∑
j>i

UαiU
∗
αjU

∗
βiUβje

−i∆ij(t) . (1.13)
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Figure 1.3: A representation of two flavour oscillation. The parameters were chosen arbi-
trarily.

The first term represents the mean transition probability. The second term represents the
time dependent neutrino oscillations and contains the phase difference

∆ij = (Ei − Ej)t =
∆m2

ij

2

L

E
, with ∆m2

ij = m2
i −m2

j . (1.14)

Two Flavour-Oscillation

The simplest case is a mixing of only two flavours a and b, for example νe ←→ νµ. The
transformation is (

νa

νb

)
=

(
cos θ sin θ

− sin θ cos θ

)(
ν1

ν2

)
(1.15)

with mixing angle 0 ≤ θ ≤ π
2
and mass difference ∆m2 = m2

2 − m2
1. The transition

probabilities are now

P (νa → νb) = sin2 2θ · sin2 ∆

2
(1.16)

P (νa → νa) = 1− P (νa → νb) (1.17)

with
∆ =

∆m2

2

L

E
= 2π

L

L0

. (1.18)

L0 is called oscillation length.
This indicates that for oscillation to happen θ 6= 0 and ∆m2 6= 0 are required. The mixing
angle controls the amplitude of transition, the mass difference controls the frequency. The
propagation of 2 flavour oscillation is shown in figure 1.3.
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Figure 1.4: The mass ordering [4]. Note that the graph is not scaled since ∆m2
31 �

∆m2
21. The colors represent the proportion of flavour eigenstates in the mass

eigenstate.

Three Flavour Mixing

The realistic case with 3 flavours is much more complicated. There are three mixing angles
θij, a CP-violating phase ∆ and two independent mass differences ∆m2

31 and ∆m2
21. The

sign of ∆m2
31 could not yet have been resolved. This leaves us with the important question

of the mass ordering often referred to as mass hierarchy. The two possibilities are

Normal Ordering (NO) m1 < m2 < m3 and (1.19)

Inverted Ordering (IO) m3 < m1 < m2 . (1.20)

A representation of the mass ordering is given in figure 1.4. An overview on oscillation
parameters is given in table 1.4. At the L/E-value relevant for JUNO, the survival
probability of an anti-electron-neutrino is approximately

Pν̄eν̄e = 1− P21 − P31 − P32 with (1.21)

P21 = cos4 θ13 sin2 2θ12 sin2 ∆21 (1.22)

P31 = cos2 θ12 sin2 2θ13 sin2 ∆31 (1.23)

P32 = sin2 θ12 sin2 2θ13 sin2 ∆32 (1.24)

∆ij =
∆m2

ijL

4E
. (1.25)

P21 dominates the oscillation [20]. The subdominant oscillations of P31 and P32 are de-
pendant on ∆m2

32 and ∆m2
31. Therefore, there are two possible cases, dependant on the

mass ordering, shown in figure 1.5. By determining the subdominant oscillation pattern,
JUNO will identify the mass ordering. More information on how JUNO aims to achieve
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Figure 1.5: Reactor neutrino spectrum at JUNO [20].

Table 1.4: Neutrino oscillation parameters from 2013 [1]
MO Parameter Best Fit 1σ Range
Both ∆m2

21 [10−5eV2] 7.54 7.32-7.80
sin2 θ12 [10−2] 3.08 2.91-3.25

NO ∆m2
31 [10−3eV2] 2.47 2.41-2.53

sin2 θ13 [10−1] 2.34 2.15-2.54
sin2 θ23 [10−1] 4.37 4.14-4.70
∆ [180◦] 1.39 1.22-1.77

IO ∆m2
31 [−10−3eV2] 2.42 2.36-2.48

sin2 θ13 [10−1] 2.40 2.18-2.59
sin2 θ23 [10−1] 4.55 4.24-4.94
∆ [180◦] 1.31 0.98-1.60

that is presented in chapter 2.
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2 JUNO

In this chapter, the goals and basic setup of JUNO is presented in section 2.1, followed
by further explanations of attributes relevant for this thesis. Section 2.2 discusses the
function of the liquid scintillator, section 2.3 explains how the reactor neutrinos will be
detected, and section 2.4 outlines the function principle and attributes of the PMTs used
in JUNO.

Figure 2.1: The location of JUNO and the two power plants that serve as neutrino source
[13].

2.1 Goals and Setup

JUNOs primary goal is to determine the mass ordering by measuring ∆m2
13. Its location

is shown in figure 2.1 and is crucial in order to maximize the sensitivity of the reactor
neutrino flux to the mass ordering. As discussed in section 1.2, the neutrino oscillation is
dependant on L/E with the propagation length L and the neutrino energy E. As shown
in figure 1.5, this is the case at L/E ≈ 10.5 km/MeV. Therefore, regarding the reactor
neutrino energy spectrum, which is shown in figure 2.2, a distance of 53 km to nuclear
powerplants in Yangjiang and Taishan has been chosen. The distances to the reactors
may not differ more than 500m, otherwise, the oscillation structure may be cancelled
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Figure 2.2: Neutrino flux from different possible fission processes in nuclear power plants
[3].

Table 2.1: Oscillation Parameter Measurements at JUNO [20].
Parameter Current Precision Precision with JUNO
∆m2

12 3% 0.6%
∆m2

23 5% 0.6%
sin2 θ12 6% 0.7%

out [35]. Now, in order to reconstruct the oscillation pattern, precise measurement of
the particle energy is needed. JUNO aims for an energy resolution of 3%/

√
E[MeV]

which has never been reached before in a large vessel LS experiment [36]. JUNO will
measure other oscillation parameters with with new precision as well, as shown in table
2.1. To determine the mass ordering in the range of 3−4σ confidence, JUNO must collect
data for 6 years, since 83 ν̄e-events per day are expected [25]. A very important task is
the elimination of background. At an expected rate of ∼ 3.5Hz, cosmic and especially
atmospheric muons will disturb the measurements, although large efforts are being made
already to shield and reconstruct muon events.
The Central Detector (CD) of JUNO will hold 20 kton of Liquid Scintillator (LS) inside an
acrylic sphere with a diameter of 35.4m supported by stainless steel [14]. Current designs
plan 17,739 20" Photomultiplier Tubes (PMTs) facing inward for event reconstruction and
energy measurement. Gaps between PMTs will be filled with 36,000 3" PMTs to increase
optical coverage of the sphere to ∼77%. To veto muon events, the CD is placed within a
pure water tank equipped with ∼2000 20" PMTs for shielding and muon reconstruction
via Cherenkov radiation, and muon trackers are placed on top of the CD. The entire
detector is located underground with a total overburden of roughly 700m to shield muons
and other cosmic particles. A scheme of the CD is given in figure 2.3. Besides the precise
measurement of oscillation parameters with reactor neutrinos, JUNO is also sensitive

14



Figure 2.3: The setup of JUNO [21].

to geo-, supernova-, DSNB and atmospheric neutrinos. JUNO’s size, leading to a high
number of events, and JUNO’s energy precision will improve the understanding of these
neutrino sources.

2.2 Liquid Scintillator

JUNO is a Liquid Scintillator (LS) detector. Scintillators are materials that yield ultravio-
let or visible light upon deexcitation [34]. This process is called Luminescence and, depen-
dent on the lifespan τ of the excited state, is separated into fluorescence (τ ≈ 10−9−10−8

s) and phosphorescence (τ ≥ 10−6 s). In JUNO, the organic LS has several components
in order to balance light yield and transparency for a maximum of photons reaching the
PMTs. The basic liquid solvent is linear alkyl benzene (LAB). Its chemical formula is
C6H5CnH2n+1, where C6H5 forms a benzene ring and n ranges from 10 to 16 [25]. LAB
is excited by ionizing particles and passes this to the fluor PPO (C15H11NO) which then
emits light in the ultraviolet (UV) spectrum. This wavelength is further increased by
excitation and deexcitation of bis-MSB (C24H22) [25] to a wavelength of ≈ 420 nm, at
which JUNO aims for an attenuation length of 20m [14] and the PMTs are most sensitive
to. In order to achieve its requirements of >1,100 detected photons per MeV, tests for the
concentration of PPO and bis-MSB have been concluded and the current design intends
concentrations of 3g/l PPO and 15mg/l bis-MSB [5][14]. The LS is excited by charged
particles that are passing through and interact with the electrons in the LS. The transmit-
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ted energy excites or ionizes the molecules. In the range of 0.1 < βγ < 1000, where β is
the particle speed in terms of speed of light in vacuum β = v/c and γ the Lorentz-factor,
the Bethe Formula provides a good approximation of the differential energy deposit

− dE

dx
=

4πnz2

mec2β2

(
e2

4πε0

)2 [
ln

2mec
2β2

I · (1− β2)
− β2

]
, (2.1)

where ε0 is the vacuum permittivity, e is the elementary electric charge, z is the charge
of the particle in e, me the mass of the electron, n the electron density, and I the mean
excitation energy for the target atoms [25]. Outside of this range, corrections have to be
applied, for example bremsstrahlung for fast electrons [10]. About 3% of the deposited
energy is re-emitted as a photon [6]. However, The light yield is not linear to the deposited
energy. It is commonly approximated by Birks’ Formula

dL
dx

= L0 ·
dE
dx

1 + kB
dE
dx

, (2.2)

where L0 is typically one photon per 100 eV and kB is Birks’ constant that has to be
measured in the LS [25]. Considering a linear proportionality of light yield and deposited
energy, one can roughly assume a light yield of 10,000 photons per MeV. The deexcitation
rate of the electron states is proportional to their population. Therefore, considering a
negligible risetime, the temporal distribution of decay of a certain state can be described
by an exponential decay function. The probability density function (pdf) of the overall
temporal distribution of emitted photons with excitation at t = 0 is described by

ΦEm =
∑
i

wi
τi
e
t
τi , t > 0,

∑
i

wi = 1 (2.3)

where τi is the mean lifetime of the excited state i and wi its relative occurrence.

2.3 Neutrino Detection

Neutrinos are neutral particles and do not deposit their energy according to the Bethe
Formula. Neutrinos only interact via the weak force, often denoted as the charged current
(CC), which is interaction via the W+/− bosons, and the neutral current (NC) via the Z
boson. There are several possibilities of the ν̄e to interact with the LS with detectable
products. One possibility is the elastic scattering on an electron

ν̄e + e− −→ ν̄e + e− (2.4)

or a proton
ν̄e + p −→ ν̄e + p . (2.5)
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The neutrino transfers kinetic energy to a charged particle which in turn deposits it in
the LS. However, even a fixed neutrino energy Eν results in a continuous spectrum of the
kinetic energy of the charged particle. Due to the higher mass of the proton, the signal
from scattering on protons is much smaller than that of scattering on electrons. Elastic
and inelastic interaction with nuclei is also possible and can yield characteristic signals
when a positron and an unstable nucleus are the products [25]. However, most important
for the identification of ν̄e is the inverse β-decay (IBD)

ν̄e + p −→ e+ + n . (2.6)

Within nanoseconds, the resulting positron annihilates with an electron and releases two
characteristic γs with energies of 511 keV. The neutron will be captured mainly by hy-
drogen which emits a 2.2 MeV γ with an average capture time of ∼ 200µs [22]. The pro-
duced photons with high energy then further interact with the LS, mainly via Compton-
scattering where kinetic energy is transferred onto charged particles. As discussed, mov-
ing charged particle deposit their energy as described by the Bethe-Formula and emit
detectable scintillation light. This characteristic delayed signal of the e+/e−-annihilation
and the neutron capture make it possible to suppress background and identify the ν̄e.

However, this signal can be mimicked by some background sources. Especially cosmic
muons can form isotopes that decay and mimic IBD signals. The expected muon rate is
∼ 3.5Hz. Since it is impossible to shield this experiment from neutrinos, neutrinos not
originating from Yangjiang and Taishan nuclear powerplants, for example the daya bay
reactor, will also produce background signals. At last, radioactive purity of the LS and
the components of the detector as well as identification of radioactive decay of the used
materials are of importance. Geoneutrinos and radioactive decay in the detector material
will account for ∼ 1.55 events per day [23].

2.4 PMTs

The scintillation light has to be captured and registered by Photomultiplier Tubes (PMTs).
Current designs intent a total of 17,739 20" PMTs facing inwards the CD. PMTs convert
photons into electric signals. When entering the glass that holds the vacuum of a PMT,
a photon arrives at the photocathode and with a probability called Quantum Efficiency
(QE), an electron is set free due to the photoelectric effect. This photoelectron (PE) is
accelerated by an electric field onto a dynode. Since the electron gained energy during
acceleration, it is now able to release multiple electrons from the dynode. These are
accelerated onto the next dynode and the technique is repeated until the electrons are
collected by the anode. The total gain of 103 − 109 electrons is sufficient to produce a
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Figure 2.4: Scheme of a Dynode PMT [25].

measurable current. In order to continuously accelerate the electrons, the dynodes have to
be connected with increasing voltage [12]. A schematic PMT is shown in figure 2.4. The
inward facing 20" PMTs will be 4,998 dynode PMTs by manufacturer Hamamatsu, the
other 12,741 will be Microchannel-plate (MCP) PMTs by manufacturer Northern Night
Vision Technology (NNVT).
In MCP-PMTs, a plate with channels with the size of a few µm is used. An electric field
outside of the plate accelerates the electrons through these channels. The channel walls
are often coated with a semiconductor [11]. An electron is then multiplied when it hits
the wall of the channel. In order to improve the detection efficiency, the MCP surface
and channels are coated with a thin film of Al2O3 orMgO [24]. This increases the rate of
secondary electrons when a PE hits the surface of the PMT instead of a channel. The
secondary electron will then enter the channel and produce the signal. A scheme of a
MCP is shown in figure 2.5, while the MCP-PMTs for JUNO is depicted in figure 2.6.

2.4.1 Attributes

Photon Detection Efficiency (PDE)

The PDE is the QE multiplied by the probability that the PE is directed onto the first
dynode, the PE collection efficiency (CE)

PDE = QE · CE . (2.7)
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Figure 2.5: Scheme of a MCP [11]. To assure that a passing electron hits the channel
wall, the channels are usually inclined, or two MCPs with opposite inclined
channels used.

Figure 2.6: The MCP-PMT developed for JUNO [28]. Both transmissive and reflective
photo cathodes are used to maximize the QE.
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The PDE depends on the wavelength of the photons and to reach the expected 1,100 PE
per MeV, JUNO’s PMTs aim for a peak photon detection efficiency (PDE) of >30% at
420 nm [14]. Current tests determined a mean PDE of 28.1% for both PMT-types in the
relevant photon spectrum [19].

Transit Time Spread (TTS)

The time between production of a PE and the collection of electrons at the anode is
called transit time. It strongly depends on the position on the photocathode where the
PE is produced and thus what path it takes before being collected at the first dynode
or MCP. The Transit Time Spread (TTS) is defined as the Full-Width-Half-Maximum
(FWHM) of the distribution of the transit time. The TTS has been tested to be 2.8 ns
for the dynode-PMTs and 20.2 ns for the MCP-PMTs. The large TTS of the MCP-PMTs
is especially bad for topological reconstruction, since the time of photon arrival together
with its speed delivers crucial spatial information. However, it increases the chance of two
PE at nearly the same time to be identified as such, generating two different peaks.

Pulse

The resulting cascade of electrons produce an electric signal depicted in figure 2.7. The
shown measurements were produced in tests that each PMT has to pass before being
admitted. These tests involve analysis of the SPE Pulse Wave. For that, a triggered
light signal with an expectation of 0.1 PE per frame is directed onto the PMT. The
electronic readout system has a sampling rate of 1GS/s, which corresponds to 1 point per
nanosecond.
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(a) SPE signal at Dynode PMT.

(b) SPE signal at MCP PMT.

Figure 2.7: Examples for SPE Signals for both PMT Types.
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Charge Distribution

Each electrons arriving at the anode deposit a charge of e. All ne electrons of a PE-Signal
therefore deposit the accumulated Charge Q = ne × e. This is proportional to the area
beneath the pulse form shown in figue 2.7. In the scope of this thesis, the term charge
always refers to the area beneath the pulse wave and will never be converted to the proper
units (∼pC range). The charge distribution will be crucial for energy reconstruction. The
measured charge distribution for SPE events for both PMTs are shown in figure 2.8

The data stems from the same measurements as the examples for the SPE pulse waves,
since the SPE signal is of importance. To create these charge distributions, scripts pro-
vided by Micheala Schever have been lightly altered and used to analyze the charge of
PMTs that serve as reference PMTs in the testing system and have thus been tested mul-
tiple times. The used data is for the dynode PMT with serial number EA0419 and MCP
PMT PA1704-731 in mass258- mass367.

Spurious Signal Pulses

When a photon produces a PE in another way as described above or at a part of the
PMT other than the photocathode, a pre-pulse or an after-pulse can occur. The PMT
will measure a peak at the wrong time, because of the different transit time. To avoid
these peaks with false arrival time and to avoid counting two signals from the same photon
as two photons, they have to be filtered out effectively [25]. Radiation of materials used
in the PMT and thermally emitted electrons can also yield signals, often referred to as
dark current. Since the PE are quite slow and electrically charged, they are sensitive to
earth’s magnetic field. Thus, a large coil system is built around the CD.
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(a) Charge distribution at Dynode PMT.

(b) Charge distribution at MCP PMT.

Figure 2.8: The SPE Charge distribution for both PMT Types. The MCP PMT has a
broader spectrum, especially reaching out to very high values. At the left
side of the dynode PMT spectrum one can see an additional peak, that are
remnants from noise signals. The same appears for MCP PMTs, however it is
not as visible in this representation.
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2.5 Energy Reconstruction

As mentioned before, not all deposited energy will convert into PE or even photons. With
the number of registered photons an estimation of this visible energy is possible and an
estimate for the invisible energy has to be calculated according to the type of event in
order to reconstruct the total event energy. In the scope of this thesis, the visible energy
is the only energy estimate taken into account. With knowledge about light yield (LY)
and local detection efficiency (LDE) describing the probability of an emitted photon to
be detected, an estimation of energy can be given by the number of PE (NPE)

Ê =
NPE

LDE× LY
. (2.8)

Derived from poisson statistics the relative energy resolution σE mainly depends onNPE

σE ≈
1√
NPE

. (2.9)

This indicates why the goal of σE ≈ 3% at 1 MeV requires the 1,100 PE per MeV. There
are two commonly used techniques to retrieve NPE. First, the peaks of signals shown
in figure 2.7 can be counted. This peak counting (PC) can fail when noise is wrongfully
counted and when the signals of the PE overlap heavily. The latter will always cause an
increasing lack of PE with increasing energy, since multi-photon hits at the PMTs will
become more likely. This effect can be calibrated, but the loss of information also yields
a lower resolution. The method of charge integration (CI) summarizes the area of these
waveforms for every event. This sum is then divided by the mean SPE-charge of the
spectra shown in 2.8. The elongated charge distribution as well as strong overlapping of
two photoelectron (TPE) charge distribution of the MCP-PMTs decreases accuracy for
this method.

2.5.1 Likelihood Method

The likelihood method to be tested will combine multiple information to provide an
improved guess for the number of PE. At first an energy guess EGuess provided by PC or
CI is needed. Based on this energy guess and with knowledge of vertex position of the
event, the expectation value for the number of PE at each PMT is calculated. This process
is further discussed in the next chapter. The expectation value yields information on the
probabilities of different number of PE at the PMT. The normalized charge spectrum for
each number of PE is scaled with its probability. The height of these weighted spectrums
at the measured Charge at the PMT is examined, which yields a more accurate probability
for the number of PE at each PMT and a new energy guess can be reconstructed. The
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mathematical details can be found in section 3.4, where the implementation in the toy
simulation is explained. One can add additional information, such as the time distribution
to implement the probability of overlapping PE signals.
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3 Methods for Simulating Detector
Signals and Reconstructing Energy

In order to estimate the influence of the charge distribution and the effectivity of the
likelihood-method, a Toy-Monte-Carlo Simulation (TMC) is constructed. In Monte Carlo
Simulations (MC), the physical problem is approximated by generating random numbers
according to a known distribution of that number. TMCs do not aim to simulate the
whole underlying physical process, but rather the most important aspects for the given
problem, which eases the analysis of the results [26]. Thus, TMCs are commonly used to
test hypothesises. In this TMC, an event with a given energy and position within the CD
is the starting point. Then, the number of PE and the resulting signals at the PMT have
to be simulated, which then will be analyzed to test the energy reconstruction methods.
Although an extensive JUNO simulation based on the GEANT4 platform is available, a
TMC has the aforementioned advantage of straightforward analysis but also provides full
control of the simulation parameters.
The TMC is written in C++ using the ROOT framework developed by Cern. ROOT
is designed to process large amounts of data and provides many functions in terms of
histograms, fitting, data storage and accessibility. This chapter describes the stages of the
simulation in chronological order. Section 3.1 starts with the calculation of the expected
PE at every PMT, in section 3.2 the construction of the PMT signal is outlined. The
methods of analyzing the signal at each PMT is explained in section 3.3, while the energy
reconstruction is gcovered +. in section 3.4. Section 3.5 then outlines the output given
by the simulation of an event and how it is processed and analyzed.

3.1 Hit Probability

The number of total PE is dependent on deposited energy, event position in the detector,
light yield, light attenuation and PDE of the PMTs. To resolve this, results from the
mentioned JUNO simulation are used. In order to simulate scintillation light and minimize
other effects like Cherenkov radiation or positron/electron annihilation, an electron with
a kinetic energy of 0.5 MeV with random positions throughout the LS has been simulated
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one million times. The results are used to calculate the total photon emission and to
generate a look-up table used to calculate the probability of a hit at a certain PMT.

3.1.1 Light Yield

In order to retrieve the light yield, the mentioned simulation has been repeated at 1 and
3 MeV. As mentioned before, the light yield is not linear to the deposited energy, however
a linear light yield is assumed in the TMC. A linear fit of the simulation data has yielded
the parameters

b = 13137 ± 51 c = −752 ± 95 , (3.1)

for the linear fit
〈NEM〉 (E [MeV]) = b · E [MeV] + c . (3.2)

This approximation is used in the TMC to generate the expectation of NEM . The total
light yield is subject to statistical fluctuations. In this TMC, a gaussian distribution G
with a σ according to Poisson statistics is used

σEM =
√
NEM . (3.3)

The total photons emitted NEM is therefore calculated with

NEM(E) = 〈NEM〉 (E) + Rand(GσEM ) , (3.4)

where Rand(f) returns a random number weighted with function f . The gaussian here
has a mean of zero and a sigma as shown in equation (3.3).

3.1.2 Look Up Table

Everything that is described from now until section 3.4 happens inside a loop over all
17,739 PMTs. For this, a file containing the id, position, and type of PMT (dynode or
MCP) is used. To retrieve an expectation 〈ni〉 for PE at PMT i, a look-up table has been
created. It describes the probability of a photon with distance d and angle θ to the PMTs
surface to result in a PE. It contains all effects included in the JUNO simulation such as
attenuation, scattering, solid angle and PMT QE. The QE used in the JUNO simulation
is shown in figure 3.1. A 2D-Histogram has been created by looping over all PMTs for
every event and storing the number of PE nPE and NEM in respect to d and θ. This
yields the look-up table (LUT) value

LUT(d0, θ0) =

∑
d=d0,θ=θ0

n∑
d=d0,θ=θ0

NEM

(3.5)
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Figure 3.1: The QE used in the JUNO Simulation. At 420 nm, the QE is 30.2%.

Therefore, 〈ni〉 is calculated via

〈ni〉 = NEM × LUT(di, θi) , (3.6)

di = |~ri − ~R| , θi = ](~ri, ~R) , (3.7)

where ~ri is the position of PMT i and ~R the position of the event, both relative to the
center of the CD. The resulting LUT is shown in figure 3.2.

Figure 3.2: The generated Look-Up Table at E = 0.5MeV. It describes the probability of
an emitted photon to result in a PE at given distance and angle to the PMT.
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Figure 3.3: The Emitted Photons relative to Distance and Angle of the PMTs which
equals the denomiator in equation 3.5 and serves as reference to the number
of events. The bright areas have data of >200,000 events, while some of the
extreme areas close to the edge only contain data of a few hundred events.
The bright areas in the center stem from the multiple additional simulations
to decrease statistical fluctuation at the center of the CD.

To improve the statistics at critical places in the CD, for example the center which has
a tiny volume and is the only place where (d, θ) = (1950 cm, 0), multiple simulations
at center and at the edge have been repeated and appended in the manner described by
equation (3.5). However, a lack of statistics and thus a lack of reliability is still present
close to the edge of the CD and at θ < 0.04 rad. This effect can be seen in figure 3.3.
Therefore, a threshold for θ has been introduced

if θ < 0.04 ⇒ θ = 0.04 , (3.8)

and running the TMC at positions very close to the acrylic sphere yield unreliable results.
Profiles of the LUT are shown in figure 3.4.
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(a) The LUT Profile at θ = 0.12 rad.

(b) The LUT Profile at d = 800 cm.

Figure 3.4: The Profiles of the LUT. The detection probability heavily depends on the
solid angle to the PMT. Close to the PMT the solid angle is large and attenu-
ation unlikely, however an event close to the edge yields a steep angle to many
PMTs at which the solid angle shrinks. Effects of refraction at the acrylic
sphere also reduce detection at the edge of the CD.
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3.2 Generating Signals

At every PMT, the number of PE and the resulting signal have to be rolled. These should
mimic the signals shown in section 2.4.1. For each PMT, a Histogram with 300 bins, each
bin representing 1 ns, is created. For each PE, amplitude and arrival time have to be
determined and the corresponding SPE wave is added to the PMT Signal. Finally, noise
is added.

3.2.1 Number of PE

The number of PE produced is Poisson distributed and is therefore retrieved by generating
a random number weighted with the integral Poisson distribution PI with an expectation
value of 〈ni〉, where PI has the value of the P (n) between n and n + 1, when P is the
Poisson distribution. PI is shown in figure 3.5.

Figure 3.5: The Integral Poisson Distribution for 〈ni〉 = 0.5. The possibility that no PE
is produced is ∼ 60%, one PE has chance of ∼ 30% and the rest distributes
on two or more PE.

Therefore,
ni = Rand(PI〈ni〉) . (3.9)

ni is then round down to become an integer and is the number of PE at PMT i.

3.2.2 Pulse Shape

Every PMT should mimic a signal similar to the signal the DAQ in the test containers
produces, discussed in section 2.4.1. Therefore, a histogram with a bin width of 1 ns
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(a) Pulse form at dynode PMTs. (b) Pulse Form at MCP PMTs

Figure 3.6: The raw log-normal pulse form. U = 1 and T = 50 have been chosen

is created and will be filled with pulse waves from every PE and with noise. The pulse
shape is currently being studied, but a good approximation is given by the log-normal
distribution

f(t) =

U · exp
(
−1

2

(
ln( t−T

τ
)

σ

))
if T > t

0 else
(3.10)

with amplitude U , time of arrival of signal T and the function parameters τ and σ that
have to be retrieved from fitting SPE waveforms. τ and σ are correlated and not yet fully
understood. However, mean values will be used for each PMT type and have been kindly
provided by Michaela Schever from Forschungszentrum Jülich. The used parameters are

MCP : τ = 5.5, σ = 0.75 (3.11)

dynode : τ = 22, σ = 0.2 . (3.12)

The raw pulse shape of each PMT type is depicted in figure 3.6. The parameters left to
determine are U and T .

3.2.3 Time of Arrival

For each PMT, only the relative times of arrival of PE at the same PMT are relevant. This
especially means that the time of flight of the photons through the CD can be ignored
completely. The time of arrival of the signal is mainly dependant on the emission time
probability density function discussed in 2.2,

ΦEm =
∑
i

wi
τi
e
t
τi , t > 0,

∑
i

wi = 1 (3.13)
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Figure 3.7: The Emission Time Spread of the LS as used in the TMC.

and the TTS of the PMT discussed in 2.4. The values for ΦEM are

τ1 = 4.93 ns , w1 = 0.799 , (3.14)

τ2 = 20.6 ns , w2 = 0.201 . (3.15)

These values are currently used in the JUNO Simulation as well. The resulting emission
time profile is shown in figure 3.7. A TTS of 2.8 ns for dynode, and 20.2 ns for MCP PMTs
have been measured. In the TMC, a Gaussian distributed TTS is presumed. Therefore,
with Gaussian G the time T is determined for every PE with

T = Rand(ΦEM) + Rand(GFWHM=TTS) + 50 ns . (3.16)

The additional 50 ns are required to keep the pulse wave within the frame as Rand(GFWHM=TTS)

can yield negative values.

3.2.4 Amplitude & Charge

With fixed values for the log-normal parameters τ and σ, the amplitude U and charge Q
are directly correlated. Analyzing the integral of the log normal function determined that
Q ∝ U and only a conversion factor c is needed

MCP : Q =

∫ ∞
T

f(t)dt = U · 13.596 = U · cMCP (3.17)

dynode : Q =

∫ ∞
T

f(t)dt = U · 11.252 = U · cDyn (3.18)
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Therefore, the amplitude U will be determined by a random weighted charge

U =
Rand(Q)

c
, (3.19)

where Q is the charge distribution. In order to use the distributions shown in section
2.4 for simulation, some adjustments are made. The left side of the distribution is cut
off, since the additional peaks originate from noise. Additionally, the distributions are
smoothed. The resulting SPE charge distributions used in the TMC are shown in figure
3.8.

3.2.5 Noise

Some noise will be added in order to simulate the real signal. It is also important since
it adds difficulties for analysis of the waveform described in the next section. In order
to vary the total noise, a random number R between 1000 and 2500 is generated. Then,
a signal with the height of 1.5 mV is added randomly to one of the 300 bins R-times.
Examples of the final simulated SPE wave are shown in figure 3.9.
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(a) SPE Charge Spectrum of the dynode PMTs.

(b) SPE Charge Spectrum of the MCP PMTs.

Figure 3.8: The smoothed SPE Charge Distributions.
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(a) SPE Pulse Wave at Dynode PMT. A low amplitude and medium noise is
present in this frame.

(b) SPE Pulse Wave at MCP PMT. Low noise and a high amplitude is present
in this frame.

Figure 3.9: Examples for the simulated SPE Signals. The measured signals displayed in
2.7 are mimicked.
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(a) Counting Efficiency at E = 1MeV (b) Counting Efficiency at E = 7MeV

Figure 3.10: Comparison of the Performance of Different TSpectrum Parameters. The
average number of misinterpreted PMTs (meaning nPE,PC 6= nPE,TRUE) per
event is shown.

3.3 Analyzing Signals

3.3.1 Peak Counting

In order to identify peaks at the PMT signal, the ROOT class TSpectrum is used. It was
originally created to analyze γ-ray spectra and uses markov chain algorithms to suppress
noise and enhance peaks before counting them. The peak searching function requires
two parameters: A minimal σ at which a peak is identified as such, and a threshold
0 < threshold < 1, which ignores any peak that is smaller than the threshold times the
height of the highest peak. The parameters that yield the highest number of correctly
identified PMT signals have to be chosen. The challenge is to balance the peak searching
in such a way that no noise will be counted, but the identification of multiple PE at a PMT
is maximized. For noise cancelling, a cut-off has been implemented that prevents counting
a peak that is smaller than 4mV. Comparing this with the amplitude distribution, 1.8% of
PE at MCP PMTs will be lost this way. This cutoff is needed to optimize the TSpectrum
parameters to also function with higher numbers of PE. The following parameters have
been chosen

σ = 3 , threshold = 0.45 , (3.20)

as they yield the minimum number of miscounted PMTs, as seen in figure 3.10. More
detailed information on the performance of peak searching at the chosen parameters is
given in figure 3.11. At 1 MeV, 0.31 % of PMTs are misinterpreted compared to 5.03 %
at 7 MeV, considering a distance to the center of the CD of 800 cm.
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(a) Counting Performance at E = 1MeV

(b) Counting Performance at E = 7MeV

Figure 3.11: The Counting Performance for the Chosen Parameters. One can see the
importance of identification of multiple hits at higher energies, but also the
decreasing success in analyzing PMTs succesfully.
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3.3.2 Charge Integration

To retrieve the area beneath the pulse wave at each PMT, the integral is needed. There-
fore, the content of each of the 300 bins is summed. To eliminate the positive contribution
of the noise, a baseline value is subtracted from that sum. The baseline is constructed by
summing the last 75 bins, which do not contain pulse waves. The average bin content in
that area is multiplied by 300 and subtracted from the integral of the entire frame. The
measured charge Q̂i at PMT i is therefore calculated via

Q̂i =
300∑
j=1

Cj −
300

75

300∑
j=225

Cj , (3.21)

where Cj is the height of bin j. These values will be summed separately for each PMT
type. To retrieve an estimation for the number of PE N̂PE, the sum for each PMT type
is divided by the mean of the respective SPE charge distribution shown in section 3.2.4.
Then, N̂PE is given by

N̂PE = N̂PE,MCP + N̂PE,Dyn , (3.22)

N̂PE,MCP =
1

〈Q〉MCP

·
∑
i,MCP

Q̂i , (3.23)

N̂PE,Dyn =
1

〈Q〉Dyn

·
∑
i,Dyn

Q̂i . (3.24)

This charge analysis yields a systematic error. When no PE is produced (NPE), averagely
〈q〉NPE ∼ 2.7 are added to the sum of charge to the respective PMT type. Compared to
the mean SPE charges

〈Q〉DYN = 85.5 (3.25)

〈Q〉MCP = 147.8 , (3.26)

this yields 3.2% of 〈Q〉DYN, and 1.8% of 〈Q〉MCP. Considering the case that not a single
PE at every PMT would be produced, this method would yield a PE guess of ∼ 390. At 1
MeV, ∼15,000 PMTs will get no PE signal and the influence of this faulty analysis is large.
This is countered with a threshold of q = 35 that the analyzed charge needs to surpass
in order to be considered in the sum of qi. Since the NPE and SPE spectra overlap, this
threshold is not ideal. The misinterpreted NPE signals are reduced drastically however.
The NPE spectrum is shown in figure 3.12.
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Figure 3.12: The NPE Charge Distribution.

3.4 Energy Reconstruction

An estimation for the energy Ê is given with the knowledge about the mean light yield,
local detection efficiency (LDE), location of event in the CD ~R, and the estimate for the
number of PE. Considering the light yield shown in equation (3.2), Ê is given by

Ê =

(
N̂PE

LDE(~R)
+ 752

)
÷ 13137 . (3.27)

The LDE denotes the possibility of a photon emitted at location ~R to produce a PE. It is
calculated in the TMC by summing up the LUT values of each PMT while creating the
PMT signals

LDE(~R) =
∑
i

LUT(di, θi) , (3.28)

with d and θ as in equation (3.7). The LDE is shown in figure 3.13. As mentioned in
section 2.5, an offset for the energy estimate by peak counting ÊPC is expected, increasing
with the true number of PE NPE. Especially because ÊPC is used for the likelihood
method which will be explained shortly, this offset should be calibrated. Considering the
offset shown in figure 3.14, the fit with the linear function

ÊPC
ETrue

= b · ETrue + c (3.29)
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Figure 3.13: The LDE of JUNO dependent on the distance to the center of the CD,
calculated with data from the JUNO simulation used to create the LUT.

Table 3.1: The Parameters used to calibrate the offset.
Distance to Center [cm] b c

0 0.02046 ± 0.00395 0.9651±0.0297
800 0.02326 ± 0.00260 0.9911± 0.0146
1650 0.03491 ± 0.00298 0.7852 ± 0.0212

yields the parameters shown in table 3.1. At d = 1650 , a systematic error is expected, as
the decrease of Ê/ETRUE deviates from its linear shape. This problem could not yet have
been resolved and simulation at the edge of the detector yield unreliable results. The
calibrated energy estimate ÊCorrect of ÊPC is then given by

ÊCorrect =
c−

√
c2 − 4 · b · ÊPC

2b
. (3.30)

Likelihood Method

The calibrated energy estimate by peak counting ÊPC is used as first energy guess in the
likelihood method. Similar to the loop where PEs are created, this energy guess is used
to estimate the number of emitted photons

N̂EM = 13137 · ÊPC − 752 . (3.31)
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Figure 3.14: The Decrease of ÊPC/ETrue at a distance to the center of the CD of 800 cm.

To regain a new estimation for N̂PE, a loop over all PMTs is needed similar to the creation
of events explained in the previous sections. The following calculations will be made for
every PMT. The PE expectation is calculated with

〈n〉 = N̂PE · LUT(d, θ) (3.32)

as in section 3.2. 〈n〉 is used to create a Poisson distribution P〈n〉(x). Now, the charge
distributions for different number of PE Qn at a single PMT are needed. These are created
from the SPE charge distribution Q1 shown in section 3.2.4 by combination

Qn(x) =
∑
y+z=x

Q1(y) ·Qn−1(z) . (3.33)

The NPE spectrum is extracted from the simulation with NEM = 0. In this TMC, up to
three PE are considered in the likelihood method. The resulting charge distributions are
shown in figure 3.15. The Qn are further normalized and then scaled with the probability
of n PE according to the Poisson distribution

Q′n = P〈n〉(n) ·Qn . (3.34)
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(a) The Charge Distribution at dynode PMTs

(b) The Charge Distribution at MCP PMTs

Figure 3.15: The Charge distributions at different numbers of PE. The distributions over-
lap heavily for MCP PMTs
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Evaluating the height In of Q′n at the charge q measured for that PMT yields the relative
probability of n PE

In = Q′n(q) . (3.35)

The probability PN for N PE is given by

PN =
IN∑
n In

. (3.36)

The new estimation for the number of PE at the PMT n̂PE is

n̂PE =
∑
N=1

N · PN . (3.37)

This calculation is done for every PMT i and the n̂PE,i are summed up for the estimation
of total PE

N̂PE,L =
∑
i

n̂PE,i . (3.38)

With N̂PE,L, the new energy estimate EL can be calculated.

3.5 Output

Along with the energy estimations by peak counting, charge integration and likelihood
method (EPC , ECI , EL) the optimal energy estimation EO is calculated for each event.
EO mimics perfect peak counting and is calculated with NPE,True. An event at given
energy ETrue is repeated and the energy estimates recorded seperately. For each ETrue

and each method, a gaussian is fitted to the distribution. The mean 〈E〉, sigma σE,0 and
the uncertainty of sigma of the gaussian fit are extracted and examined. Sigma (and its
uncertainty in the same way) is converted with the following equation

σE =
σE,0
〈E〉
· 100 (3.39)

and yields the energy resolution in percent.

3.6 Factors Not Implemented

In the scope of this thesis, some factors have been ignored. In order to evaluate the results
properly, some aspects that have not been mentioned in chapter 3 yet will be listed here.

Dark Count, Pre- and Afterpulses are neglected. In the TMC, only the calculated PE
will trigger a pulse. The spontanious, delayed or premature signals by secondary effects
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are not implemented. In reality these will reduce the certainty of the estimate for NPE.
Current tests show a dark count rate of 15.3 kHz for dynode PMTs, and 46 kHz for MCP
PMTs. This roughly yields a probability of 1.4 % of a spontanious signal within the frame
of 300 ns for each MCP-PMT, and 0.45 % for each dynode PMT. Pre-pulses yield faulty
time information, however, as the time distribution spreads they improve the possibility
of two PE signals to be counted sperately. An after pulse together with its main pulse
can wrongly be identified as two photon hits.

The influence of the photons speed on time distribution is neglected. The speed of the
photon through the CD is dependent on the photons wavelength. Considering the relevant
wavelengths and JUNOs diameter of 35 m, the maximum time spread is ∼ 2 ns.

A large influence not covered in this TMC is the influence of photon scattering on the
time distribution. With the attenuation length L = 20m, around e

17.7
L ≈ 41 % of photons

created at the center of the CD will have been scattered upon reaching a PMT. The longer
photon track can yield a delay up to the range of µs. Although applying this effect is not
trivial, the time spread will decrease the probability of overlapping PE signals significantly
and therefore improve the performance of PC, presuming all scattered photons can be
matched with the event.

However, the factors implemented in the TMC are sufficient enough to gain information
on the influence of charge distribution on energy resolution and the performance of the
likelihood method. Considering dark count, pre- and after-pulse and photon scattering
in the TMC requires a good strategy concerning vetoing afterpulses while not ignoring
scattered light and opens up a different topic on how to classify PE signals which is outside
the scope of this thesis.
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4 Results

In this chapter, results regarding the energy resolution are presented and discussed. For
reference and first analysis, simulations at the center of the CD are presented first in
section 4.1. To analyse the influence of the charge spectrum, the same simulation is
repeated with modified charge distributions, which is presented in section 4.2.

4.1 Center of the CD

The position has been set to the absolute center of the CD. As the statistics of the LUT
at the center of the CD is sufficent, the threshold for the angle in the LUT has been
turned off for this simulation. 7,000 events have been simulated for every energy in the
range of 1 to 9 MeV in steps of 2 MeV. The resulting energy estimations can be seen in
figure 4.1. One immidiately notices the offset for ÊL. This is explained with the fact
that only up to three PE are implemented in the likelihood method. Considering a 4 PE
signal at a PMT, the measured charge would most likely be in the area where the four PE
spectra peaks. With the likelihood method as it is, only the tails of the other multi-PE
charge distribution are in that range. Without the large weight the four PE spectrum
would have, the likelihood method estimates a value in the range of 2-3 PE. Thus, for
every PMT with 4 PEs, the likelihood method estimates more than 1 PE less. The energy
resolution is given in figure 4.2. The resolution shows the expected curve ∝ 1/

√
E. Ecept

for CI, all methods show a resolution better than 3% at 1 MeV. However, the TMC is
not able to prognose if JUNO will reach this target, since many aspects of JUNO are not
implemented in the TMC and the absolute values of energy resolution are not conclusive
enough. The expected shape and range of the energy resolution indicates however, that
no coarse mistake has been made that reflects onto the energy resolution. The values of
the energy resolution are displayed in table 4.1.
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Figure 4.1: The energy estimation at the center of the CD. The error is the energy reso-
lution shown in figure 4.1.

Figure 4.2: The energy resolution at the center of the CD. The error is the uncertainty of
the gauss fit.
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Table 4.1: Values for energy resolution at the center of the CD. The fitting error mainly
depends on the number of events = 7,000.

E [MeV] Method σ [%]

1

PC 2.74 ± 0.04
CI 3.33 ± 0.04
L 2.73 ± 0.04

Opt 2.69 ± 0.04

3

PC 1.75 ± 0.02
CI 2.05 ± 0.02
L 1.73 ± 0.02

Opt 1.67 ± 0.02

5

PC 1.38± 0.02
CI 1.57± 0.02
L 1.28 ± 0.02

Opt 1.28 ± 0.02

7

PC 1.22± 0.01
CI 1.32± 0.02
L 1.08 ± 0.01

Opt 1.09 ± 0.01

9

PC 1.13± 0.01
CI 1.20± 0.01
L 0.99 ± 0.01

Opt 0.97 ± 0.01

Table 4.2: The differences in energy resolution. The error is
√

∆σ2
1 + ∆σ2

2, assuming
Gaussian error propagation.

ETRUE [MeV] Methods

1
σCI − σPC 0.56 ± 0.06
σCI − σL 0.60 ± 0.06
σPC − σL 0.01 ± 0.05

3
σCI − σPC 0.30 ± 0.03
σCI − σL 0.33 ± 0.03
σPC − σL 0.02 ± 0.03

5
σCI − σPC 0.20 ± 0.03
σCI − σL 0.29 ± 0.03
σPC − σL 0.09 ± 0.03

7
σCI − σPC 0.10 ± 0.02
σCI − σL 0.24 ± 0.02
σPC − σL 0.14 ± 0.02

9
σCI − σPC 0.06 ± 0.02
σCI − σL 0.22 ± 0.02
σPC − σL 0.16 ± 0.02
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Figure 4.3: The differences of energy resolution values. A positive value of σ1−σ2 indicates
superior resolution with method 2.

The shown ’expected resolution’ is calculated with

σExp =
1√

〈NEM〉 (E)
, (4.1)

with the 〈NEM〉 used in the TMC. This value only considers statistical fluctuation of
〈NEM〉 since σEM =

√
〈NEM〉. Since statistical fluctuation of the resulting PE and the

detection of PE is ignored, it naturally yields the best resolution. The shown ’optimal
resolution’ is calculated with full knowledge on NPE,TRUE. The difference to ’expected
resolution’ therefore displays the influence of the fluctuation of resulting PE at the PMT.
The energy resolution of PC and CI contains additional influences depending on the
detection efficiency. As expected, CI yields the lowest resolution. The shape is extremely
similar to the aforementioned artificial resolutions. This indicates that the detection
efficiency is not energy dependent. This is expected, as overlapping signals do not pose a
problem when summing up the area beneath the pulse waves. This is opposed to PC which
yields a reliable identification of PE at low energies and is thus near ’optimal resolution’.
As the energy increases, the information loss increases and at 9 MeV, σPC → σCI . The
likelihood method improves the energy resolution through the entire energy range. At low
energies, σL ≈ σPC , and at high energies σL ≈ σOpt. The differences of σPC , σCI andσL

are displayed in figure 4.3. The values for these differences are displayed in table 4.2. At 1
MeV, the PC and L yield a σ 0.6% lower than that of CI, which is a relative improvement
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of
σCI − σL
σCI

=
0.6

3.33
≈ 18% . (4.2)

As σCI converges slightly towards σOpt with increasing energy, the absolute difference
to the likelihood method reduces to 0.22% at 9 MeV. With σCI = 1.20%, the relative
improvement is still

σCI − σL
σCI

=
0.22

1.20
≈ 18% . (4.3)

Considering the non ideal curve in figure 4.2, this is just a rough estimate for the im-
provement of the likelihood method compared to charge integration method. As the Peak
Counting is near perfect at low energies, the likelihood method only shows improvement
at higher energies with up to

σPC − σL
σPC

=
0.16

1.13
≈ 14% (4.4)

at 9 MeV.
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4.2 Influence of Charge Distribution

In order to analyse the influence of the charge distribution, the simulation is conducted
with an artificially good charge distribution, shown in figure 4.4. There is no long tail
and no overlapping of mulit-PE spectra. This charge distribution is applied to both
PMT-types, all other parameters are identical to the previous simulation. The resulting
energy estimations can be seen in figure 4.5. One notices the offset of ÊPC . Due to
the artificial charge distributions, the pulse waves have larger, more uniform amplitudes.
This improves the efficiency of the peak finder. As the calibration of ÊPC has not been
altered for this simulation, the offset occurs. The energy resolution can be seen in figure
4.6. One immediately notices the improved performance of the CI method. With the
artificial charge distribution, the N̂PE is near perfect and the CI energy resolution is
near the ’optimal resolution’. The resolution of the likelihood method seems better than
the resolution with full knowledge on NPE,TRUE, however this is due to the maximum of
three PE considered. With the distinct charge distributions and no overlap, the likelihood
method should almost always yield n̂PE = n̂PE,TRUE. Exceptions are the rare cases where
noise causes the measured charge to be just outside of the charge spectra and the likelihood
method yields n̂PE = 0. It also yields 0 in 100% of the cases where more than three PE
were produced, which is a loss of roughly ∼ 5% PE at 9 MeV. Therefore, the offset can
be explained and the consistency of ignoring these multiple hits results in the energy
resolution that is better than ’optimal’. If the likelihood method is equipped with the
ability to identify a higher number of hits, one expects the resolution to be ’optimal’ as
well.
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Figure 4.4: The artificial charge distribution. There is no overlap and the spread is very
small.

Figure 4.5: Energy estimation with artificial charge distribution
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Figure 4.6: Energy Resolution with artificial charge distribution

To analyse the influence of the long tail of the charge distribution, the artificial distribution
is replaced with the original charge distribution, but where the long tail has been cut off.
The resulting spectra are shown in 4.7. The position of the cut was chosen in order to
allow slight overlapping of multi-PE spectra. The results of energy resolution are shown
in figure 4.8 Although the energy resolution of CI method is not ’optimal’ anymore, it is
still better than with the original spectrum. Detailed numbers on the energy resolution
is given in table 4.3 and the differences are given in table 4.4.
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Figure 4.7: The charge spectra Without the long tail

Figure 4.8: Energy eesolution with cut off charge distribution
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Table 4.3: σCI with different charge distributions

ETRUE [MeV] Charge Distribution
Original Cut Off Artificial

1 3.33 ± 0.04 2.90 ± 0.06 2.72 ± 0.03
3 2.05 ± 0.02 1.74 ± 0.03 1.64 ± 0.02
5 1.57 ± 0.02 1.37 ± 0.03 1.27 ± 0.02
7 1.32 ± 0.02 1.19 ± 0.02 1.09 ± 0.01
9 1.20 ± 0.01 1.00 ± 0.02 0.97 ± 0.01

Table 4.4: The difference of σCI with different charge distributions

ETRUE [MeV] Charge Distribution
Original - Cut Off Original - Artificial Cut Off - Artificial

1 0.43 ± 0.07 0.61 ± 0.05 0.18 ± 0.07
3 0.31 ± 0.04 0.41 ± 0.03 0.11 ± 0.04
5 0.20 ± 0.03 0.30 ± 0.03 0.10 ± 0.03
7 0.13 ± 0.03 0.23 ± 0.02 0.10 ± 0.02
9 0.20 ± 0.03 0.22 ± 0.02 0.02 ± 0.02

The results indicate, that the major influence on the bad energy resolution with the CI-
method is in fact the elongated tail of the charge distribution. Removing the tail yields
an improved resolution at ∼ 0.4 % less than with tail at 1 MeV, a relative improvement
of

σCI,Original − σCI,CutOff

σCI,Original

=
0.43

3.33
≈ 13 % . (4.5)

Although the cut off charge spectrum is still broad and the multi-PE spectra overlap
slightly, σCI,CutOff yields nearly optimal resolution at 9 MeV. The same distribution with
the tail decreases the energy resolution by 0.2%, which is roughly

σCI,Original − σCI,CutOff

σCI,Original

=
0.20

1.20
≈ 17 % . (4.6)
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5 Conclusion

The TMC was able to yield insights to the influence of the PMT charge spectrum on the
energy resolution as well as classify the performance of the likelihood method. Conducting
analysis with the TMC was a good choice, as control over key aspects of the JUNO detector
that influence the energy resolution was given. It also allowed to simulate JUNO in a
basic setup which proved helpful for analysis of the given problems.

The overall expected energy resolution at JUNO was recreated and conclusive patterns
were observed. Energy recreation by Charge Integration yielded the overall worst energy
resolution with an almost constant difference to the optimal resolution, which is obtained
with the true number of PE, since the detection efficiency of Charge Integration is not
energy dependent. In contrary to Peak Counting, which is near optimal at 1 MeV and
near Charge Integration energy resolution at 9 MeV as it fails to identify every PE when
a high number of PE is present.

The likelihood method, which combines the charge at every PMT, a first energy estimation
by Peak Counting and knowledge on the detecting efficiency, yielded near optimal energy
resolution throughout the simulation.

Testing the simulation with alternatice charge spectra indicated that the long tail of
the charge spectrum, which is especially large for the majority of PMTs, is the main
contributer to the bad energy resolution of the Charge Integration method. This was
seen as the same charge distributions with the tail cut off yielded a signicantly better
performance.

Pulse shape analysis could be the next step in order to minimize the poor detection
efficiency of Charge Integration and of Peak Counting at high energies. If a correlation of
shape of the pulse and the large tail can be found, pulse analysis can help to distinguish
a large pulse from a single PE from overlapping signals of two or more PE.

The likelihood method can further be improved, for example if probability based on time
distribution is added to the calculation. This would especially be interesting if effects
such as dark current, pre- and after-pulse and the influence of photon scattering on the
time distribution is implemented.
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