Tracking in large Volume Liquid Scintillator Detectors

Applied to LENA

Björn Wonsak

Universität Hamburg

LENA Detector Layout

Liquid Scintillator: ~69 kton LAB

Concrete tank: r=16 m, h=100 m

32000 12" PMTs light concentrators → 30% optical coverage

Active volume: ~50 kton

Motivation for Tracking

High energy:

NC-background in v_e appearance experiments \rightarrow Is it possible to identify the π_0 ?

Motivation for Tracking

Low energy:

My Basic Idea

Assumption:

- One known reference-point (in space & time)
- Almost straight tracks
- Particle has speed of light

Concept:

• Take this point as reference for all signal times

The Drop-like Shape

Signal time = particle tof + photon tof

The Drop-like Shape

ct = $|VX| + n^*|XP| \rightarrow drop-like form$

The Drop-like Shape

ct = $|VX| + n^*|XP| \rightarrow drop-like form$

Time Distribution

Convolution of Gaus and Exponential-Function

Time Distribution

Convolution of Gaus and Exponential-Function

Result 1 PMT

Result a Few PMTs

Result 266 PMTs

Light Distribution (LD) Effects

Some parts of each drop-like shape are more likely the origin of light, because:

- they are closer
- directly in front of the PMT

\rightarrow Need to consider:

- solid angle of PMT area
- attenuation
- angular acceptance

Light Distribution (LD) Effects

Some parts of each drop-like shape are more likely the origin of light, because:

- they are closer
- directly in front of the PMT

\rightarrow Need to consider:

- solid angle of PMT area
- attenuation
- angular acceptance

Finally I have to normalise the resulting pdf !

Result all PMTs

Probability Mask

So far probabilities have been added! \rightarrow correct for **independent information**

However:

Light signals are **not completely independent** from each other, because they belong to the same track.

 \rightarrow Use "Result I" to **weight** all the single light contribution and re-normalise each of them!

Result I

Result 2nd Iteration

Result 3rd Iteration

Result 9th Iteration

Result 12th Iteration

Measurement of dE/dx is possible!

Image Processing

Computing

One 3 GeV event, 20cm bins, full light, 10 iterations in LENA \rightarrow **several hours,** even if I cut out interesting volume

However:

- I'd like to go to 2cm bins
 - because there should be enough light for this resolution
- In principle many more iterations are allowed

But algorithm highly parallisable \rightarrow GPUs, etc.

Example: Real Borexino Data

Can also do it with Cherenkov Light

3 GeV muon, initial direction (1,-1,0)

Bachelor student David Meyhöfer

A few % of light in liquid Scintillator is Cherenkov light

 \rightarrow using both could help pattern and partical identification

Also suitable for water Cherenkov detectors! Perfect for WbLS!

But what about the reference point?

Answer: Any point on track can be used if I know the time the particle passing!

2GeV Muon, First Hit Information

• Vertex (-500.,0.,0.), Orientation (1.,1.,0.)

2GeV Muon, First Hit, Backwards

• Vertex (-500.,0.,0.), Orientation (1.,1.,0.)

2GeV Muon, First Hit, from Middle

• Vertex (-500.,0.,0.), Orientation (1.,1.,0.)

2GeV Muon, First Hit, Back from Middle

• Vertex (-500.,0.,0.), Orientation (1.,1.,0.)

2GeV Muon, First Hit, Back from Middle

• Vertex (-500.,0.,0.), Orientation (1.,1.,0.)

So if I have an outer detector and a particle leaves the LS volume I will have a starting point!

Vertex Finding/Backtracking

Basic idea:

from Domenikus Hellgartner

- Calculate at every point the time correction needed for each first hit signal to match the flight time to that point
- Then look for peaks in this time distribution

Vertex Reconstruction I

Uses first hit time of each PMT and gaussian time distribution

How to improve Backtracking

Some regions on track do not produce many 'first hits'

 \rightarrow Need to look more closely at timing patter (tof corrected)

 \rightarrow whole track

Stopped Muon in Borexino

Double Muon Event in Borexino

Double Muon Event in Borexino

Both tracks cut out!

Conclusions

My Tracking:

- Powerful new tool to increase physics potential
- At both high and low energies
- Wide range of applications Liquid Scintillator, Water Cherenkov, Water based Liquid Scintillator, even Liquid Argon

Performance:

- Spatial resolution of less than 20cm
- dE/dx accessible

Conclusions

Limitations:

- Only limited study of more complicated events so far
- Reference point is crucial
 already solved
- Need more **computing power** for:
 - finer binning/resolution
 - more iterations
 - faster simulation

However its just getting started!

A generic reconstruction framework already on the way

Needs to be reprogrammed for GPUs

Backup slides

The power of the 4th dimension

4d Canny Algorithm

The Reco Result (266 PMTs)

4d-Sobel Result

Reco Result divided by 4d-Sobel

Minima of 4d-Sobel

Result after Follow-up

Some early examples with different particles

465 MeV π_0

• Vertex (0.,0.,0.), Orientation (-1.,0.,0.)

465 MeV π_{0}

• Vertex (0.,0.,0.), Orientation (-1.,0.,0.)

Muon 800 MeV

• Vertex (200.,100.,0.), Orientation (-1.,-1.,0.)

2 Muons with 750 MeV each

• Vertex (300.,0.,0.), Orientation +-45°

Resultat: 500 MeV Electron

• Vertex (0.,0.,0.), Orientation (-1.,0.,0.)

465 MeV π_0

• Vertex (0.,0.,0.), Orientation (-1.,0.,0.)

Muon 800 MeV

• Vertex (200.,100.,0.), Orientation (-1.,-1.,0.)

2 Muons with 750 MeV each

• Vertex (300.,0.,0.), Orientation +-45°

23/09/14

Event Signature for Tracking

