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Motivations
• General one: Cosmology is nowadays the main viable source for experimental data

related to QFT on curved backgrounds, but... many models, a lot of folk results, few

mathematically sound statements.

• Particular one: It was recently shown that it is possible to encode the information of

a bulk field theory in terms of a suitable counterpart living on the boundary; this

holds both in AdSa and in asymptotically flat spacetimesb.

A proposal:

1. What about cosmological spacetimes considering the cosmological horizon as a

boundary? Is it feasible?

2. Has the cosmological horizon geometric properties similar to those of null infinity in

an asymp. flat spacetime?

3. Does it exists also in this scenario a distinguished algebraic state as in the asymp.

flat case?

aK. H. Rehren, Annales Henri Poincaré 1 (2000) 607,

M. Dütsch and K. H. Rehren, Annales Henri Poincaré 4 (2003) 613.
bC. D., V. Moretti and N. Pinamonti: Rev. Math. Phys. 18 (2006), 346



Outline of the talk

1. Looking at the Geometry of the Problem: The distinguished role of the cosmological

horizon

2. Looking at the Field Theoretical Side of the Problem: a real scalar QFT on FRW

spacetimes and the counterpart on the horizon, i.e., shades of a bulk-to-boundary

correspondence.



Glimpses of Asymptotic Flatness

What is an asymptotically flat spacetime? Why is interesting?

A 4D manifold M with a metric g solving Einstein vacuum equations is called

asymptotically flat with past timelike infinity at null infinity =−, if it exists a second

manifold (M̂, ĝ), an embedding λ : M → M̂ , a preferred point i− ∈ M̂ and a conformal

factor Ω ≥ 0 such that

1. Ω2gµν = λ∗(ĝµν) in M ,

2. λ(M) = J+(i−) \ ∂J+(i−) and ∂(λ(M)) = =− ∪ i−,

3. Ω ∈ C∞(M̂) and Ω = 0 on =− ∪ i− ,

4. dΩ 6= 0 on =− ∪ i− but ∇̂µ∇̂νΩ = −2ĝµν on i−,

5. other technical requirements.

N.B. =− plays the role of a preferred codimension one submanifold of a bulk field theory.

For a real massless scalar field conformally coupled to scalar curvature, this entails the

selection of a preferred bulk Hadamard state etc. etc. etc...



Geometrical Setup

First hypothesis: Cosmological Principle =⇒

gFRW = −dt2 + a2(t)

[
dr2

1− kr2
+ r2dS2(θ, ϕ)

]
, M ∼ I ×X3

where k = 0, 1,−1 and a(t) ∈ C∞(I, R+), being I ⊂ R.

Important properties:

• Consider a co-moving observer as the integral line γ(t) of ∂t. If M \ J−(γ) 6= ∅, then

causal signal departing from each x ∈M \ J−(γ) never reach γ(t). Then we call

∂J−(γ) the (future) cosmological horizon,

• if one introduces the conformal time dτ = dt
a(t)

and rescales the metric as

gFRW = a2(τ)

[
−dτ2 +

dr2

1− kr2
+ r2dS2(θ, ϕ)

]
,

then τ ranges in (α, β) ⊂ R. Sufficient condition for the existence of an horizon is

α > −∞ and/or β <∞.



Second hypothesis: Let us consider a FRW spacetime with k = 0 and M ∼ I × R3.

Third hypothesis: a(τ) = γ
τ

+O( 1
τ2 ) with I = (−∞, 0) and γ < 0 or I = (0,∞) and

γ > 0. Note that:

a(τ) =
γ

τ
=⇒ a(t) = a(t) e

− t−t
γ .

Theorem: Under the previous assumptions the spacetime (M, gFRW ) can be extended to

a larger spacetime (M̂, ĝ) which is a conformal completion of the asymptotically flat

spacetime at past (or future) null infinity (M,a−2gFRW ), i.e., “a” plays the role of the

conformal factor.

The manifold M ∪ =± enjoys:

1. the vector ∂τ becomes tangent to =± approaching it and coincides with −γ∇̂ba,

2. the metric restricted on =± takes a Bondi-like form ĝ|=± = γ2
[
−2dlda+ dS2(θ, ϕ)

]



Cosmological horizon: general notion

A globally hyperbolic spacetime (M, g) equipped with Ω ∈ C∞(M,R+) and with a

future-oriented timelike vector X on M is called an expanding Universe with

cosmological past horizon if:

1. (M, g) can be isometrically embedded as the interior of a submanifold with boundary

(M̂, ĝ) such that =− = ∂M and =− ∩ J+(M, M̂) = ∅,

2. Ω can be made smooth on M̂ and Ω|=− = 0, but dΩ|=− 6= 0,

3. X is a conformal Killing field on ĝ in a neighborhood of =− in M with

LX(ĝ) = −2X(ln Ω)ĝ,

4. =− ∼ R× S2 and the metric ĝ|=− takes in a suitable frame the form

ĝ = γ2
[
−2dldΩ + dS2(θ, ϕ)

]
.

N.B.

• =− is a null 3−submanifold and the curves l 7→ (l, θ, ϕ) are null ĝ−geodesics.



On the role of X and of bulk isometries

Question 1: What X teaches us?

X projects on =− to X̃ which has the form f(θ, ϕ)∂l when we represent =− as R× S2 and

f is smooth and nonnegative.

Consequence: In a FRW universe f = 1. Therefore a non constant f is a measure of the

failure of (M, g) to be isotropic!

Question 2: How are isometries of g and of ĝ encoded on the horizon?

Consider an expanding Universe with cosmological horizon and Y a Killing field of

(M, g), then

a) Y extends to a smooth vector field of Ŷ on M̂ ,

b) L
Ŷ
ĝ = 0 on M ∪ =−,

c) Ỹ = Ŷ |=− is uniquely determined by Y and it is tangent to/preserves =− iff

lim=− g(Y,X) = 0



The group SG=− of isometries of the horizon

What is the group of all isometries preserving the horizon structure?

Definition: The horizon symmetry group SG=− is the set of all diffeomorphisms of R× S2

such that, given a Bondi-like frame (l, z, z̄)

z −→ z′ = R(z) R ∈ SO(3)

l −→ l′
.
= ef(z,z̄)l + g(z, z̄),

where g(z, z̄) and f(z, z̄) lie in C∞(S2).

The composition law between two elements of SG=− is

(R, f, g)(R′, f ′, g′) = (RR′, f ′ + f ◦R, ef◦R′g′ + g ◦R′).

The horizon symmetry group has the structure of an iterated semidirect product:

SG=− = SO(3) n (C∞(S2) o C∞(S2)).

Goal: Construct a SG=− invariant (real scalar) field theory on =−!



Field Theory on the Horizon

Prequel: The bulk

N.B. Since (M, g) is globally hyperbolic, Cauchy problems are meaningful.

Proposition: Consider φ : M → R

(
� + ξR+m2

)
φ = 0 ξ ∈ R, m2 > 0

• φ ∈ C∞(M) with compactly supported Cauchy data

• The set of solutions S(M) of our equation is a symplectic space if endowed with

σ(φ1, φ2)
.
=

∫
S

(φ1∇Nφ2 − φ2∇Nφ1) dµ
(S)
g

• A Weyl C∗-algebra W(M) can be associated to (S(M), σ). This is unique, up to

∗-isomorphisms,and its non vanishing generators WM(φ) satisfy:

WM(−φ) = WM(φ)∗, WM(φ)WM(φ′) = e
i
2
σ(φ,φ′)WM(φ+ φ′),



Part I: The boundary

What is the space of wavefunctions on the horizon?

Def: The space of real wavefunctions is

S(=−) =
{
ψ : =− → R | ψ and ∂lψ ∈ L2

(
R× S2, dldS2(z, z̄)

)}
.

N.B.: S(=−) is a symplectic space if endowed with σ′ : S(=−)× S(=−)→ R such that

σ′(ψ1, ψ2) =

∫
R×S2

(
ψ1
∂ψ2

∂l
− ψ2

∂ψ1

∂l

)
dldS2(z, z̄)),

on which the left action of g ∈ SG=− acts as a symplectomorphism, i.e.,

• L(g)ψ(x)
.
= ψ(g−1x) ∈ SG=− iff ψ(x) ∈ S(=−),

• σ′(L(g)ψ,L(g)ψ′) = σ′(ψ,ψ′), ∀ψ,ψ′ ∈ S(=−)

Consequence: We can associate a Weyl C∗-algebra W(=−) to (S(=−), σ′) as well as:

αg (W (ψ))
.
= W (L(g)ψ), ∀W (ψ) ∈ W(=−), ∀g ∈ SG=−



Part II: The state

We can introduce a distinguished state λ :W(=−)→ C unambiguously defined as

λ (W (ψ)) = e−
µ(ψ,ψ)

2 , ∀W (ψ) ∈ W(=−)

where ∀ψ,ψ′ ∈ S(=−)

µ(ψ,ψ′) =

∫
R×S2

2kΘ(k)ψ̂(k, θ, ϕ)ψ̂′(k, θ, ϕ)dkdS2(θ, ϕ),

being ψ(k), ψ′(k) the Fourier-Plancherel transform

ψ(k) =

∫
R

dl
eikl
√

2π
ψ(l, θ, ϕ).

The state λ enjoys the following (almost straightforward) properties:

• it is quasifree and pure,

• referring to its GNS triple (H,Π,Υ) it is invariant under the left action of SG=− .



Furthermore for any timelike future directed vector field Y whose projection on the

horizon is Ỹ :

• The unitary group U Ỹ
t which implements α

exp(tỸ )
leaving fixed the cyclic GNS vector

is strongly continuous with nonnegative self-adjoint generator

H Ỹ = −i
dU Ỹ

t

dt

∣∣∣∣∣
t=0

,

• if Ỹ = ∂l, then λ is the unique quasifree pure state on W(=−) which is invariant

under αexp(t∂l),

• Each folium of states on W(=−) contains at most one pure state which is invariant

under αexp(t∂l).



Part III: Bulk to Boundary Interplay

Notice: each element φ ∈ S(M) can be extended to a unique smooth solution of the same

equation on the whole M̂ and, hence, Γφ
.
= φ|=− ∈ C∞(=−).

Hypothesis: Suppose that each element φ ∈ S(M)

• projects/can be restricted to =− to an element Γφ ∈ S(=−),

• the projection/restriction preserves symplectic forms, i.e., for any φ1, φ2 ∈ S(M):

σ(φ1, φ2) = γ2σ′(Γφ1,Γφ2),

then it exists an isometric ∗-homomorphism i :W(M)→W(=−)

i(WM(φ))
.
= W (Γφ) ∀φ ∈ W(M).

In other words we see the bulk algebra a sub ∗-algebra of the boundary counterpart.



The injection map between algebras allows to pull-back states!

Big Statement: The distinguished state λ in the boundary identifies a bulk state λM as

λM(a) = λ(i(a)). ∀a ∈ W(M).

Furthermore λM enjoys some interesting properties:

• it is invariant under the natural action of any bulk isometry Y on the algebra. The

one-parameter UY
t group implementing such an action leaves fixed the cyclic vector

in the GNS representation of λM ,

• if Y is everywhere timelike and future-directed in M then the 1-parameter group UY
t

has positive self-adjoint operator,



Conclusions

• Do our hypotheses hold on all the backgrounds we considered?

• Can we prove that the bulk state is Hadamard?

• Can we recast the construction for a scalar field interacting with a non constant

potential V (φ)? This could provide useful insights on cosmological theoriesa.

aSee also: C. D., Klaus Fredenhagen & Nicola Pinamonti: Phys. Rev. D. 77 (2008) 104015


