EUCLIDEAN EPSTEIN-GLASER RENORMALIZATION

Kai J. Keller

- II. Institute for Theoretical Physics, Hamburg University
- Part of PhD thesis under supervision of K. Fredenhagen -

Göttingen, 31 January 2009

MOTIVATION

perturbative Quantum field theory (pQFT):

$$S(V) = \exp_T(V) = \sum_{n=0}^{\infty} \frac{1}{n!} V \cdot_T \cdots \cdot_T V = \sum_{n=0}^{\infty} \frac{1}{n!} S^{(n)}(V^{\otimes n}).$$

Transition probabilities in collisions of elementary particles.

- BUT: $\operatorname{supp}(F) \cap \operatorname{supp}(G) \neq \emptyset \Rightarrow F \cdot_T G$ ill-defined.
- Epstein-Glaser renormalization: One way to give sense to $V \cdot_T V$ (at least for local interaction functionals V).
- Other renormalization schemes like BPHZ or DimReg+MS, are often performed in spaces of Euclidean signature.
- Motivation for Euclidean EG: Connection to other schemes.

OVERVIEW

- 1 REVIEW: EG IN MINKOWSKI SPACETIME (PAQFT)
- 2 Epstein-Glaser in Euclidean space

3 Summary and Outlook

THE WAVE FRONT SET

 $u: \mathscr{D}(\mathbb{R}^n) \to \mathbb{C}$: distribution.

SINGULAR SUPPORT

$$\operatorname{singsupp}(u) := \left\{ x \in \mathbb{R}^n : \, \nexists \mathcal{U}_x \ni x : \, u \big|_{\mathcal{U}_x} \in C^{\infty}(\mathcal{U}_x) \right\}$$

WAVE FRONT SET

$$\mathrm{WF}(u) = \left\{ (x,k) \in \dot{T}^*\mathbb{R}^n : x \in \mathrm{singsupp}(u), \quad \begin{array}{l} \forall f : \text{ Fourier transform } \widehat{fu} \text{ does} \\ \textit{not decay rapidly in direction } k \end{array} \right\}$$

MICROLOCAL ANALYSIS $u, v \in \mathcal{E}'(\mathbb{R}^n)$, D: differential operator

$$WF(Du) \subset WF(u) \subset WF(Du) \cup Char(D)$$

$$0 \notin \mathrm{WF}(u) \oplus \mathrm{WF}(v) \qquad \Rightarrow \qquad \exists ! \ u \cdot v \in \mathscr{E}'(\mathbb{R}^n).$$

PAQFT: THE ALGEBRA OF OBSERVABLES QUANTUM PRODUCT [BRUNETTI, DÜTSCH, FREDENHAGEN, ... 1996-2009]

$$\mathcal{F}(\mathbb{M}) := \left\{ F : \mathscr{E}(\mathbb{M}) o \mathbb{C} : F^{(n)}(arphi) \in \mathscr{E}'(\mathbb{M}^n), \ \left[\operatorname{WF}(F^{(n)}(arphi))
ight]_2 \cap \left(\overline{V_-}^n \cup \overline{V_+}^n
ight) = \emptyset
ight\}$$

- contains field monomials: $F(\varphi) = \frac{1}{k!} \int dx (\varphi(x))^k f(x), f \in \mathcal{D}(\mathbb{M})$
- local interactions are a subset $\mathcal{F}_{\mathrm{loc}}(\mathbb{M}) \subset \mathcal{F}(\mathbb{M})$.

QUANTUM PRODUCT ON $\mathcal{F}(\mathbb{M})[[\hbar]]$

$$F \star_{\hbar} G = \sum_{k=0}^{\infty} \frac{\hbar^k}{k!} \left\langle F^{(n)}, \, \Delta_+^{\otimes n} G^{(n)} \right\rangle$$

 Δ_+ : positive frequency part of causal propagator $\Delta=\Delta_{\rm ret}-\Delta_{\rm adv}.$

$$\left(\Box+m^2\right)\Delta_+=0$$

• $F \star_{\hbar} G$ well-defined (as formal power series in \hbar).

PAQFT: THE TIME ORDERED PRODUCT

RENORMALIZATION PROBLEM

TIME ORDERING OPERATOR

$$T:=\exp\left(\hbar\Gamma_{\Delta_F}
ight)\,,\quad \Gamma_{\Delta_F}:=rac{1}{2}\int dx\,dy\,\Delta_F(x-y)\,rac{\delta^2}{\deltaarphi(x)\,\deltaarphi(y)}$$

INDUCED PRODUCT:

$$\mathcal{F}(\mathbb{M})[[\hbar]]^{\otimes 2} \xrightarrow{T^{\otimes 2}} \mathcal{F}(\mathbb{M})[[\hbar]]^{\otimes 2}$$

$$\downarrow M \qquad \# \qquad \downarrow \cdot_{T} \qquad F \cdot_{T} G = \sum_{n=0}^{\infty} \frac{\hbar^{n}}{n!} \left\langle F^{(n)}, \Delta_{F}^{\otimes n} G^{(n)} \right\rangle$$

$$\mathcal{F}(\mathbb{M})[[\hbar]] \xrightarrow{T} \mathcal{F}(\mathbb{M})[[\hbar]]$$

$$\bullet \ \ \, \left(\Box + m^2\right) \Delta_F = i\delta \right] \qquad \Rightarrow \qquad \mathrm{WF}(\delta) \subset \mathrm{WF}(\Delta_F)$$

• $F \cdot_T G$ ill-defined if $supp(F) \cap supp(G) \neq \emptyset$

PAQFT: Epstein-Glaser "in a nutshell"

Causality $\operatorname{supp}(F)$ "later than" $\operatorname{supp}(G) \Rightarrow F \cdot_T G = F \star_\hbar G$.

EPSTEIN-GLASER-INDUCTION
$$F_1, \ldots, F_n \in \mathcal{F}_{loc}(\mathbb{M})[[\hbar]]$$
, then $S^{(n)}(F_1 \otimes \cdots F_n)$ can be defined up to $\mathrm{Diag}(\mathbb{M}^n)$.

Scaling degree Let $t \in \mathscr{D}'(\mathbb{R}^d)$, then

$$\mathrm{sd}(t) := \inf \left\{ \omega \in \mathbb{R} : \lim_{\lambda \searrow 0} \lambda^{\omega} t_{\lambda} = 0 \right\} \,, \quad t_{\lambda}(f) = \int_{\mathbb{R}^d} t(\lambda x) \, f(x) \, dx$$

THEOREM (BRUNETTI, FREDENHAGEN 2000)

 $t_0 \in \mathscr{D}'(\mathbb{R}^d \setminus \{0\})$ with scaling degree $\operatorname{sd}(t_0)$ w.r.t. the origin,

- $\operatorname{sd}(t_0) < d \Rightarrow \exists !$ extension $t \in \mathscr{D}'(\mathbb{R}^d)$ of $t_0 : \operatorname{sd}(t) = \operatorname{sd}(t_0)$.
- $\operatorname{sd}(t_0) \ge d \Rightarrow \exists$ extensions $t \in \mathscr{D}'(\mathbb{R}^d)$ of t_0 : $\operatorname{sd}(t) = \operatorname{sd}(t_0)$, uniquely defined by values on a finite set of test functions.

EUCLIDEAN FRAMEWORK WHAT IS GAINED / LOST?

"Wick rotation"
$$(x_0, x_1, x_2, x_3) \mapsto (e_1, e_2, e_3, e_4) = (ix_0, x_1, x_2, x_3),$$

$$x_0^2 - x_1^2 - x_2^2 - x_3^2 \mapsto -(e_1^2 + e_2^2 + e_3^2 + e_4^2)$$

$$\Box + m^2 \mapsto -\Delta + m^2$$

- ⊕ Calculations become easier: absolutely convergent integrals, ...
- ⊖ Causal structure is completely lost
 - Helmholtz operator $(-\Delta + m^2)$ is elliptic, hence it has a unique fundamental solution P:

$$(-\Delta + m^2) P = \delta \implies WF(P) = WF(\delta)$$

⇒ Euclidean Epstein-Glaser recursion needs to be performed with only one fundamental solution, i.e. one product, which is generally ill-defined.

PARTIAL ALGEBRA OF FUNCTIONALS

Euclidean Time Ordered Product

$$\mathcal{F}(\mathbb{E}) = \left\{ F : \mathscr{E}(\mathbb{E}) \to \mathbb{C} : \forall n \in \mathbb{N} : F^{(n)}(\varphi) \in \mathscr{E}'(\mathbb{E}^n) \right\}$$

EUCLIDEAN T_F -OPERATOR

$$T_E = \exp(\hbar\Gamma_P), \qquad \Gamma_P = \int dx \, dy \, P(x-y) \, \frac{\delta^2}{\delta\varphi(x) \, \delta\varphi(y)}$$

INDUCED PRODUCT

$$\begin{array}{ccc} \mathcal{F}(\mathbb{E})[[\hbar]]^{\otimes 2} & \xrightarrow{T_{E}^{\otimes 2}} \mathcal{F}(\mathbb{E})[[\hbar]]^{\otimes 2} \\ & & & & & & \\ M \downarrow & \# & & \downarrow_{-E} & & F \cdot_{E}G = \sum_{n=0}^{\infty} \frac{\hbar^{n}}{n!} \left\langle F^{(n)}, P^{\otimes n}G^{(n)} \right\rangle \\ & & & & & & \\ \mathcal{F}(\mathbb{E})[[\hbar]] & \xrightarrow{T_{E}} & \mathcal{F}(\mathbb{E})[[\hbar]] \end{array}$$

$$\overline{\mathrm{WF}(P) = \mathrm{WF}(\delta)} \quad \Rightarrow \quad F \cdot_E G \text{ ill-defined if } \mathrm{supp}(F) \cap \mathrm{supp}(G) \neq \emptyset$$

PARTIAL ALGEBRA OF FUNCTIONALS THE PARTIAL ALGEBRA

LEMMA (PARTIAL ALGEBRA OF FUNCTIONALS)

 $(\mathcal{F}(\mathbb{E})[[\hbar]], \cdot_E)$ is an associative, commutative partial algebra, i.e.

- $F \cdot_E G$ is well-defined if $supp(F) \cap supp(G) = \emptyset$,
- the product is associative and commutative, if defined.

Sketch of Proof

- Well-definedness already discussed.
- Commutativity readily follows from symmetry of P(x y).
- Associativity. $F, G, H \in \mathcal{F}(\mathbb{E})$ with pairwise disjoint supports. Calculate:

$$F \cdot_E (G \cdot_E H) = (F \cdot_E G) \cdot_E H$$
.

EUCLIDEAN EPSTEIN-GLASER RECURSION EUCLIDEAN CAUSALITY

• Associativity of \cdot_E gives sense to notion of *n*-fold products

$$E_n(F_1 \otimes \cdots \otimes F_n) := F_1 \cdot_E \cdots \cdot_E F_n$$
, $\forall i, j : \operatorname{supp}(F_i) \cap \operatorname{supp}(F_i) = \emptyset$

CONDITION (EUCLIDEAN CAUSALITY)

Let $I\subset\{1,\ldots,k\}$ with complement $I^c\neq\emptyset$, $F_1,\ldots,F_k\in\mathcal{F}_{\mathrm{loc}}(\mathbb{E})$. If then

$$\forall i \in I, j \in I^c : \operatorname{supp}(F_i) \cap \operatorname{supp}(F_j) = \emptyset$$

it should follow that

$$E_k(F_1 \otimes \cdots \otimes F_k) = E_{|I|}(\bigotimes_{i \in I} F_i) \cdot_E E_{|I^c|}(\bigotimes_{i \in I^c} F_j)$$

EUCLIDEAN EPSTEIN-GLASER RECURSION INDUCTION PROCEDURE UP TO THIN DIAGONAL

INDUCTION BASIS For $F, G \in \mathcal{F}_{loc}(\mathbb{E})[[\hbar]]$ let

$$E_0(F) = 1$$
, $E_1(F) = F$, $E_2(F \otimes G) = F \cdot_E G$.

INDUCTION HYPOTHESIS Let $\forall k < n$ the maps E_k

- ullet be well-defined on the whole \mathbb{E}^k
- be symmetric
- fulfill Euclidean causality.

LEMMA

Let E_k fulfill the induction hypothesis $\forall k < n$, then the n-fold time-ordered product E_n is uniquely defined for all functionals $\sum F_1 \otimes \cdots \otimes F_n \in \mathcal{F}(\mathbb{E})[[\hbar]]$ with

$$\operatorname{supp}\left(\sum F_1\otimes\cdots\otimes F_n\right)\cap\operatorname{Diag}(\mathbb{E}^n)=\emptyset\,.$$

• Apply theorem on the extension of distributions.

EUCLIDEAN EPSTEIN-GLASER RECURSION INDUCTION PROCEDURE UP TO THIN DIAGONAL

Sketch of Proof (follows [Brunetti, Fredenhagen 2000])

• Define cover $\{U_I\}_{I\in\mathcal{I}}$ of $\mathbb{E}^n\backslash \mathrm{Diag}(\mathbb{E}^n)$ consisting of open sets

$$U_I := \{(e_1, \ldots, e_n) \in \mathbb{E}^n \backslash \mathrm{Diag}(\mathbb{E}^n) : e_i \neq e_j \, \forall i \in I, j \in I^c\}$$

• On U_I define

$$E_n^I(F_1 \otimes \cdots \otimes F_n) := E_{|I|}(\bigotimes_{i \in I} F_i) \cdot_E E_{|I^c|}(\bigotimes_{j \in I^c} F_j).$$

They have the sheaf property: $E_n^I \big|_{U_I \cap U_J} = E_n^J \big|_{U_I \cap U_J}$

• Take partition of unity $\{\alpha_I\}_{I\in\mathcal{I}}$ subordinate to $\{U_I\}_{I\in\mathcal{I}}$ and set

$$E_n(F_1 \otimes \cdots \otimes F_n) := \sum_{I \in \mathcal{T}} (\alpha_I E_n^I) (F_1 \otimes \cdots \otimes F_n)$$

EXTENSION TO THE WHOLE SPACE EXAMPLE

$$F^{(5)} \qquad F(\varphi) = \frac{1}{5!} \int \varphi(x)^5 f(x) dx$$

$$G(\varphi) = \frac{1}{4!} \int \varphi(x)^4 g(x) dx$$

$$H^{(3)} \qquad H(\varphi) = \frac{1}{3!} \int \varphi(x)^3 h(x) dx$$

The corresponding unrenormalized amplitude is given by:

$$\int_{\mathbb{R}^3} dx \, dy \, dz \, (P(x-y))^3 \, (P(x-z))^2 \, P(y-z) \, f(x) \, g(y) \, h(z)$$

You are kindly invited to focus your attention to the blackboard.

SUMMARY AND OUTLOOK

- Epstein-Glaser renormalization can be performed on Euclidean space, without the \star_{\hbar} -product structure.
- Leads to a purely algebraic construction of the Schwinger functions of EQFT.

OPEN QUESTIONS

- Can the renormalized time ordered product ·_{Tren} be defined directly as a full product on the algebra F(M)[[ħ]]?
 - properties? particularly: associativity.
- Relation of Epstein-Glaser to other schemes, to the BPHZ scheme in particular.
 - combinatorics well understood.
 - BPHZ seemingly subtracts more terms.
 - checked in examples: additional subtractions cancel among each other. (independently: [Scheck, Häußling, Falk 2009])
 ...to be proven in general.