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Outline of the Talk

Motivations, i.e., trivia about cosmological models,

On the geometry of the background and on the cosmological horizon,

On the underlying field theory: form the bulk to the horizon,

Constructing distinguished states,

On the Hadamard property of these distinguished states.

Based on

C. D., Nicola Pinamonti, V. Moretti: Comm. Math. Phys. 285 (2009)
1129

C. D., Nicola Pianmonti, V. Moretti: 0812.4033 [gr-qc] to appear on JMP
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Playground

In the last 100 years and, hopefully, in the last talk we learned:

1) Interactions between matter consituents −→ QFT on flat spacetime...

2) “except” the gravitational one −→ General Relativity,

3) Algebraic Quantum Field Theory, −→ is the natural tool to formulate QFT
on curved backgrounds −→ first step towards a true Quantum Gravity.

Natural playground −→ Cosmology

unveils the structure and dynamics of the Universe,

we can fully use QFT on curved background in the algebraic approach.
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The Cosmological Principle and FRW - I

We wish to model the geometry of the Universe!

Occam’s razor leads to the Cosmological principle, i.e.,

spacetime is homogeneous → at each instant of time, all space points
look the same,

This means that ∃Σt ∈ (M, gµν) with t ∈ R such that M ∼ Σt × R and
∀p, q ∈ Σt , one can found an isometry Ψ of gµν such that Ψ(p) = q.

spacetime is isotropic → there is at each point an observer who sees an
isotropic Universe.

This means that ∃ a congruence of timelike curves (a.k.a., observers) filling M
and with tangent vectors ζµ such that, for every pair sµ1 , sµ2 at a point p ∈ M

such that gµνζµsiν = 0, it exists an isometry eΨ, such that eΨ(p) = p andeΨ∗ζ
µ
1 = ζµ2

ds2 = −dt2 + a2(t)

»
dr 2

1 + kr 2
+ r 2(dθ2 + sin2 θdϕ2)

–
.
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The Cosmological Principle and FRW - II

A direct inspection of

ds2 = −dt2 + a2(t)

»
dr 2

1 + kr 2
+ r 2(dθ2 + sin2 θdϕ2)

–
,

shows that the metric is almost fully determined

except the parameter k = 0,±1 which fixes the topology spatial section:
flat planes, spheres or hyperboloids,

there is still no dynamical content. This determines a(t) and, to this
avail, one needs to choose Tµν , to solve

Rµν −
R

2
gµν + Λgµν = 8πTµν .
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The Cosmological Principle and FRW - III

Which Tµν? Let us start with classical matter

We know:

part of mass-energy in the Universe is ordinary matter (stars, galaxies,
clusters),

their density is so low that they appear like “dust” with density ρ. Hence

Tµν = ρζµζν , ζµζµ = 1

if we also include a contribution from pressure, then

Tµν = ρζµζν + P (gµν + ζµζν) ,

which is the stress-energy tensor of a perfect fluid. This is the the most
general choice for Tµν if the matter is classical.
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The Cosmological Principle and FRW - IV

• One needs a further assumption, namely an equation of state: P = γρ.

One can solve Einstein’s equation (from now on Λ = 0 and k = 0), i.e.

Gtt = 8πTtt , Gxx = 8πTxx and ∇µTµν = 0.

This leads to

3

„
ȧ

a

«
= 8πρ, 3

ä

a
= 4π(ρ+ 3P),

ρ̇+ 3(ρ+ P)
ȧ

a
= 0.

Notable choices are:

P = 0 (pure dust) −→ a(t) ∼ t
2
3 and ρa3(t) = const,

P = ρ
3

(pure radiation) −→ a(t) ∼
√

t and ρa4(t) = const.
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The Cosmological Principle and FRW - V

The standard Cosmological model has several advantages:

1 allows for a description of cosmological redshift,

2 a natural playground to describe the evolution of (classical) matter,

3 above all, it is fairly simple:

homogeneity and isotropy,
the matter content is “classical”,
there is an equation of state relating ρ and P.

It has also several problems

1 the homegeneity problem (fine tuning of inital condition),

2 the flatness problem,

3 the singularity problem −→ ρ diverges whenever a(t) → 0.

A possible way out: let us take seriously QFT!
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Our goal

We shall thus consider a Universe filled with a scalar field:

it provides a natural exit to many problems of classical cosmology,

it is at the heart of many models such of inflation,

it leaves many question unanswered: dark energy, dark matter...

In the previous talk we have seen

1 a massive scalar field on a FRW spacetime can be solved in a
semiclassical regime:

Rµν −
R

2
= 8π〈: Tµν :〉ω,

2 it leads to an effective cosmological constant,

3 it makes precise the role of quantum fluctuations!

Real problem: Does ω exist? Can a genuine ground state be constructed?
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A distinguished class of “cosmological spacetimes” - I

Hyp. 1) Cosmological Principle =⇒

gFRW = −dt2 + a2(t)

»
dr 2

1− kr 2
+ r 2dS2(θ, ϕ)

–
, M ∼ I × X3

and a(t) ∈ C∞(I ,R+).

Immediate consequences:

1 Consider a co-moving observer as the integral line γ(t) of ∂t . If
M \ J+(γ) 6= ∅, then causal signals departing from each x ∈ M \ J+(γ)
never reach γ(t). Then we call ∂J+(γ) the (past) cosmological horizon,

2 if one introduces the conformal time dτ = dt
a(t)

and rescales the metric as

gFRW = a2(τ)

»
−dτ 2 +

dr 2

1− κr 2
+ r 2dS2(θ, ϕ)

–
,

then τ ranges in (α, β) ⊂ R. Sufficient condition for the existence of an
horizon is α > −∞ and/or β <∞.

Claudio Dappiaggi Distinguished ground states in FRW spacetimes



Motivations
On the geometry

On scalar field theories over cosmological spacetimes
On the Hadamard property

Conclusion

A distinguished class of “cosmological spacetimes” - I

Hyp. 2) We set κ = 0, i.e., M ≡ I × R3 hence the spacetime is conformally (a
piece of) Minkowski.

Hyp. 3) We restrict the class of scale factors as:

a(τ) = − 1

H τ
+ O

“
τ−2

”
,

da(τ)

dτ
=

1

H τ 2
+ O

“
τ−3

”
,

d2a(τ)

dτ 2
= − 2

H τ 3
+ O

“
τ−4

”
.

Here H is chosen positive and the interval I
.
= (−∞, 0).
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Consequences and Properties - I

1 If a(τ) = − 1
Hτ

then τ = −e−Ht , hence

ds2 = −dt2 + e−2Ht(dr 2 + r 2dS2(θ, ϕ)), t ∈ (−∞,∞).

This is the cosmological de-Sitter spacetime.

2 For our choice of a(τ), as τ → −∞, the background “tends to” de
Sitter. Hence we are dealing with an exponential acceleration in the
proper time t. This is the the prerequisite of all inflationary models.
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Consequences and Properties - II

There is always a Cosmological horizon. Under the coordinate change

U = tan−1(τ − r) , V = tan−1(τ + r),

the metric becomes:

gFRW =
a2(U,V )

cos2 U cos2 V

»
−dUdV +

sin2(U − V )

4
dS2(θ, ϕ)

–
.

Theorem:

Under the previous assumptions the spacetime (M, gFRW ) can be extended to a

larger spacetime ( bM, bg) which is a conformal completion of the asymptotically
flat spacetime at past (or future) null infinity (M, a−2gFRW ), i.e., “a” plays the
role of the conformal factor. The cosmological horizon is

=− .
= ∂J+(M; bM) = ∂M ∼ R× S2.
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Consequences and Properties - III

Conformall null infinity =− corresponds to the horizon (region c in the
figure) and it is a null degenerate manifold with

g |=− = 0 · dl2 + H−2
“
dS2(θ, ϕ)

”
,

c

!
!

!
! !

U V

b

a
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Consequences and Properties - III

Furthermore the manifold M ∪ =− enjoys:

1 the vector field ∂τ is a conformal Killing vector for bg in M,

2 the vector ∂τ becomes tangent to =± approaching it and coincides with
−H−1 b∇ba.
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Aim of the analysis:

We want both to model a scalar QFT on a cosmological spacetime and to find
a distinguished ground state

Hence from now on, we consider Φ : M → R such that

PΦ = 0, P = −�gFRW + ξR + m2 and ξR + m2 > 0

with smooth compactly supported initial data on a Cauchy surface,

N.B. FRW spacetimes are globally hyperbolic, hence Cauchy problems are
meaningful.

Each solution Φ is a smooth function on M, i.e., Φ ∈ C∞(M).

The set of solutions S(M) of our equation is a symplectic space if
endowed with the Cauchy-independent nondegenerate symplectic form:

σ(Φ1,Φ2)
.
=

Z
Σ

(Φ1∇NΦ2 − Φ2∇NΦ1) dµ(Σ)
g .
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More on classical solutions

Next Problem :

We want to better characterise the space of solutions S(M).

Any Φ ∈ S(M) can be decomposed in modes (k ∈ R3, k = |k|,)

Φ(τ,~x) =

Z
R3

d3k
h
φk(τ,~x)eΦ(k) + φk(τ,~x)eΦ(k)

i
,

with respect to the functions

φk(τ,~x) =
1

a(τ)

e ik·~x

(2π)
3
2

χk(τ) ,

χk(τ), is solution of the differential equation

d2

dτ 2
χk + (V0(k, τ) + V (τ))χk = 0,

V0(k, τ) := k2 +

„
1

Hτ

«2 »
m2 + 2H2

„
ξ − 1

6

«–
, V (τ) = O(1/τ 3) .
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Furthermore it holds the normalization

dχk(τ)

dτ
χk(τ)− χk(τ)

dχk(τ)

dτ
= i . ∀τ ∈ (−∞, 0)

Idea: Construct a general solution treating V (τ) as a perturbation potential
over solutions with V = 0, i.e. those in purely de-Sitter background.

Thus for V (τ) = 0

χ0
k(τ) =

√
−πτ
2

e
iπν

2 H
(2)
ν (−kτ),

with

ν =

s
9

4
−

„
m2

H2
+ 12ξ

«
,

where H
(2)
ν is the Hankel function of second kind.
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Perturbative solutions in the general case

Let us consider the retarded fundamental solutions Sk of

d2

dτ 2
χ0

k(τ) + (V0(k, τ))χ
0
k(τ) = 0.

Then the general solutions χk can be constructed

χk(τ) = χ0
k(τ)+

+
+∞X
n=1

(−1)n

Z τ

−∞
dt1

Z t1

−∞
dt2 · · ·

Z tn−1

−∞
dtnSk(τ, t1)Sk(t1, t2) · · ·

Sk(tn−1, tn)V (t1)V (t2) · · ·V (tn)χk(tn).

The series is convergent

if |Reν| < 1/2 and V = O(τ−3),
if 1

2
≤ |Reν| < 3/2 and V = O(τ−5).
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From the bulk to the horizon ...

Bulk) A Weyl C∗-algebra W(M) can be associated to (S(M), σ). This is, up to
∗-isomorphisms, unique and its non vanishing generators WM(φ) satisfy:

WM(−φ) = WM(φ)∗, WM(φ)WM(φ′) = e
i
2
σ(φ,φ′)WM(φ+ φ′),

Horizon) The symplectic space of real wavefunctions is:

S(=−) =
n
ψ ∈ C∞(R× S2) | ψ ∈ L∞, ∂`ψ ∈ L1, bψ ∈ L1, k bψ ∈ L∞

o
,

σ=−(ψ,ψ′) =

Z
R×S2

„
ψ
∂ψ′

∂`
− ψ′

∂ψ

∂`

«
. ∀ψ,ψ′ ∈ S(=−)

Algebra) Since σ=− is nondegenerate, we can construct a Weyl C∗-algebra
W(=−) as

W=−(ψ) = W ∗
=−(−ψ), W=−(ψ)W=−(ψ′) = e

i
2
σ=− (ψ,ψ′)W=−(ψ+ψ′).
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Distinguished state on =−

We can introduce a distinguished state λ : W(=−) → C unambiguously defined

λ (W (ψ)) = e−
µ(ψ,ψ)

2 , ∀W (ψ) ∈ W(=−)

where ∀ψ,ψ′ ∈ S(=−)

µ(ψ,ψ′) =

Z
R×S2

2kΘ(k) bψ(k, θ, ϕ) bψ′(k, θ, ϕ)dkdS2(θ, ϕ),

being bψ(k), bψ′(k) the Fourier-Plancherel transform

bψ(k) =

Z
R

dl
e ikl

√
2π
ψ(l , θ, ϕ).

The state λ enjoys the following (almost straightforward) properties:

it is quasifree and pure,

referring to its GNS triple (H,Π,Υ), it is invariant under the left action α
of the horizon symmetry group.
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Properties of λ

Let us consider the timelike future directed vector field ∂τ whose projection on
the horizon is eY ∝ ∂l (also a generator of the algebra of horizon simmetries).
Then

then λ is the unique quasifree pure state on W(=−) which is invariant
under αexp(s∂l ) (s ∈ R) and the unitary group implementing such
representation leaving fixed the cyclic GNS vector is strongly continuous
with nonnegative self-adjoint generator,

Each folium of states on W(=−) contains at most one pure state which
is invariant under αexp(s∂l ),

and much more...
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Back to the bulk

Notice: φ ∈ S(M) can be extended to a unique smooth solution of the same
equation on M ∪ =− −→ Γφ

.
= φ|=− ∈ C∞(=−).
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Back to the bulk - II

Theorem 1

If φ ∈ S(M) and 0 < ε < 3
2
− ν, then

Γφ decays faster than 1/lε whereas ∂lΓφ faster than 1/l1+ε,

Γφ ∈ S(=−),

σ=−(Γφ, Γφ′) = H2σ(φ, φ′).

Particularly it exists an isometric ∗-homomorphism:

ı : W(M) →W(=−),

ı (W (φ))
.
= W (Γφ).
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Back to the bulk - III

Any state eλ : W(=−) → C can be pulled back to ı∗(eλ) : W(M) → C.

Particularly the preferred state

λM(a) := λ(ı(a)). ∀a ∈ W(M)

In the de Sitter spacetime, λM is the Bunch-Davies state,

it is invariant under the natural action of any bulk isometry Y on the
algebra. The one-parameter UY

s group implementing such an action
leaves fixed the cyclic vector in the GNS representation of λM ,

if Y is everywhere timelike and future-directed in M, then the
1-parameter group UY

s has positive self-adjoint operator.
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Glimpses of Hadamard(ology)

Recall) A quasi-free state ω is fully characterized by its two-point function.

Local description: A two-point function ω(x , y) of a state ω is Hadamard if,
for any normal neighbourhood Op,

ω(x , y) =
U(x , y)

σε(x , y)
+ V (x , y) lnσε(x , y) + W (x , y).

Global description: using microlocal analysis, a state ω of a real smooth K.-G.
field is of Hadamard form if and only if the Schwartz kernel of the two-point
function satisfies

WF (ω) =
n

((x , kx), (y ,−ky )) ∈ (T ∗M)
2 \ 0 | (x , kx) ∼ (y , ky ), kx . 0

o
.
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Is λM Hadamard?

• Hadamard states −→ ultraviolet behaviour of the ground state in Minkowski!

• Hadamard states −→ quantum fluctuations of the (smeared) components of
Tµν are finite

To investigate λM , we first write its Schwartz kernel as the quadratic form

λM(f , g) =

Z
R×S2

2kΘ(k) bψf (k, θ, ϕ) bψg (k, θ, ϕ)dkdS2(θ, ϕ),

where ψf = ΓE(f ) and ψg = ΓE(g).

Theorem

λM inviduates a distribution on D′(M ×M) such that

WF (λM) = V =

=
n

((x , kx), (y ,−ky )) ∈ (T ∗M)
2 \ 0 | (x , kx) ∼ (y , ky ), kx . 0

o
,

thus it is Hadamard.
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On the inclusion ⊃

Since it holds

λM(f ⊗ Pg) = λM(Pf ⊗ g) = 0, λM(f ⊗ g)− λM(g ⊗ f ) = E(f ⊗ g),

then the inclusion ⊃ descends from ⊂ by means of the theorem of propagation
of sigularities proved by Hörmander (see Radzikowski and many others).
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Sketch of the proof. ⊂

Let us read λM as follows: introduce

K = (T ⊗ I )(ΓE ⊗ ΓE) ∈ D′((=− ×=−)× (M ×M)),

T =
1

H2π2(l − l ′ − iε)2
⊗ δ(θ − θ′)δ(ϕ− ϕ′).

introduce a sequence of cut-off functions χn ∈ C∞
0 (=−; C) and

λn
.
= K(χn ⊗ χn),

where K : C∞
0 (=− ×=−) → D′(M ×M) is the map associated with the

kernel tK in view of Schwarz kernel theorem.
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Big Fat Final Theorem:

The sequence λn are such that:

1 WF (λn) ⊂ V
2 λn → λM in the weak sense in D′(M ×M)

3 sup
n

sup
k∈V

|k|N |̂hλn| <∞ for all N ≥ 1 and for all h ∈ C∞
0 (M ×M; C)

where V is any cone closed in (T ∗M)2 \ 0 lying in the complement of V.

Hence λM satisfies ⊂ and its of Hadamard form.
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What lies in front of us?

Summary:
A distinguished Hadamard state for a scalar field theory exists in a large
class of FRW backgrounds,

It has interesting properties of uniqueness and it is Hadamard,

natural ground state in cosmology (to deal with interactions).

Open Questions:
How can we connect this results to present observations?

Is a free scalar field theory enough?1

How can we describe interacting theories in our scenario?

Is the road to mathematically precise inflationary models open?

1C.D., Klaus Fredenhagen and Nicola Pinamonti, Phys. Rev. D77 (2008)
104015

Claudio Dappiaggi Distinguished ground states in FRW spacetimes


	Motivations
	On the geometry 
	On scalar field theories over cosmological spacetimes
	On the Hadamard property
	Conclusion

