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Motivations - I

We have already heard2

• if we consider a scalar field φ(
�g −

R

6
−m2

)
φ = 0,

• on a FRW spacetime

ds2 = −dt2 + a2(t)
[
dr 2 + r 2dS2(θ, ϕ)

]
,

• we can dwell into a semiclassical analysis

Gµν = 8π〈:Tµν :〉ω, → −R = 8π〈:T :〉ω

2Please refer to Nicola Pinamonti’s talk
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Motivations - II

Classically we know that

T = −m2φ2(x),

but, at a quantum level, life is hard, and on a FRW spacetime

〈:T :〉ω = −m2〈:φ2 :〉ω +
1

720

(
RµνR

µν − R2

3
+ �R

)
+

m4

8
.

The semiclassical Einstein’s equation with H = ȧ(t)
a(t)

−6(Ḣ2 + 2H2) = −m2〈:φ2 :〉ω +
1

30
(− 1

π
(ḢH2 + H4 +

m4

4
)).

For m2 � H and m2 � R −→ 〈:φ2 :〉ω ∼ m2

32π2 + βR

Ḣ =
−H4 + H2

+H2

H2 − H2
+

4

H2
+ = 360π − 2880π2m2β.
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Starting Whistle

• the trace anomaly leads to an effective cosmological constant,

• it can be interpreted as a potential dark energy,

• de Sitter appears as a late time stable solution.

Question: Is this result stable for other kind of matter, spinors in particular?
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Basic Geometric Structures
We shall work in a 4D globally hyperbolic spacetime.

The following structures are necessary and well-defined

• the spin group Spin(3, 1) as

{e} −→ Z2 −→ Spin(3, 1) −→ SO(3, 1) −→ {e} ,

• the frame bundle, over M endowed with a non degenerate metric

F (M)
.

= F (M)[SO(3, 1), π′,M] π′ : F (M)→ M

• the spin structure over M is the pair (S(M), ρ)

S(M)
.

= S(M)[Spin(3, 1), π̃,M] π̃ : S(M)→ M,

with a bundle hom. ρ : S(M)→ F (M),

• the Dirac bundle is an associated bundle

DM
.

= S(M)×T C4, D∗M
.

= S(M)×T (C4)∗

out of the repr. T
.

= D( 1
2
,0) ⊕ D(0, 1

2 ) of Spin0(3, 1) ∼ SL(2,C) on C4.
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Classical Dynamic - I

Kinematical configurations: A Dirac spinor and a cospinor is

ψ ∈ Γ(DM), ψ† ∈ Γ(D∗M)

• All globally space and time oriented 4D globally hyperbolic spacetimes admit
a spin structure

The Dirac (and the dual) bundle trivializes and hence

ψ : M −→ C4 ψ† : M −→ C4.

• Next ingredient are γ-matrices, the building block of the algebra of Spin(3, 1),

{γµ, γν} = 2gµν ,
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Classical Dynamic - II

• Natural covariant derivative ∇ on DM as a pull-back from that on T (M),

∇ : Γ(DM)→ Γ(DM ⊗ T ∗(M)).

• It is remarkable ∇γ = 0

• we call dynamically allowed a (co)spinor such that

(−γµ∇µ + m)ψ = 0, (γµ∇µ + m)ψ† = 0,

• D = −γµ∇µ + m is the Dirac operator,

• D ′ = γµ∇µ + m is the dual Dirac operator.

• since DD ′ = D ′D = −� + R
4

+ m2 then{
Dψ = 0,−→ (−� + R

4
+ m2)ψ = 0

D ′ψ† = 0 −→ (−� + R
4

+ m2)ψ† = 0
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Fundamental Solutions

• P = −� + R
4

+ m2 is an hyp. operator with metric principal symbol,

This entails:

• P admits an advanced E+ and retarded E− fundamental solution,

• S±
.

= D ′E± are the advanced and retarded fundamental solutions of D

S± : Γ0(DM)→ Γ(DM),

supp(S±f ) ⊂ J±(supp(f )) ∀f ∈ Γ0(DM).

• with identical properties we have S±∗
.

= DE± for D ′,

• we call causal propagator

S
.

= S+ − S− S∗
.

= S+
∗ − S−∗ .
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Field Algebra - I

Ingredients for the field algebra:

• doubling −→ Γ̃0
.

= Γ0(DM)⊕ Γ0(D∗M),

• Conjugation C(f ⊕ f ′) = f † ⊕ f
′† for all f ⊕ f ′ ∈ Γ̃0,

• global pairing of Γ(DM) (and Γ(D ∗M)) as

〈ψ,ψ′〉 .=
∫
M

ψ(x)
(
ψ′
)

(x)dµ(x),

• positive sesquilinear product on Γ̃0/Ker(S̃) with S̃ = S ⊕ S∗,{
f̃ , h̃
}

S̃
= −i〈f †1 , Sh1〉+ i〈S∗f2, h

†
2〉,

for all f̃ = f1 ⊕ f2 and h̃ = h1 ⊕ h2 in Γ̃0,

• Hilbert space as the completion H .
= Γ̃0/Ker(S̃).
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Field Algebra II

The unital ∗-algebra of fields is F(M, g)

1. elements are B(f̃ ) where f̃ → B(f̃ ) is linear ∀f̃ ∈ Γ̃0,

2. B(Df ⊕ D ′f ′) = 0, for all f̃
.

= f ⊕ f ′ ∈ Γ̃0,

3. B(C f̃ ) = B(f̃ )∗,

4. B(f̃ )∗B(h̃) + B(h̃)B(f̃ )∗ =
{

f̃ , h̃
}

S̃
(CAR).

We want observables to commute if supported at spacelike separated regions.

Algebra of observable A(M, g) is the even subalgebra of F(M, g).
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Hadamard states - I

We seek a gauge invariant state ω : A(M, g)→ C such that

• it is positive → ω(a∗a) ≥ 0 for all a ∈ A(M, g) and ω(I) = 1,

• it is quasifree

ω+(f , g)
.

= ω(ψ(g)ψ†(f )) and ω−(f , g)
.

= ω(ψ†(f ), ψ(g)),

• it is of Hadamard form.

Hadamard states

• have the same UV structure of Minkowski vacuum,

• are such that fluctuations of Tµν are bounded.
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Hadamard States - II
Hadamard states can be characterized

• locally → in a geodesic convex neighbourhood

ω±(x , y) = ± 1

8π2
D ′y
(
H±(x , y) + W (x , y)

)
,

H±(x , y) =
U(x , y)

σε(x , y)
+ V (x , y) ln

σε(x , y)

λ
.

• σ(x , y) is the squared geodesic distance and λ a reference (squared)
length,

• U and V are smooth functions

U(x , y) =
∞∑
n=0

un(x , y)σn, V (x , y) =
∞∑
n=0

vn(x , y)σn,

The coefficients un and vn are determined via recursion relations!

• We have all ingredients to define normal ordering and the algebra of Wick

polynomials.
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From Classical to Quantum Stress-Energy Tensor

The classical stress-energy tensor is

Tµν =
1

2

(
ψ†γ(µψ;ν) − ψ†(;µγν)ψ

)
− 1

2
L[ψ]gµν , (1)

L[ψ] =
1

2

[
ψ†Dψ + (D ′ψ†)ψ

]
. (2)

• Dirac equation entails

∇µTµν = 0 T = gµνTµν = −mψ†ψ.

• We are interested in 〈:Tµν :〉ω with an Hadamard state ω.

• point-splitting along a geodesic

Tµν(x , y)
.

=
1

2

(
ψ†(x)γ(µg

ν′
ν)ψ(y);ν′ − ψ†(x);(µγν)ψ(y)

)
,
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Seeking a quantum conserved Tµν

• Subtraction of the singularity

ω(: Tµν(x) :)
.

= Tr
[
ω(Tµν(x , y))− T sing

µν (x , y)
]

y=x

.
= Tr

[
D0
µν

(
ω−(x , y) +

1

8π2
D ′yH

)]
y=x

.
=

1

8π2
Tr [DµνW (x , y)]y=x

• Canonical but unsatisfactory choice of D0
µν , Dµν

D0
µν

.
=

1

2
γ(µ

(
gν

′
ν)∇ν′ −∇ν)

)
, Dµν

.
= −D0

µνD
′
y ,

• Problem: D ′yH(x , y) does not satisfy Einstein’s equations

• 〈:Tµν :〉ω is not conserved → ill-posed semiclassical Einstein’s equations,

• we can seek for the same solution as in the scalar case

1. we add to the classical Tµν multiples of L[ψ]gµν ,
2. it amounts to Dmod

µν = Dµν + c
2 gµν(D ′

x + Dy )D
′
y .
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The Trace

Let us

• consider the described modified Tmod
µν ,

• an Hadamard state ω,

• a reference length λ = 2 exp( 7
2
− 2γ)m−2 if m 6= 0 (arbitrary for m = 0),

It turns out that if c = 1
6

• ∇µ〈:Tµν :〉ω = 0,

• the trace does not vanish even with m = 0 and

〈:T :〉ω =
1

π2

(
R2

1152
− �R

480
− RµνR

µν

720
− 7

5760
RµνρδR

µνρδ

)
.
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Conclusions

We have learned

• to control the classical and quantum aspects of Fermi fields,

• to rigorously calculate the trace anomaly,

• to construct the extended algebra encompassing Wick polynomials.

We shall

• extend the semiclassical cosmological analysis for the scalar field,

• use our knowledge to tackle problems in baryogenesis and leptogenesis,

• many many many other things...
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