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Zusammenfassung
Die vorliegende Dissertation untersucht die Eigenschaften einer Klasse von physikalischen Zuständen des

quantisierten Skalarfeldes auf FRW Raumzeiten, die sogenannten Zustände niedriger Energie (ZnE). Diese

Zustände sind charakterisiert durch ihre Eigenschaft, die durch eine glatte Testfunktion f kompakten

Trägers zeitlich verschmierte Energiedichte eines isotropen Beobachters zu minimieren und darüber hinaus

alle räumlichen Symmetrien der Raumzeit zu besitzen. Da sie Hadamardzustände sind, können Erwar-

tungswerte von Observablen wie der Energiedichte rigoros über die sogenannte Pointsplitting–Methode

definiert werden. Zunächst wird dieses Programm auf die explizite Berechnung der Energiedichte in ZnE

auf dem de Sitter Hintergrund mit räumlich flachen Cauchyflächen angewendet. Dabei wird insbesondere

der Einfluss der Masse m und der Wahl der Testfunktion f untersucht. Die Ergebnisse führen dann zu der

Frage, ob die ZnE gegen den ausgezeichneten Grundzustand der betrachteten Raumzeit (hier das Bunch–

Davies Vakuum) konvergieren, wenn der Träger von f gegen die unendliche Vergangenheit strebt. Wir

zeigen dass dies zutrifft und sogar auf die Klasse der asymptotischen de Sitter Raumzeiten verallgemeinert

werden kann, auf denen ein Analogon zum Bunch–Davies Vakuum existiert. Dieses Resultat zeigt, dass

dieser ausgezeichnete Grundzustand als Zustand niedriger Energie in der unendlichen Vergangenheit

interpretiert werden kann, und zwar unabhängig von der genauen Form von f . Schließlich diskutieren

wir die Rolle von Zuständen niedriger Energie für das Rückwirkungsproblem. Wir leiten die semiklassische

Friedmanngleichung mittels eines Störungsansatzes um den Minkowskiraum her. Durch diese Gleichung

kann die Stabilität des Minkowskiraumes untersucht werden, indem das asymptotische Langzeitverhalten

von perturbativen Lösungen für den Skalenfaktor analysiert wird. Zum Schluss präsentieren wir ein

numerisches Lösungsverfahren.

Abstract
The present thesis investigates properties of a class of physical states of the quantised scalar field in

FRW spacetimes, namely the states of low energy (SLE’s). These states are characterised by minimising

the time-smeared energy density measured by an isotropic observer, where the smearing is performed

with respect to a test function f of compact support. Furthermore, they share all spatial symmetries

of the spacetime. Since SLE’s are Hadamard states, expectations values of observables like the energy

density can be rigorously defined via the so called point-splitting method. In a first step, this procedure

will be applied to the explicit calculation of the energy density in SLE’s for the case of de Sitter space

with flat spatial sections. In particular, the effect of the choice of the mass m and the test function f

will be discussed. The obtained results motivate the question whether SLE’s converge to a distinguished

state (namely the Bunch Davies state) when the support of f is shifted to the infinite past. It will be

shown that this is indeed the case, even in the more general class of asymptotic de Sitter spacetimes,

where an analogon of the Bunch Davies state can be defined. This result enables the interpretation of

such distinguished states to be SLE’s in the infinite past, independently of the form of the smearing

function f . Finally, the role of SLE’s for the semiclassical backreaction problem will be discussed. We

will derive the semiclassical Friedmann equation in a perturbative approach over Minkowski space. This

equation allows for a stability analysis of Minkowski space by the investigation of asymptotic properties

of solutions. We will also treat this problem using a numerical method.
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Introduction

Quantum field theory (QFT) has turned out to be the best framework for the description of
matter which is available. It incorporates, on the one hand, the concept of locality, meaning that
physical signals cannot travel faster than light. On the other hand, it accomodates the principle
of Quantum Physics, which manifests itself in the familiar Heisenberg uncertainty relation. In
the absence of gravity, QFT is formulated on Minkowski space. It is due to this special geometric
structure that we can interpret the theory in terms of particles. In this setting, QFT makes
predictions in high energy physics by means of perturbation theory which fit the experimental
data with an astonishing accuracy. On the other hand, we know from Einstein’s general relativ-
ity (GR) that the essence of gravity is a dynamical spacetime (M, g), subject to the interaction
with matter and energy distribution living on (M, g). Being also a succesful physical theory in
the regime of large scales, it is however in deep conflict with Quantum Theory. This incompat-
ibility shows up when trying to measure the coordinates of a spacetime point with an accuracy
of the Planck length. According to Quantum Theory, it would be neccessary to concentrate
there that amount of energy which would suffice to create a black hole [DFR95]. Therefore, the
concept of a spacetime point looses its operational meaning. This calls for a new understanding
of spacetime structure at very small distances, which is the subject of current research. Since
such a theory of quantum gravity is not in reach, it is worthwile to investigate a regime where a
combination of GR and QFT –which is QFT on curved spacetimes (QFT on CST)– makes sense
and leads to new predictions. This semiclassical regime is characterised by curvatures that are
low enough for the neglection of quantum gravity effects, but high enough in order to contradict
results from QFT on Minkowski space. Despite the fact that terrestrial accelerators do not yet
allow for testing such a theory directly, there are other good reasons to study QFT on CST. Let
us first comment on the conceptual ones.

The necessity of abandoning many concepts of Minkowskian QFT – such as particles, vac-
uum, Poincaré invariance – shifts the attention to the “F” in our theory, which stands for field.
Spacetime symmetries and particle states are not the core of the theory, but rather secondary
objects and hence disposable. The quantisation of a classical field theory happens first of all at
the level of the algebra of observables A, independently of some Hilbert space representation.
It is the philosophy of the algebraic approach to quantum field theory (AQFT) that the phys-
ical content of a (quantum) field theory should be contained in the assignment of algebras to
spacetime regions,

O 7→ A(O),

together with some axioms which represent basic physical requirements such as causality and
stability. This framework was first proposed in [HK64] and, although it was formulated with
focus on Minkowski space, it is general enough to cope with the situation of curved spacetimes.
Namely, it disentangles the description of a physical system (which is the algebra of observables
A) and the concept of states of such a system, which is of great importance in QFT, where,
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due to the presence of infinitely many degrees of freedom, unitarily inequivalent Hilbert space
representations occur generically. In the algebraic framework, states are nothing but normalised
positive functionals ω on A. In QFT one needs furthermore a characterisation of physically
meaningful states. It turned out that such a criterion can be given by requiring the two–point
distribution Wω

2 (f, g)
.
= ω(Φ(f)Φ(g)) to be of Hadamard form, which basically means that

Wω
2 must have the same singularity structure like the Hadamard fundamental solution of the

wave equation which characterises the underlying classical field theory [KW91]. Quite recently,
Radzikowski [Rad96] has shown that this is equivalent with a certain condition on the wave front
set of Wω

2 , a concept from microlocal analysis. This latter characterisation is more abstract
than the position space formulation and has proven to be a useful tool for conceptual work such
as the perturbative construction of interacting theories [BFK96; BF00]. Another nice example
for the elegance of the microlocal approach is Fewster’s proof of a quantum energy inequality
[Few00], to which we will return later. The increasing progress in understanding QFT on a
more fundamental level was finally crowned by the important work of [BFV03], which uses the
language of categories in order to define a generally locally covariant QFT as a covariant functor
from a suitable category of spacetimes to a category of algebras.

All this conceptual progress is, however, not only end in itself. The semiclassical approach
of describing a quantum field on a general background permits the description of physical phe-
nomena which are impossible to derive from Minkowskian QFT, such as particle creation in
expanding universes [Par69] and the famous radiation of black holes [Haw75]. Such examples
can be understood by considering free quantum fields propagating on a fixed curved spacetime.
The quantum fields “feels” the influence of gravity via the equation of motion, where the par-
tial derivatives ∂a of the corresponding Minkowski space model are replaced by the Lévi-Cività
connection ∇a induced by the metric. In order for this to be a meaningful approximation, one
assumes that the quantum field is in a state for which the expectation value of the energy mo-
mentum tensor Tab is small and thus the backreaction to the metric is negligible. However, a
more ambitious goal of QFT on CST is to investigate the backreaction of quantum matter to
the spacetime metric via the semiclassical Einstein equation

Gab = −8πGω(: Tab :),

where ω is a suitable quantum state and : . : stands for a regularisation prescription for pointwise
products of fields. In contrast to ordinary QFT, there is a finite renormalisation freedom in the
definition of ω(: Tab :) already at the level of a free field. By making simplifying assumptions,
the backreaction problem can lead to interesting results. Namely, assuming the simple model of
a conformally coupled massive scalar field in a FRW spacetime and making use of the aforemen-
tioned renormalisation freedom, it can be shown that the semiclassical Einstein equation admits
a stable de Sitter phase whose Hubble parameter can be fine tuned by using the renormalisation
freedom in order to agree with the measured value of today [DFP08]. This provides a simple
and elegant explanation for dark energy. However, it is far from clear how the choice of the
state ω can affect the solution space of the semiclassical Einstein equation under more general
conditions, since then the state dependent part of ω(: Tab :) will in general de a functional of
the metric. We will come back to this problem in the last chapter of this thesis. As we already
mentioned, much progress has been made in the mathematically rigorous formulation of QFT.
But in order to make contact with physical observations, e.g. cosmological data, one needs a
better control over the state space of the theory, along with the necessity of providing examples



of states for concrete calculations and their interpretation. While it is known that Hadamard
states for the free scalar field always exist on globally hyperbolic spacetimes [FNW81], it is still
neccessary to construct such states, which is a difficult task when spacetime symmetries are
absent. Therefore, the largest part of rigorous approaches to the semiclassical Einstein equation
is restricted to FRW models, since their symmetry group is large enough in order to enable
analytical computations. Nevertheless this is not just a meaningless oversimplification, since the
results might be relevant in the realm of cosmology.

In the present work we shall consider the free scalar field on spatially flat FRW spacetimes,
although some preliminary discussions will hold in greater generality. The class of states that
we will focus on are the so called states of low energy (SLE’s), recently introduced by Olber-
mann [Olb07a]. They have the simple physical interpretation of minimising the energy density
of an isotropic observer γ, smeared with a smooth weighting function f of compact support in
the proper time of γ. SLE’s are good candidates for reference vacuum states for the following
reasons: They share all spacetime symmetries, carry low energy in the sense described above
and are Hadamard states. Finally, they reduce to the Minkowski vacuum when a(t) = const.
In a previous work [DV10], the particle picture induced by such states was already investigated.
Since the meaning of particles is a rather fuzzy concept in general FRW spacetimes, it is worth-
wile to investigate expectation values of field theoretic quantities in SLE’s, such as the Wick
square : Φ2(x) : or the energy density : ρ(x) :. The latter is of great importance for the back-
reaction problem in FRW spacetimes, where the semiclassical Einstein equation reduces to the
semiclassical Friedmann equation

H2 =
8πG

3
ω(: ρ :).

After this short motivation, we shall briefly sketch the outline of this thesis: In chapter 1 we
will collect some important facts and definitions pertaining to globally hyperbolic spacetimes.
Chapter 2 is dedicated to the rigorous quantisation of the free scalar field on globally hyperbolic
spacetimes. We will introduce the important notion of Hadamard states and construct the
expectation value of the renormalised stress energy tensor in such states. This procedure will
then be specialised to the case of isotropic and homogenous states on FRW spacetimes, reviewing
the work done in [Sch10]. Finally, this chapter closes with the introduction of SLE’s. In chapter 3
we will apply these concepts to the calculation of the energy density in SLE’s on de Sitter space.
We obtain explicit results which will motivate the investigation of a certain limit state of SLE’s
on asymptotic de Sitter space in chapter 4. This limit arises from shifting the support of the
smearing function f to the infinite past. We will show that such a limit state exists and that it
coincides with the preferred state on asymptotic de Sitter spacetimes, which was constructed in
[DMP09a; DMP09b]. Finally, chapter 5 is concerned with the semiclassical Friedmann equation,
taking SLE’s as reference states. We will argue that SLE’s play a distinguished role for the
backreaction problem in general and that they may be used for a stability analysis of fixed
backgrounds. We will apply these considerations to Minkowski space by deriving a semiclassical
Friedmann equation in a perturbative approach over the fixed background. We obtain an integro-
differential equation which governs the scale factor perturbation δa. We will then analyse the
possible asymptotic behaviour of such a perturbative solution and present a numerical treatment.





1. Structure of Spacetime

The notion of a spacetime in General Relativity (GR) is, as usual in physics, a mathematical
abstraction of something intuitive. Space and time play a basic role in the physical description
of the world. An instant of time and a position in space (w.r.t. a given observer) constitute an
event. In the context of GR, we assume that the determination of these two data can be given
with arbitrarily high precision. Thus, the set of all events should form a “continuum” and look
locally like R4. An appropriate mathematical model for this is a four dimensional topological
paracompact smooth manifold M. In order to incorporate the notion of Einstein causality (no
signal can travel faster than the speed of light), we require M to be endowed with a smooth
Lorentzian metric g, which basically tells us if a given event p can influence another given event
q. Since all physical measurements are of local character, they are not able to say anything about
the global structure of spacetime. Nevertheless, we require that the initial data of the state of
the entire universe at one instant of time completely determine the entire future and past. This
leads to the additional assumption of global hyperbolicity, which is believed to be fulfilled by
all “physically reasonable” spacetimes. In the next section we will define the basic definitions
pertaining to spacetimes and their causal structure, following the monograph [Wal84]. In section
1.3 we will give some special examples of spacetimes which will be important in the sequel of
the thesis.

1.1. Basic Conventions and Definitions

Throughout this thesis, the notion of spacetime will refer to a four dimensional smooth Lorentzian
manifold (M, g), which is connected, paracompact and Haussdorf. We use the sign conventions
(−−−) according to the classification system of [MTW73]. The natural volume element of (M, g)
will be denoted by dµg, which in local coordinates reads

√
|g|d4x, where |g| is the modulus of the

determinant of g in this chart. A very nice introduction to the concepts of differential geometry
which stays close to physical applications is [Wal84]. We will use the abstract index notation like
in this reference, meaning that tensors decorated with latin indices do not refer to components
with respect to a particular basis (which will be the case when using greek indices), but rather
have the function to indicate the rank of the object in question. Thus T ab c is a tensor field of
rank (2, 1) (i.e. a multilinear map whose first two arguments are covector fields and whose third
argument is a vector field). This notation is also used to denote the basis independent operation
of contraction. T ab b is simply the vector obtained by contraction with respect to the last two
arguments. Occasionally we will supress the abstract indices when the type of tensor is clear
from the context, e.g. the metric tensor gab = g. Since our sign convention is (+,−,−,−), we
call a vector v ∈ TxM timelike if g(v, v) > 0, lightlike if g(v, v) = 0 and spacelike if g(v, v) < 0.
We call it causal if it is timelike or lightlike. The same classification applies to vector fields
V :M→ TM and C1− curves γ : R ⊇ I →M, if the relations given above hold for V and the
tangent vector field of γ on the whole respective domain of definition. We call M orientable if

1



1. Structure of Spacetime

there exists a nonvanishing continous four–form ε and M is said to be time orientable if there
exists a globally defined vector field t : M → TM with g(t, t) > 0. t then provides a time
orientation in the sense that we call a causal C1− curve γ future directed if g(γ̇, t) > 0 and
past directed if g(γ̇, t) < 0. Similarly, we call a causal vector field k : M → TM future-/past
directed, if g(k, t)| ≷ 0, for which we write k B 0 and k C 0, respectively. The same conventions
hold for covector fields l :M→ T ∗M by applying the previous criteria to the vector field gabla.
From now on we assume that both an orientation and a time orientation have been chosen for
M. For later use we need to define the following sets: For p ∈ M we define its chronological
future I+(p) to consist of all points ofM that can be reached by a future directed timelike curve
starting at p. For subsets S ⊆M, the chronological future I+(S) is just the union

I+(S) =
⋃
p∈S

I+(p).

Analogously we define the chronological past I−(p) of p and I−(S) of S by inserting past directed
timelike curves in the above definition. In the same way we define the causal future J+(p) and
causal past J−(p) of p as the set of events which can be reached by a causal future– respectively
past directed curve starting in p. J+(S) and J−(S) are again defined by the union

J±(S) =
⋃
p∈S

J±(p).

Finally we set J(S)
.
= J+(S) ∪ J−(S).

We call an open set S ⊆ M geodesically starshaped with respect to x ∈ S if there exists
S′ ⊆ TxM, open, with the properties that S′ is starshaped with respect to 0 ∈ TxM and the
exponential map expx : S′ → S is a diffeomorphism. We define S to be geodesically convex if it
is starshaped with respect to all its points. This implies in particular that any two points of S
can be connected by a unique geodesic which is contained in S. It can be shown that M can
be covered by geodesically convex sets [O’N83], ensuring the existence of a geodesically convex
neighborhood for each p ∈M.

Now we come to the important notion of global hyperbolicity, which is a necessary requirement
for our spacetime in order to have a well posed Cauchy problem for field theories. To this avail,
we define a causal curve γ : I →M to be extendible iff there exists a causal curve γ̃ : Ĩ →M and
a subinterval J ⊂ Ĩ together with a parameter transformation φ : J → I such that γ ◦ φ = γ̃ �J .
With this notion we may state the following important definition:

Definition 1.1.1. Σ ⊂ M is called a Cauchy surface for (M, g) iff every inextendible causal
curve γ : I →M intersects Σ exactly once.

One may thus think of Σ as a spatial slice of (M, g), or the space at one instant of time. A
spacetime (M, g) is then defined to be globally hyperbolic if it contains a Cauchy surface. It can
be shown that for (M, g) globally hyperbolic, Σ can always chosen to be smooth and that such
(M, g) are diffeomorphic to R × Σ [BS03]. When speaking about a Cauchy surface Σ, we will
from now on assume that it is smooth. In the sequel we will also need some concepts pertaining
to smooth mappings between manifolds. Let φ :M→N be smooth, whereM and N can be of
different dimension. The pullback of a function f : N → R is a function on M, defined by the

2



1.2. General Relativity

composition f ◦ φ. Since vectors at p ∈M are derivations on functions, we may push forward a
vector v ∈ TpM to a vector φ∗v ∈ Tφ(p)N by

φ∗v(f)
.
= v(f ◦ φ),

which defines the tangential map φ∗ : TpM → Tφ(p)N , a linear vector space homomorphism.
Similarly, φ can be used to pull back a covector w ∈ T ∗φ(p)N to a covector φ∗w ∈ T ∗pM via

φ∗w(v)
.
= w(φ∗v)

for v ∈ TpM. It is obvious how to extend φ∗ and φ∗ to tensors of rank (0, l) and (l, 0),
respectively. For the case that φ is a diffeomorphism, i.e. its inverse φ−1 exists and is smooth, we
can both pull back and push forward functions, vectors and covectors and extend this operations
to tensors of arbitrary rank. Now consider a one parameter group φt of such diffeomorphisms,
generated by the vector field v. We can then define the Lie derivative of a smooth tensor field
in the direction of v by

LvT a1...ak
b1...bl

.
= lim

t→0

(
φ∗−tT

a1...ak
b1...bl

− T a1...ak
b1...bl

t

)
.

A diffeomorphism φ is called an isometry, if it is a symmetry transformation for the metric g, i.e.
if there holds φ∗g = g. A similar notion is that of an isometric embedding φ : N →M, where φ is
an isometry between N and φ(N ) ⊆M. If φt is a one parameter group of isometries, we call the
corresponding generating vector field a Killing vector field. Finally, a diffeomorphism φ is called
a conformal isometry if it satisfies φ∗g = Ω2g for a nonvanishing function Ω. Correspondingly,
the generator of a one parameter group of conformal isometries is called conformal Killing vector
field.

1.2. General Relativity

The mathematical definition of a spacetime as given in the above section tries to capture the
minimal requirements one would like to have for the arena of physics. The reason for this
cautious approach is the fact that spacetime is not a fixed eternal structure, but rather subject
to a dynamics in the presence of matter and energy, described by the stress–energy–tensor Tab.
This principle is expressed by the famous Einstein equation,

Rab −
1

2
Rgab = −8πGTab. (1.1)

In local coordinates, it is a nonlinear second order partial differential equation for the components
of the metric gab. It says nothing about the global structure of the spacetime. The geometrical
tensors appearing on the left hand side of (1.1) are defined as follows. First we remark that on
a Lorentzian manifold (M, g), we have a unique covariant derivative ∇a : T (k, l)→ T (k, l + 1)
which is torsion–free and compatible with the metric. This object can now be used to define
the Riemann tensor by

(∇a∇b −∇b∇a)tc
.
= −R d

abc td (1.2)

3



1. Structure of Spacetime

for all covector fields td. By taking the trace we obtain the Ricci tensor

Rac
.
= R b

abc . (1.3)

Taking again the trace, we define the scalar curvature by

R
.
= R a

a . (1.4)

The Einstein tensor

Gab
.
= Rab −

1

2
Rgab (1.5)

has the remarkable property of being covariantly conserved,

∇aGab = 0. (1.6)

While Tab acts as a source term for the dynamics of the metric, the metric in turn tells the matter
how to move in the absence of other forces. Freely falling test particles (observers) should move
on timelike geodesics, i.e. curves of minimal length between two points w.r.t. gab. Given a
starting point x = γ(0) and initial velocity v = γ̇(0), the geodesic equation

ta∇atb = 0

has a unique solution for the geodesic γ, where ta denotes the tangent vector of γ. In a similar
manner we may generalise the equation of motion for field theories on Minkowski space, simply
by replacing partial derivatives ∂a by their counterpart ∇a. Thus, the Klein Gordon equation
with minimal coupling1 reads on general backgrounds

(∇a∇a +m2)φ = 0.

Solutions φ can then be interpreted as “freely falling fields”.
Some remarks about (1.1) are now in order. The first one pertains to its consistency. Since

for all forms of matter described by Tab there must hold ∇aTab = 0 due to local conservation
of energy, eq. (1.6) shows that Einstein’s equation is in fact consistent. The second remark
concerns the uniqueness of (1.1). Namely, Gab is not the only covariantly conserved tensor
which can be built locally from gab. By definition of ∇a we have of course ∇agbc = 0. Thus we
may modify (1.1) by adding the term Λgab to the left hand side. The corresponding equation is
known as Einstein’s equation with cosmological constant Λ. Note that the presence of Λ in (1.1)
conflicts with the Newtonian limit of GR; however this argument is not sufficient to discard such
a modified theory of gravity since Λ could be chosen small enough. Depending on the point of
view, the term Λgab can either be regarded as a type of matter which is part of Tab, or as a one
parameter freedom in the theory, thus giving Λ the status of a constant of nature. As we shall
see later, in the context of QFT on curved spacetime Λ will play the role of a renormalisation
parameter due to the ambiguity in the definition of a quantised version of Tab. While linear
combinations of gab and Gab give the most general symmetric and covariantly conserved tensors
of rank (0, 2) constructed out of the metric and its derivatives up to second order, we finally
mention that there are two other independent tensors,

Iab
.
=

1√
|g|

δ

δgab

∫
M
R2dµg (1.7)

1A more general version of the Klein Gordon equation contains also coupling to the curvature via the term ξRφ.
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1.3. FRW Spacetimes

and

Jab
.
=

1√
|g|

δ

δgab

∫
M
RabR

abdµg, (1.8)

which are also covariantly conserved, symmetric and built locally from the metric and its deriva-
tives up to fourth order [BD82]. We will encounter them later in the context of renormalisation
issues.

1.3. FRW Spacetimes

One of the most important applications for (1.1) is the description of the dynamics of the whole
universe. The complicated interplay between matter and spacetime is the topic of cosmology.
There is much experimental evidence that our universe is isotropic and homogenous on very large
scales. A well known example is the isotropy of the cosmic microwave background together with
its very small relative anisotropic fluctuations of order 10−5 [Wri03]. Thus, besides mathematical
simplifications, it is physically highly motivated to seek solutions of (1.1) which are spatially
homogenous and isotropic. Following [Wal84], we call a spacetime (M, g) spatially homogenous
if there exists a one parameter family of spacelike hypersurfaces Σt with ∪t∈RΣt =M such that
for all t and p, q ∈ Σt there exists an isometry φt with φt(p) = q. We call (M, g) spatially
isotropic if it can be covered by pairwise disjoint timelike curves with tangent vector field ua,
such that for all x ∈ M and all spatial vectors va, wa ∈ TxM satisfying g(u, v) = g(u,w) = 0
there exists an isometry φ :M→M such that φ(x) = x and φ∗v = w.

Spacetimes which are spatially homogenous and isotropic are called Friedmann–Robertson–
Walker (FRW) spacetimes. Topologically they have the form M = R× Σκ, where κ labels the
three possibilities of the Cauchy surfaces: Σ1 .

= S3, Σ0 .
= R3 and Σ3 .

= {x ∈ R4 : x2
0− x2

1− x2
2−

x2
3 = 1, x0 > 0}. The metric takes the form

gab = dt2 − hab(t), (1.9)

where the time dependent induced Riemannian metric on Σκ is given by

hab = a2(t)


dψ2 + sin2 ψ(dθ2 + sin2 θdφ2) ψ, θ ∈ [0, π);φ ∈ [0, 2π)

dx2 + dy2 + dz2 x, y, z ∈ (−∞,∞)

dψ2 + sinh2 ψ(dθ2 + sin2 θdφ2) ψ ∈ (−∞,∞), θ ∈ [0, π),

φ ∈ [0, 2π)

(1.10)

for κ = 1, 0,−1 and a(t) : R ⊇ I → R is a strictly positive smooth function. For all subsequent
calculations we will restrict to flat spatial sections, i.e. κ = 0 and with respect to the preferred
standard coordinates (t, x, y, z) ∈ I × R3 (which are also global coordinates) the components of
the metric tensor take the form

gµν = diag(1,−a2,−a2,−a2). (1.11)

The coordinate t has the interpretation of global cosmological time (i.e. the time measured by
an observer described by the geodesic worldline (t, x0, y0, z0)). In this sense, such observers are
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1. Structure of Spacetime

distinguished and they can agree on the time t. In many calculations it will be useful to switch
to another time coordinate τ , defined by

τ(t)
.
=

∫ t

t0

dt′

a(t′)
.

With the further definition C(τ(t))
.
= a2(t), the components of the metric tensor with respect

to the new global coordinates (τ, x, y, z) read

gµν = C(τ)diag(1,−1,−1,−1),

thus showing that spatially flat FRW spacetimes are conformally flat, which is the reason for
calling τ conformal time.

We will briefly sketch which form (1.1) takes in FRW spacetimes with κ = 0. The most
general form for Tab which is compatible with the spacetime symmetries is

T ν
µ = diag(ρ,−p,−p,−p) (1.12)

w.r.t. our standard coordinates, where ρ and p are energy density and pressure, respectively.
Depending on the assumptions on the type of matter, ρ and p are usually related by an equation
of state. For radiation we have ρ = 3p, whereas for dust there holds p = 0. When treating
the above discussed term Λgab as a type of energy–matter (dark energy), we have ρ = Λ and
p = −Λ. It is a straightforward task to calculate Gab as function of a(t) and its derivatives.
Einsteins equation (1.1) then reduces to the Friedmann equations(

ȧ

a

)2

=
8πG

3
ρ, (1.13)

and
ä

a
= −4πG

3
(ρ+ 3p). (1.14)

We can immediately draw some interesting conclusions: Given ρ > 0 and p ≥ 0 (as it is the
case for dust and radiation), (1.14) reveals that ä < 0. In light of the observed expansion of our
universe via redshift measurement of the light of distant galaxies, (1.14) predicts that a(t0) = 0
for some finite time t0 in the past, which is the theoretical reason for the Big Bang theory.
Furthermore, the covariant conservation of Tab reads

ρ̇+ 3
ȧ

a
(ρ+ p) = 0,

which also could have been inferred from eqs. (1.13) and (1.14). It follows that ρa3 = const
for dust and ρa4 = const for radiation. Thus, for an expanding universe there must have been
an early radiation–dominated epoch followed by a dust–dominated one, whereas the late time
dynamics is driven by the cosmological constant.

At a later stage of this thesis, we will encounter a particular class of spacetimes, the so called
asymptotic de Sitter spacetimes, which we will introduce here. When solving the Friedmann
equations for Tab consisting of dark energy alone, one obtains

a(t) = eH0t, H0
.
=

√
8πGΛ

3
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1.3. FRW Spacetimes

as solution for the scale factor, where t ranges from −∞ to ∞. It turns out that this spacetime
can be viewed to be part of a larger spacetime, namely de Sitter spacetime (MdS , gdS). It is
defined as an embedded submanifold in the five dimensional Minkowski space (R5, η) via

MdS
.
= {x ∈ R5 : y2

0 −
4∑
i=1

y2
i = H−2

0 },

equipped with the induced metric gdS = η �MdS
. (MdS , gdS) is a maximally symmetric globally

hyperbolic spacetime, the isometry group being O(1, 4). There are different possibilities how to
coordinatise MdS . Let us choose the map ψ : R4 →MdS , given by

y0 = H−1
0 sinh(H0t) +

H0

2
r2eH0t

y1 = H−1
0 cosh(H0t)−

H0

2
r2eH0t

yi = eH0txi−1,

where r2 .
= x2

1 + x2
2 + x2

3. Clearly, ψ is not surjective since y0 + y1 is constrained to be positive.
Thus, the coordinates (t,x) cover only one half of MdS . With respect to the new coordinates
we obtain

ψ∗gdS = dt2 − e2H0td2x,

which verifies the above claim. The conformal time is then given by

τ(t) = − 1

H0
e−H0t,

and we have

a((τ(t)) = −(H0τ)−1. (1.15)

We want now to define a class of scale factors a which asymptotically approach the form of
(1.15). To this avail we require the following asymptotic behaviour of a:

a = − 1

Hτ
+O(τ−2),

da

dτ
=

1

Hτ2
+O(τ−3) (1.16)

The class of spatially flat FRW spacetimes whose scale factors exhibit this behaviour will be
called asymptotic de Sitter spacetimes and henceforth denoted by (M, gadS). We shall briefly
point out the reason for considering this class of spacetimes, following [DMP09a]. We start by
recalling the notion of cosmological horizons, due to Rindler [Rin06]. Consider the complete
geodesic of a comoving observer γ ⊂ M, and its causal past J−(γ). If J−(γ) 6= M, then
there exist events from which γ cannot receive information. This situation thus gives rise to
a cosmological horizon ∂J−(γ). Conversely one may look at J+(γ). If this set in turn does
not cover the whole of M, then there are events to which γ cannot send any information.
∂J+(γ) then defines a cosmological past horizon. Both horizons have the structure of lightlike
three–dimensional hypersurfaces. An easy way to check for the existence of these objects in
spatially flat FRW spacetimes for isotropic observers γ is going over to conformal time τ . If its
upper/lower bound is finite, then J−/+(γ) does not coverM. We will be concerned with another
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1. Structure of Spacetime

type of horizons. In simple terms, this horizon will be outside, but arbitrarily close to M. To
get an idea of such an horizon, consider the above mentioned example (M, g) = (R4, ψ∗gdS). As
we already know, it can be isometrically embedded in the larger spacetime (M̂, ĝ) = (MdS , gdS).
Thus we can regard its boundary ∂M as a submanifold in M̂. Clearly, this object will now play
the role of a past cosmological horizon for M, since all events in M̂ \M can never be reached
by signals starting in any event in M. (R4, ψ∗gdS) is a prototype of a class of spacetimes called
expanding universes with cosmological horizons. For the sake of completeness, we quote the
general definition from [DMP09a]:

Definition 1.3.1. A globally hyperbolic spacetime (M, g) equipped with a positive smooth func-
tion Ω : M → R+, a future-oriented timelike vector X defined on M, and a constant γ 6= 0,
will be called an expanding universe with (geodesically complete) cosmological (past)
horizon when the following facts hold:

1. (M, g) can be isometrically embedded as the interior of a submanifold with boundary of a
larger spacetime (M̂, ĝ), the boundary J − .

= ∂M fulfilling

J − ∩ J+(M;M̂) = ∅.

2. Ω extends to a smooth function on M̂ such that Ω �J−= 0 and dΩ 6= 0 everywhere on J −.

3. X is a conformal Killing vector for ĝ in a neighborhood of J − in M, with

LX(ĝ) = −2X(ln Ω)ĝ, (1.17)

where X(ln Ω) → 0 approaching J − and X does not tend everywhere to the zero vector
approaching J −.

4. J − is diffeomorphic to R × S2 and the metric ĝ �J− takes the Bondi form globally up to
the constant factor γ2 > 0:

ĝ �J−= γ2
(
−dl ⊗ dΩ− dΩ⊗ dl + dS2(θ, φ)

)
, l ∈ R, (θ, φ) ∈ S2, (1.18)

dS2 being the standard metric on the unit 2-sphere. Hence J − is a null 3-submanifold.
Finally, the curves R 3 l 7→ (l, θ, φ) are required to be complete null geodesics.

Remark 1.3.2. The manifold J − is called cosmological (past) horizon of M. The integral
parameter of X is called conformal cosmological time. There is a completely analogous
definition of contracting universe referring to the existence of J + in the future instead of J −.

It is not difficult to show that the class of asymptotic de Sitter spacetimes fulfils all these
requirements [DMP09a]. The scale factor a and the vector field ∂τ play then the role of Ω and
X, respectively. Note that the above definition may encompass much more general spacetimes,
because neither homogeneity nor isotropy ofM are required. We would also like to mention that
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1.3. FRW Spacetimes

the group of diffeomorphisms of J − contains all Killing isometries of (M, g). The motivation
for looking at spacetimes with a past cosmological horizon is twofold. On the one hand, particle
horizons are not present and thus all events in M have been in causal contact with a common
event in the past, giving a natural explanation for the homogeneity of our universe without
assuming a special initial state. On the other hand, as we will explain in greater detail in
chapter 4, such spacetimes allow for the construction of a distinguished ground state for QFT’s
on M, which could be used to derive the almost scale free anisotropies of the CMB spectrum.
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2. Quantum Field Theory on Curved
Spacetimes

The goal of this chapter is the quantisation of the free scalar field on globally hyperbolic space-
times (M, g) in the spirit of the algebraic approach. A nice introduction to this topic is provided
by the monograph of Haag [Haa96]. We will start with discussing the corresponding classical
free field theory. Since the Cauchy problem is well posed, we can construct the symplectic
vector space of solutions and a certain subalgebra of observables, consisting of smeared fields.
This algebra can then be quantised in a straightforward manner by constructing the so called
Borchers–Uhlmann algebra A(M, g). However, A(M, g) does not contain important observables
like the pointwise product : Φ2 :, also known as Wick square, or the quantised energy–momentum
tensor : Tab :. It will turn out that expectation values of such objects can be defined for the class
of Hadamard states, which will be introduced in section 2.3.1. Finally, we will devote an own
section to the problem of defining the quantum expectation value of : Tab :, which includes the
discussion of its renormalisation freedom, and we will sketch an explicit procedure for calculating
it on FRW spacetimes.

In the following we will denote the space of compactly supported real valued functions on the
manifoldM by D(M). It carries a natural locally convex topology which is determined by saying
that a sequence fn ∈ D(M) converges to f ∈ D(M) if there exists a compact subset K ⊂ M
with suppfn ⊆ K, suppf ⊆ K and fn together with all its derivatives converges to f and its
derivatives uniformly on K. Its topological dual space, consisting of continous linear functionals
(distributions), is referred to as D′(M). Finally, we write E(M) for the real valued smooth
functions on M and define its locally convex topology by saying that a sequence fn ∈ E(M)
converges to f ∈ E(M) if we have uniform convergence of fn and all its derivatives to f on all
compact subsets of M.

2.1. Classical Free Scalar Field Theory on Curved Spacetimes

We consider the free scalar field on the globally hyperbolic spacetime (M, g). It obeys the
following second order partial differential equation:

PΦ
.
= (�g + ξR+m2)Φ = 0, Φ ∈ E(M). (2.1)

Here, ξ is a real number and constitutes an additional free parameter of the theory, just like
the mass m. In some parts of this thesis we will choose ξ = 0, which is referred to as minimal
coupling. However, many constructions in this chapter work for an arbitrary choice of ξ and we
will indicate when this should not be the case. Obviously, for vanishing curvature, (2.1) reduces
to the relativistically invariant Klein–Gordon equation on Minkowski space, which describes,
according to Wigners definition of elementary particles, a particle of mass m and spin 0 [Wig39].
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2. Quantum Field Theory on Curved Spacetimes

The ambiguity due to the presence of ξ can be turned into an advantage in case of the massless
field by choosing ξ = 1/6, known as conformal coupling1. In this case, Φ will be conformally
invariant [Wal84, app.D].

The problem of establishing the solution theory is extensivly treated in the monograph
[BGP07], where the following important theorem is proven:

Theorem 2.1.1.

1. The Klein–Gordon operator P
.
= �g + ξR+m2 on a globally hyperbolic spacetime (M, g)

possesses unique retarded and advanced fundamental solutions E±, which are continous
linear maps

E± : D(M)→ E(M)

with the properties

PE±f = f = E±Pf

supp(E±f) ⊆ J±(suppf)

∀f ∈ D(M).

2. Let Σ be a Cauchy surface of (M, g) and Na denote its normal vector field. Then for
every choice of functions u,w ∈ D(Σ) there exists a unique solution Φ ∈ E(M) of (2.1)
satisfying Φ �Σ= u and Na∇aΦ �Σ= w. Furthermore there holds

suppΦ ⊆ J(suppu ∪ suppw).

Such Φ are called solutions with compact Cauchy data.

Using E± we may define the causal propagator

E
.
= E+ − E−.

It follows from the above theorem that E maps test functions f ∈ D(M) into the linear space
S of smooth solutions of (2.1) with compact Cauchy data:

E : f 7→ Ef
.
= Φf ∈ S.

Note that E is surjective, but has a nontrivial kernel. Thus we may identify the quotient space

L .
= D(M)/KerE

with S by means of the map ε : L → S, given by

ε : [f ] 7→ Ef = Φf ,

which is a vector space isomorphism. Finally, we denote by CΣ
.
= D(Σ) × D(Σ) the space

of Cauchy data for Φ on Σ, which is by the preceding theorem also isomorphic to S. The
corresponding isomorphism will be called ρ and reads

ρ : Φf 7→ (Φf �Σ, N
a∇aΦf �Σ)

.
= (φf , πf ).

1In spacetime dimension n = 4.
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2.1. Classical Free Scalar Field Theory on Curved Spacetimes

But there is more structure on the solution space S and its isomorphic counterparts CΣ and
L, apart from being infinite dimensional vector spaces. Namely there exists a symplectic form
σ : CΣ × CΣ → R on CΣ, given by

σ ((φf , πf ), (φg, πg))
.
=

∫
Σ

dµh(φfπg − πfφg),

where dµh is the induced volume element on Σ. One can show that σ is strongly nondegen-
erate, which means that σ ((φf , πf ), (φg, πg)) = 0 for all (φf , πf ) ∈ CΣ implies (φg, πg) = 0.
Furthermore, σ is independent of the Cauchy surface, since it can also be written as

σ ((φf , πf ), (φg, πg)) =

∫
M
fEgdµg

.
= s(Φf ,Φg),

as shown e.g. in [Dim80]. Thus, S,L and CΣ are symplectic vector spaces and the maps between
them are symplectomorphisms. We would like to remark that the causal propagator E can also
be viewed as an antisymmetric bidistribution on D(M), by setting

E(f, g)
.
=

∫
M
fEgdµg.

Now let us turn to the observables of our classical field theory. Just like in classical mechanics,
where observables are functions on the (finite dimensional) phase space, in classical field theory
they are nothing but functionals on the infinite dimensional phase space, which is our solution
space S. Observables which are linear in Φ can be constructed using the symplectic form and
test functions f via the definition

Ff
.
= s(Φf , .)

.
= Φ(f).

Note that also the assignment f 7→ Φ(f) is linear and has to be distinguished from the map
f 7→ Φf . If the field is in the (pure) state2 Ψ, the outcome of a measurement of Ff will be given
by s(Φf ,Ψ) =

∫
M fΨdµg, which corresponds to a spacetime average of the field configuration

Ψ w.r.t. to the weighting function f . For f → δx we obtain a sharp measurement of the field
strength at the point x. We may also switch to the equal time picture via the symplectomorphism
ρ, giving rise to the definition

F̃f = σ ((φf , πf ), .)

of F̃f . When choosing f in such a way that πf = 0, then the evaluation of F̃f in the state Ψ is

σ ((φf , 0), ρ(Ψ)) =

∫
Σ
φfN

a∇aΨdµh,

which corresponds to the averaged momentum of Ψ on Σ w.r.t. the density φf . It can be shown
(for a thorough discussion see [Wal94]) that for these fundamental observables the Poisson
bracket of observables on CΣ can be written in the form

{F̃f , F̃g} = σ((φf , πf ), (φg, πg)). (2.2)

2Recall that in classical physics, a state is a normalised positive measure on phase space. A pure state corresponds
to an element of phase space which can be identified with a solution of the equations of motion.

13



2. Quantum Field Theory on Curved Spacetimes

Indeed, choosing this time the observables such that φf = 0 and πg = 0, and applying3 (2.2) to
generic Cauchy data (φ, π) on Σ we get{∫

Σ
πfφdµh,

∫
Σ
φgπdµh

}
=

∫
Σ
πfφgdµh.

With πf → δx, φg → δy we finally obtain

{φ(x), π(y)} = δ(x, y),

where the δ–distributions used here are defined w.r.t. the measure dµh on Σ. Thus we recover
(on a formal level) the expected Poisson bracket for the canonical conjugate variables (φ, π).
To summarise, the observables carry the structure of an associative Poisson algebra, generated
by the fundamental observables Φ(f), which can be viewed as compactly supported smooth
distributions on S.

2.2. Canonical Quantisation of the Free Scalar Field

Having discussed the structure of the classical free field theory in the last section, we turn now to
the quantisation of the theory, which will be guided by the canonical formalism. This formalism
basically consists in linearly mapping the commutative subalgebra of fundamental classical field
observables into a non commutative algebra A(M, g),

Φ(f) 7→ Φ̂(f),

where the commutation relations in A(M, g) are derived by the Poisson bracket of the classical
counterpart. Thus, our fundamental quantised field observables should fulfil

C∞0 (M,R) 3 f 7→ Φ̂(f) ∈ A(M, g) is R− linear

Φ̂((�g +m2)f) = 0 ∀ f ∈ C∞0 (M,R)

Φ̂(f)∗ = Φ̂(f)

[Φ̂(f), Φ̂(g)] = iE(f, g).

Since from now on we deal with quantum observables, we will skip the hat over such objects for
the sake of notational simplicity. The quantum field algebra A(M, g) should now be a unital
∗–algebra generated by the objects Φ(f) and obeying the above relations. A straightforward
way to construct A(M, g) is given by going over to the Borchers–Uhlmann–algebra:

Definition 2.2.1. The Borchers–Uhlmann–algebra of the neutral Klein Gordon field is defined
as

A(M, g) = A0(M, g)/I(M, g).

A0(M, g) is the free tensor algebra over D(M),

A0(M, g) =

∞⊕
n=0

D(Mn)

3Note that the r.h.s. of (2.2) is a multiple of the constant function on CΣ.
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2.2. Canonical Quantisation of the Free Scalar Field

with D(M0)
.
= C and only elements of A0(M, g) with finitely many entries are allowed. On

A0(M, g) we define an involution ∗ by antilinear extension of f∗(x1, ..., xn) = f(xn, ..., x1) for
f ∈ D(Mn). I(M, g) is the ∗–ideal generated by elements of the form −iE(f, g)⊕(f⊗g−g⊗f)
and Pf .

We would like to add a few remarks on this definition. Elements of A0(M, g) can be thought of
as vectors f , the nth entry f (n) being an element in D(Mn). The multiplication of two elements
in A0(M, g), f = (α, f (1), f (2), ...) and g = (β, g(1), g(2), ...) reads

fg = (αβ, αg(1) + βf (1), f (1)g(1) + αg(2) + βf (2), ...).

Moreover, A0(M, g) carries a natural topology. A sequence fk is said to converge to 0 in
A0(M, g) if all entries converge to 0 in the locally convex topology of D(Mn) and if there is

an N such that f
(n)
k = 0 for all n > N and for all k. A(M, g) then inherits the corresponding

quotient topology. We may also define a local algebra A(O, g �O) by requiring f (n) ∈ D(On).
Obviously, the unit element is given by (1, 0, 0, ...). To make contact with the aim of generating an
algebra out of the Φ(f), note that we can identify the element (0, f, 0, ...) with Φ(f), (0, 0, f ⊗g)
with Φ(f)Φ(g) and so forth.

We have thus constructed the free field algebra in a purely algebraic manner, i.e. without
any recourse to some Hilbert space representation. So far, our fields Φ(f) are nothing but
distributions with values in a non commutative topological ∗–algebra. For our purposes it is
sufficient to have a ∗−algebra (i.e. without norm), whose Hilbert space representation yields
unbounded field operators. We just mention here that one can also construct a C∗− algebra
for the field in a unique manner, the so–called Weyl algebra (see e.g. [Dim80] for details). Its
representation yields bounded operators on a Hilbert space H, with the advantage of avoiding
subtle domain questions. In the sequel, A(M, g) will always refer to the Borchers–Uhlmann
algebra defined above.

It is obvious that the construction of A(M, g) works for every globally hyperbolic spacetime.
Consider now an isometric embedding ψ : N → M of a globally hyperbolic spacetime (N , h)
into (M, g), which is also globally hyperbolic. Assume furthermore that ψ preserves orientation
and time orientation and is causal, i.e. if x, x′ ∈ N , then all causal curves connecting ψ(x)
and ψ(x′) in M are contained in ψ(N ). We can then define an algebra homomorphism αψ :
A(N , h)→ A(M, g) via αψ(Φ′(f ′)) = Φ(ψ−1

∗ f ′), with f ′ ∈ D(N ). Now, regarding the quantum
field Φ as a map Φ(M,g) : D(M)→ A(M, g) defined for all spacetimes (M, g), we require

αψ ◦ Φ(N ,h)(f
′) = Φ(M,g)(ψ

−1
∗ f ′)

for all isometric causal embeddings ψ : (N , h)→ (M, g). Such Φ is then called a locally covariant
quantum field. Note that this notion of local covariance refers to the particular observable Φ.
The observable Φ(f) itself is obviously locally covariant. The idea behind the notion of locally
covariant observables is that they can be constructed in an arbitrarily small region O, without
the knowledge of the spacetime outside O. We will return to this issue when discussing the
energy–momentum tensor.
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2. Quantum Field Theory on Curved Spacetimes

2.3. States

In order to do physics with our quantised field, we have to turn to the notion of states, which is
defined as follows:

Definition 2.3.1. A state on the ∗-algebra A is a normalised positive linear continous functional
ω on A, that is

1. ω(1) = 1

2. ω(A∗A) ≥ 0 ∀A ∈ A

Given a state ω on A(M, g), we can define the n–point–functions Wω
n by

Wω
n (f1, ..., fn)

.
= ω(Φ(f1)...Φ(fn)),

which extend to distributions on D(Mn) by continuity of ω and the Schwartz kernel theorem.
Conversely, if all n–point–functions are given, ω is determined on the whole of A(M, g). The
following definition will provide some notions pertaining to states that will be worked with in
the sequel:

Definition 2.3.2.
• A state ω on A(M, g) is called quasifree or Gaussian state if its n–point–functions

satisfy

Wω
n (f1, ..., fn) =

{∑
p∈Pn

∏
(i,j)∈pWω

2 (fi, fj) n even

0 n odd

where Pn denotes all possible partitions p of {1, ..., n} in pairs (i, j) with i < j and the
product is performed over all pairs of such a partition.

• ω is called pure if it cannot be written as a convex combination

λω1 + (1− λ)ω2, λ < 1

of two other states ωi 6= ω. Otherwise it is called mixed.

Quasifree states are convenient to work with, since they are entirely characterised by their two–
point–function. Important examples are the Minkowski vacuum state and the states of low
energy, which will be introduced later. A prototype for mixed states are thermal states, such as
the Unruh state, obtained by restricting the Minkowski–vacuum to the Rindler wedge. We will
only be concerned with pure states, which can also be thought of as states carrying maximal
information about a physical system. A very important link to the usual formalism of QFT
involving a Hilbert space structure is given by the famous GNS theorem:

Theorem 2.3.3. Let ω be a state on A(M, g). Then there exists a unique (up to unitary
equivalence) representation π of A(M, g) by linear operators on a dense domain D of some
Hilbert space H and a normalised vector Ω ∈ D such that

ω(A) = (Ω, π(A),Ω)

and D = {π(A)Ω, A ∈ A(M, g)}.
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Proof. We will only sketch the important steps of the proof. The state ω induces a scalar product
on A(M, g) via

(A,B)
.
= ω(A∗B),

which is hermitean, i.e. (A,B) = (B,A), and positive semidefinite due to the positivity of ω.
Next we introduce the Gelfand ideal G .

= {A ∈ A(M, g) : ω(A∗A) = 0}, which is a left ideal
of A(M, g), i.e. G is a subspace of A(M, g) and BA ∈ G for A ∈ G and B ∈ A(M, g). Thus,
(., .) is positive on the quotient space D .

= A(M, g)/G and we can complete D w.r.t. the norm
provided by (., .) to obtain the Hilbert space H. The representation of A ∈ A(M, g) on D is
now defined by

π(A)[B] = [AB],

[.] denoting equivalence classes. Defining Ω
.
= [1] yields the desired identity (Ω, π(A)Ω) =

([1], [A]) = ω(A). Finally, if (H′,D′, π′,Ω′) constitutes another such representation one checks
that U : D → D′, defined by

Uπ(A)Ω
.
= π′(A)Ω′

extends to a unitary operator from H to H′.

The GNS–construction leads quite naturally to the famous Fock space structure of our scalar
bosonic theory. Note that due to the commutation relations incorporated in the ideal I(M, g)
in definition (2.2.1), all elements of A(M, g) lie in the equivalence class of elements whose n−th
entry are symmetric test functions in D(Mn). If we consider the quasifree Minkowski vacuum
ωMink on A(R4, η), the corresponding null space of the induced scalar product from the GNS
construction will consist of elements f of A(R4, η), where the Fourier transform f̂ (n)(p1, ..., pn) of
the n−th entry f (n)(x1, ..., xn) of f vanishes if one of its momenta satisfies p2

0−p = m2; p0 > 0.
Thus, vectors in the dense domain D of the corresponding GNS Hilbert space will be equivalence
classes [v] of vectors v ∈ A(R4, η) whose entries, when restricted to the upper mass shell, are
nonzero. They can then be interpreted as n− particle wave functions.

The GNS construction gives rise to the notion of the folium of a state ω. Namely, Fol(ω)
consists of all states which can be realised as vectors or density matrices on the GNS Hilbert
space of ω. An important concept which links the GNS representation of a quasifree state with
a representation of the field on a Fock space is the so called one particle Hilbert space structure:

Definition 2.3.4. Let K be a Hilbert space and k : V → K a real linear map on the symplectic
vector space (V, σ) with the property

Im〈k (f), k (g)〉 =
1

2
σ(f, g)

for all f, g ∈ V. Then (k ,K) is a one particle Hilbert space structure for (V, σ).

Given such a one particle Hilbert space structure (k ,K), we can construct a Fock representation
of the field algebra A(M, g) by taking the symmetric Fock space Fs(K) over K and setting
π(Φ(f)) = a†(k ([f ])) + a(k ([f ])), where a† and a denote the usual creation and annihilation
operators on Fs(K). Moreover, the vacuum vector |0〉 defines a quasifree state on A(M, g).
Conversely, given a quasifree state ω we can always find a one particle Hilbert space structure
(k ,K) where ω is represented by |0〉 in the corresponding Fock space representation. For details
of this construction see the discussion in [Wal94]. We will come back to this issue later when
giving the explicit form of (k ,K) for a pure quasifree isotropic and homogenous state.
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2. Quantum Field Theory on Curved Spacetimes

2.3.1. Hadamard States

After having quantised our scalar field on an algebraic level and having introduced the concept of
states, there remains the question how to characterise physically admissible states. In Minkowski
space this is rather straightforward, since there is a unique vacuum state ωMink which is invariant
under all isometries of the spacetime and carries the lowest possible energy. Moreover, all states
in its folium have an interpretation in terms of particles. This situation changes when we
consider QFT on general spacetimes. Since spacetime symmetries will then generally be absent,
they cannot be used to single out a preferred vacuum state. For the same reason, there is
also no unique particle interpretation. Apart from that, we want to define expectation values
of observables like : Φ2 : and : Tab :. We know already from Minkowskian theory that, in
order to define such objects, we have to subtract an infinite counterterm, which can be achieved
by a manipulation called normal ordering. On Minkowski, space this manipulation relies on
the existence of the unique vacuum state. Therefore, on generic spacetimes a more abstract
characterisation for physical states is needed. It turnes out that the Hadamard condition for a
state ω is a necessary and sufficient requirement in order to define expectation values of field
products at the same point. One may reach at this condition by requiring that, locally, ω should
“look like” the Minkowski vacuum. We want to make this idea precise for the example of ωMink

of the massless scalar field. Its two–point function in position space reads

ωMink(Φ(f)Φ(g)) = lim
ε↓0

1

4π2

∫
R4

∫
R4

dx4dy4 f(x)g(y)

−(x− y)2 + 2iε(x0 − y0) + ε2
. (2.3)

The idea is now to generalise this expression to an arbitrary curved spacetime M. To this end,
we choose a time function T :M→ R and define the function

σε : (x, y) 7→ σ(x, y) + 2iε(T (x)− T (y)) + ε2,

where σ denotes the signed4 squared geodesic distance between x and y. According to (2.3), we
then require that the leading singularity of a physically sensible state should be proportional to
σ−1
ε . Setting

G .
= lim

ε↓0

1

4π2

(
∆1/2

σε
+ V log

( σε
L2

))
, (2.4)

this leads to the local ansatz5

Wω
2 = G +Wω,

where ∆1/2, V and Wω are supposed to be smooth functions and L is a constant with the dimen-
sion of length. The appearance of the logarithmic term in the singular part G is a consequence
of the fact that Wω

2 must be a bisolution of the Klein–Gordon operator. Namely, this condition
implies

PG ∈ E(M2) (2.5)

G is called Hadamard parametrix, where “parametrix” means that G defines an equivalence class
of distributive solutions of (2.1), the equivalence relation being to differ by a smooth function.
Using the property [Fri75]

gab(∇aσ)(∇bσ) = −4σ (2.6)

4Signed means that σ(x, y) is negative if x and y can be connected by a timelike geodesic.
5It is only defined on a gedesically convex neighborhood.
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2.3. States

and making the ansatz

V =
1

L2

∞∑
j=0

vj

( σ
L2

)j
,

equation (2.5) leads to the following system of partial differential equations, the so called
Hadamard recursion relations:

2gab(∇aσ)∇b∆1/2 + (8 +�gσ)∆1/2 = 0 (2.7)

2gab(∇aσ)∇bv0 + (4 +�gσ)v0 = −L2P∆1/2 (2.8)

2(j + 1)gab(∇aσ)∇bvj+1 + (j + 1)(�gσ − 4j)vj+1 = −L2Pvj (2.9)

Imposing the initial condition ∆1/2(x, x) = 1 (which follows from comparison with the Minkowski
case), this system of equation has uniquely determined solutions [BGP07; Mor99]. However, the
representation of V by a power series in σ is only known to exist on analytic spacetimes. That
is why one truncates the series for V at some finite k,

V (k) .
=

1

L2

k∑
j=1

vj

( σ
L2

)j
, (2.10)

and defines the distribution Gk by replacing V by V (k) in (2.4). We are now prepared to define
the notion of a Hadamard state on A(M, g):

Definition 2.3.5. A state ω on A(M, g) is called Hadamard if for any geodesic convex neigh-
borhood N of any given point x ∈ M one can find a sequence Wω

k ∈ Ck(N ×N ) such that its
two point distribution can be written as

Wω
2 (f, g) = Gk(f, g) +

∫
N×N

Wω
k (x, x′)f(x)g(x′)dµg(x)dµg(x

′). (2.11)

By means of (2.7) one can always compute Gk and does not have to worry about convergence
questions of the expansion of V . The dependence of Wω

2 on the state ω is encoded in the
series Wω

k . In [KW91] it was proven that Gk does not depend on the choice of the time func-
tion T entering in the definition of σε, so it does not appear in definition 2.3.5. Apart from
this characterisation of Hadamard states in position space, there is an equivalent one due to
Radzikowski [Rad96], which is formulated in the language of microlocal analysis. It imposes a
certain condition on the wavefront set of the two–point distribution of ω. We will include it in
our exposition, since it will play an important role in the proof of Fewster’s energy inequality,
which is the original motivation for the construction of SLE’s. In order to formulate this mi-
crolocal characterisation, we need to introduce some facts about distributions on manifolds and
the analysis of their singularities. A standard reference for this topic is [Hör90]. We start with
distributions on Rn. On D(Rn) we have a natural topology, defined as follows: A sequence fj is
said to converge to 0 in D(Rn) if there exists a compact set K ⊂ Rn with suppfj ∈ K for all j
and if for every multi index α = (α1, ..., αn) ∈ Nn0 we have

lim
j→0

sup|Dαfj | = 0,

19



2. Quantum Field Theory on Curved Spacetimes

where

Dα .
=

(
∂

∂x1

)α1

...

(
∂

∂xn

)αn
.

The space of distributions on Rn is then defined as the topological dual of D(Rn), that is the
continous linear maps T : D(Rn)→ R, for which we write D′(Rn). There is a natural embedding
D(Rn)→ D′(Rn) by setting

Tf (g)
.
=

∫
Rn

dnxf(x)g(x).

Such distributions are called smooth. Given T ∈ D′(Rn) one can ask if it is smooth at p ∈ Rn.
For h ∈ D(Rn), define hT (f)

.
= T (hf). We say that T is smooth at p if there exist h ∈ D(Rn)

with h(p) = 1 and φ ∈ E(Rn) such that hT (f) =
∫
f(x)h(x)φ(x)dnx for all f ∈ D(Rn). We

denote all points p at which T is smooth by {C∞T} and define the singular support of T by

sing supp(T )
.
= Rn \ {C∞T},

which is a closed set. However, the singular support gives no information about the directions
of the singularity at p ∈ sing supp(T ). This can be achieved by looking at the Fourier transform

ĥT of T , localised around p (i.e. p ∈ supph). Since hT has compact support, ĥT is smooth. If

T were smooth at p, then then ĥT would be of fast decrease. If p ∈ sing suppT , one can analyse
in which directions ĥT does not decrease rapidly. We now want to make this idea precise. The
Fourier transform on D(Rn) is defined by

f̂(k)
.
= (2π)−n/2

∫
f(x)eikxdnx, (2.12)

where kx is here the usual euclidean product in Rn. (2.12) extends to distributions via

T̂ (f)
.
= T (f̂).

Definition 2.3.6. Let T ∈ D′(Rn) and (p, k) ∈ Rn× Ṙn, where Ṙn .
= Rn \ 0. The point (p, k) is

called regular directed if for some h ∈ D(Rn) with h(p) = 1 there exists an open neighborhood
V ⊂ Ṙn of k such that

sup
k′∈V
|ĥT (τk′)| ∼ O(τ−N )

for all N ∈ N as τ →∞. The set of all regular directed points of T is called {regdT}.

Now we can introduce the central notion of the wavefront set of a distribution:

Definition 2.3.7. The wavefront set of a distribution T ∈ D′(Rn) is defined by

WF (T )
.
= Rn × Ṙn \ {regdT}.

The following proposition collects some important properties of wavefront sets of distributions
in D′(Rn), whose proves can be found in [Hör90]:

Proposition 2.3.8.

1. sing suppT = {x ∈ Rn : (x, k) ∈WF (T )}
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2.3. States

2. Let P be a partial differential operator with smooth coefficients. Then WF (PT ) ⊆WF (T ).

3. Let U, V ⊂ Rn, T ∈ D′(V ) and ϕ : U → V a diffeomorphism. The pullback ϕ∗T , defined
by ϕ∗T (f) = T (ϕ∗f) for all f ∈ D(U) fulfils

WF (ϕ∗T ) = ϕ∗WF (T ) = {(ϕ−1(x), ϕ∗k) : (x, k) ∈WF (T )}.

The third statement says that the wavefront set transforms like covectors under coordinate
transformations, which means that the wavefront set of T is a subset of the cotangent bundle.
Therefore the concept of wavefront sets can be used in a meaningful way for distributions on a
general manifold M, since it is independent of the chosen chart.

As mentioned above, we want to find a criterion on the wavefront set of the two–point dis-
tribution of ω in order to be a Hadamard state. We return to ωMink of the massless Klein–
Gordon field. From its position space representation (2.3) we infer that (x, y) ∈ sing suppW2 ⇔
(x− y)2 = 0. Its Fourier representation is given by

W2 = (2π)−2

∫
d4pδ(p2)Θ(p0)e−ipx,

where we put y = 0. We localise W2 with h ∈ D(R4) and take the Fourier transform,

ĥW2(p) =
(
ĥ ∗ Ŵ2

)
(p) = (2π)−4

∫
d4qĥ(q)Ŵ2(p− q).

Since Ŵ2 has support on the boundary of the forward light cone V+ and ĥ decreases rapidly
in all directions, it follows that the only directions in which ĥW2(p) is not of rapid decrease
are given by lightlike future directed covectors p. Repeating the same argument for W2 when
regarded as distribution in two independent variables (x, y) we get the result that for singular
directions (k, k′) at (x, y) with (x − y)2 = 0 it must hold k = −k′. The wavefront set of W2 of
the massless Klein Gordon field on Minkowski space therefore reads

WF (W2) = {(x, y, k,−k) ∈ Rn × Ṙn : (x− y)2 = 0, k2 = 0, k||(x− y), k0 > 0}.

The fact that k0 > 0 reflects the positivity of the energy, also known as the relativistic spectrum
condition

specPµ ⊂ V+,

that has to be satisfied by the representors of the generators of translations in the GNS repre-
sentation of the vacuum.

To proceed, we introduce the notation

N .
= {(x, k) ∈ Ṫ ∗M : gab(x)kakb = 0}

Furthermore, we write (x, k) ∼ (x′, k′) for (x, k), (x′, k′) ∈ Ṫ ∗M iff there exists a null geodesic γ
connecting x with x′ such that k and k′ are cotangent to γ and k′ is the parallel transport of k.
We can now state the following proposition [Hör90]:
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2. Quantum Field Theory on Curved Spacetimes

Proposition 2.3.9. Let Λ ∈ D′(M2) be a distributive bisolution of P on the globally hyperbolic
spacetime (M, g). Then

1. WF (Λ) ⊂ N ×N

2. (x, k;x′, k′) ∈ WF (Λ) with k, k′ 6= 0 ⇒ (y, l; y′, l′) ∈ WF (Λ) for all (y, l) ∼ (x, k) and
(y′, l′) ∼ (x′, k′).

If Λ is the two point function of a Hadamard state, we already know that its singular support
contains only elements (x, x′) which are lightlike related. Furthermore, from the wavefront set of
W2 for ωMink of the massless Klein–Gordon it follows that the corresponding singular directions
are antiparallel, where the first one must be future directed. One might thus expect that it is
exactly this last condition on the wavefront set that the two point function of a Hadamard state
has to satisfy. Indeed, Radzikowski [Rad96] could prove the following equivalence:

Proposition 2.3.10. Let ω be a state on A(M, g) and Wω
2 be its two–point function. Then the

following statements are equivalent:

1. WF (Wω
2 ) = {(x, k;x′,−k′) ∈ Ṫ ∗M× Ṫ ∗M : (x, k) ∼ (x′, k′), k B 0}

2. ω is a Hadamard state in the sense of definition 2.3.5.

Because of the condition k B 0, the microlocal characterisation of Hadamard states is also called
microlocal spectrum condition, since it generalises the positivity of energy in a local way.

2.3.2. Pure Quasifree Isotropic and Homogenous States on FRW Spacetimes

After having discussed the general aspects of states, we return to the class of spatially flat FRW
spacetimes. We would like to characterise the class of isotropic homogenous quasifree and pure
states. Since such states are entirely characterised by their two–point distribution Wω

2 , the
symmetry requirement can be formulated as follows:

Definition 2.3.11. Let (M, g) be spatially flat FRW spacetime and let E(3) denote its isometry
group. A quasifree state ω on A(M, g) is homogenous and isotropic (we will also say E(3)–
invariant) if

Wω
2 (f, h) =Wω

2 (f ◦ g−1, h ◦ g−1)

for all g ∈ E(3) and for all f, h ∈ D(M).

Lüders and Roberts derived the the general form of isotropic homogenous quasifree and pure
states. We will state their result for such states on spatially flat FRW spacetimes [LR90, Theorem
2.3.]

Theorem 2.3.12. Let (M, g) be a spatially flat FRW spactime. The quasifree pure homogenous
and isotropic states ω on A(M, g) are given by the two–point function

Wω
2 (f, g) =

∫
R3

(
Êf(t0,k) ∂̂tEf(t0,k)

)
S(k)

(
Êg(t0,k) ∂̂tEg(t0,k)

)t
d3k,
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where k
.
= |k|, the spatial Fourier transform is defined as

f̂(k) =
1

(2π)
3
2

∫
f(x)e−ikxd3x

and the matrix S(k) is given by

S(k)
.
=

(
a6(t0)|q(k)|2 a3(t0)q(k)p(k)
a3(t0)p(k)q(k) |p(k)|2

)
.

p and q are bounded measurable functions on R3 satisfying qp − qp = i and t0 is an arbitrary
initial time.

Remark 2.3.13. The causal propagator (for the case Σ = R3) is explicitly given by

(Ef)(t,x) =
1

(2π)3

∫
R3

d3k

∫
I

dt′Gk(t, t
′)a3(t′)

∫
R3

d3x′eik(x−x′)f(t′,x′)

where Gk(t, t
′) = i

(
Sk(t

′)Sk(t)− Sk(t)Sk(t′)
)

and the mode function Sk(t) is a solution of the
time part of the Klein–Gordon equation,

S̈k(t) + 3
ȧ(t)

a(t)
Ṡk(t) +

(
m2 + k2a−2(t)

)
Sk(t) = 0, (2.13)

fulfilling the constraint

SkṠk − SkṠk = ia−3. (2.14)

Note that Gk(t, t
′) is independent of a specific choice of Sk(t) due to (2.14). Now given a pure,

quasifree, isotropic and homogenous state, characterised by the functions q and p from the above
theorem, we may single out mode functions Tk(t) by imposing the following initial conditions at
t0:

Tk(t0) = −p(k)a−3(t0), Ṫk(t0) = q(k). (2.15)

In the sense of distributions, Wω
2 (x, x′) is then given as

Wω
2 (x, x′) =

1

(2π)3

∫
R3

d3kT k(t)Tk(t
′)eik(x−x′). (2.16)

The information about the state is therefore contained in the specification of the modes Tk(t).

Via equation (2.15), the state ω can be seen as being equivalent with the choice of a set of
preferred modes (sometimes called “positive frequency modes”). With the help of these modes,
or equivalently, their initial conditions, we can define the following one particle Hilbert space
structure: For f ∈ D(M) set

k ([f ]) =iq(k)a3(t0)Êf(t0)(k) + ip(k) ̂(∂tEf)(t0)(k)

=ia3(t0)
(
Ṫk(t0)Êf(t0)(k)− Tk(t0) ̂(∂tEf)(t0)(k)

)
.

(2.17)

k ([f ]) ∈ L2(R3) = K can be interpreted as one particle wave function in spatial momentum
space. This construction gives the explicit representation of A(M, g) on the symmetric Fock
space Fs(L2(R3)), induced by the quasifree state ω of the above theorem.
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2. Quantum Field Theory on Curved Spacetimes

2.4. The Renormalised Stress–Energy–Tensor

The algebra A(M, g) of the Klein Gordon field contains only sums of products of the field
at different points. However, we want to be able to calculate expectation values of quantum
observables which are the counterparts of classical quantities like φ2(x) or the energy–momentum
tensor Tab(x), which is also quadratic in the field and its derivatives. In Minkowski space,
this is done by normal ordering using the unique vacuum state ωMink. In the corresponding
GNS representation, the quantum field is represented as the sum of creation and annihilation
operators,

Φ(f) = a†(k ([f ])) + a(k ([f ])).

One then defines normal ordered products of fields by putting all creation operators to the left:

: Φ(f)Φ(g) :

=: a†(k ([f ]))a(k ([g])) + a(k ([f ]))a(k ([g])) + a†(k ([f ]))a†(k ([g])) + a(k ([f ]))a†(k ([g])) :
.
= a†(k ([f ]))a(k ([g])) + a(k ([f ]))a(k ([g])) + a†(k ([f ]))a†(k ([g])) + a†(k ([g]))a(k ([f ])),

which is equivalent to
: Φ(f)Φ(g) := Φ(f)Φ(g)−W2(f, g). (2.18)

The expectation value of : Φ2(x) :, evaluated in an arbitrary state λ in the folium of ωMink is
then a smooth function of x, since λ and ωMink are both Hadamard states. One may now try
to generalise this prescription to curved spacetimes by taking an arbitrary Hadamard state ω0

as reference state and replacing W2 by Wω0
2 in formula (2.18). However this will not yield a

locally covariant quantum field, as shown in [HW01]. Instead, the authors of [HW01] constructed
locally covariant Wick powers by using G instead of Wω

2 of some Hadamard state ω for normal
ordering. By imposing further physical requirements like scaling behaviour and commutation
relation with the free field, they could show that renormalisation ambiguities already arise for
the definition of the Wick polynomials. For instance, two prescriptions for the Wick square are
related by

: Φ̃2(x) :=: Φ2(x) : +αm2 + βR,

i.e. we have a two-parameter renormalisation ambiguity. This is in sharp contrast with the
situation in Minkowski space. There such ambiguities arise only on the level of time ordered
products, that is, for the interacting field. To summarise, it is possible to construct an enlarged
algebra of observables W(M, g), which contains in particular the quantum energy–momentum
tensor : Tab : and is subject to renormalisation ambiguities already for free fields. However, the
admissible states on W(M, g) have to be Hadamard.

For our purposes it is sufficient to work with A(M, g) and to define expectation values of
products of fields at one point via the Hadamard point–splitting procedure. According to (2.18),
but using G instead of the two point function of a reference state, for a Hadamard state ω on
A(M, g) one defines

ω(: Φ2(x) :)
.
= lim

y→x
(Wω

2 (x, y)− G(x, y)) .

This quantity depends manifestly only on the state, since G(x, y) is constructed out of the local
geometry of (M, g). Here, one part of the ambiguity mentioned above can already be seen by
changing the lengthscale in the definition of G. Now, a similar ansatz can be made in order to
define ω(: Tab :). We first want to state an important uniqueness theorem due to Wald:
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Theorem 2.4.1. Let ω(: Tab :) : S(A(M, g))→ E(M) be a map from the states on A(M, g) to
the smooth functions on M, which satisfies the following conditions:

1.

ω1(: Tab :)− ω2(: Tab :)

= lim
x′→x

(
∇a ⊗ Y b′

b (x, x′)∇b′ −
1

2
gab(x)

(
gcd(x)∇cY d

e′(x, x
′)∇e′ −m2

))
F (x, x′)

where F (x, x′)
.
=Wω1

2 −W
ω2
2 and Y b

e′(x, x
′) denotes the bitensor which identifies the tangent

spaces at x and x′ via parallel transport along the unique geodesic linking x and x′ (for all
point–splitting constructions we can always restrict to some convex geodesic neighborhood
N ).

2. ∇aω(: Tab :) = 0 for all ω.

3. Let (M, g) and (M′, g′) be two globally hyperbolic spacetimes. Let y ∈ M and let O be a
globally hyperbolic neighborhood of y, such that O∩Σ is a Cauchy surface for O, where Σ
is a Cauchy surface for (M, g). Let i : O → O′ ⊆ M′ be an isometry, where i(O ∩ Σ) is
a Cauchy surface of the form O′ ∩ Σ′, with Σ′ a Cauchy surface of M′. Let furthermore
ω, ω′ be states on A(M, g) and A(M′, g′), respectively, such that

ω �A(O,g)= ω′ �A(O′,i∗g) .

Then there should hold
ω(: Tab(y) :) = i∗ω

′(: Tab(i(y)) :).

Now consider two such maps ω(: T
(1)
ab :) and ω(: T

(2)
ab :). Then their difference

Cab
.
= ω(: T

(1)
ab :)− ω(: T

(2)
ab :)

is independent of ω, ∇aCab = 0 and Cab depends only on gab and its derivatives at x.

The last condition in the above list requires ω(: Tab :) to be a locally covariant tensor field.
The appropriate condition for the observable Tab itself would require it to be a locally covariant
quantum field. This was one of the underlying ideas towards the formulation of locally covariant
QFT ([HW01; BFV03]). On the level of expectation values, this principle entails that, like
for the definition of ω(: Φ2 :), we should invoke a point–splitting subtraction scheme using
the Hadamard parametrix G rather than a reference state. So let us construct such a map
ω 7→ ω(Tab(x)) fulfilling the above requirements. Clearly, the first one is motivated by the
canonical form of the classical expression Tab, which is given by

Tab
.
=

2√
|det(gab)|

δSKG
δgab

,
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where SKG denotes the action of the Klein–Gordon field [Wal84]. For the case of minimal coupling
(ξ = 0) we obtain

Tab = ∇aφ∇bφ−
1

2
gab
(
∇cφ∇cφ−m2φ2

)
. (2.19)

Now define the bidifferential operator

Dab(x, x
′)
.
= ∇a ⊗ Y b′

b (x, x′)∇b′ −
1

2
gab(x)

(
gcd(x)∇cY d

e′(x, x
′)∇e′ −m2

)
. (2.20)

In the following, we will often consider coincidence limits x→ x′ of bitensors, for which we use
the notation

[f(x, x′)]
.
= lim

x′→x
f(x, x′).

Now set

ω
(

: T̃ab :
)
.
= [Dab(Wω

2 (x, x′)− G(x, x′))],

which obviously fulfils the first requirement. However, it turns out that

∇aω
(

: T̃ab :
)

= −1

3
∇agab[PxG(x, x′)],

which is in conflict with the second requirement. We thus redefine6

ω(: Tab :)
.
= ω

(
: T̃ab :

)
+

1

3
gab[PxG] + Cab, (2.21)

which now fulfils all wanted conditions. It turns out that, upon imposing further reasonable
conditions7 on Cab, its most general form is

Cab = Am4gab +Bm2Gab + ΓIab + ∆Jab,

where the tensors Iab and Jab were introduced in chapter 1. They can be calculated as

Iab =2∇a∇bR+ 2RRab − gab
(

1

2
R2 + 2�gR

)
Jab =−�gRab −

1

2
gab(RcdR

cd +�gR) +∇b∇aR+ 2RcdRcadb.

A,B,Γ and ∆ are a priori undetermined dimensionless renormalisation parameters, which have
to be fixed by comparison with experiment and/or other physical arguments8.

6An alternative way proposed in [Mor03] consists in adding the term 1
3
φPφ to the classical energy–momentum

tensor, thus altering the bidifferential operator Dab(x, x
′) by adding the term 1

3
gabPx. We will calculate this

quantity in the appendix.
7It should of course have mass dimension 4 and be analytic in Rabcd and m, see [HW05]
8An example is the requirement that the above construction reduces to the normal ordering prescription known

from Minkowski QFT. This would fix A as a function of the chosen length scale L.
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2.4.1. A General Worldline Quantum Inequality

In this subsection we would like to review the general worldline inequality for the minimally
coupled Klein–Gordon field on a globally hyperbolic spacetime, which is due to Fewster [Few00].
Apart from being the original motivation for the construction of SLE’s by Olbermann, it provides
a nice illustration of the power of the microlocal characterisation of Hadamard states. Consider
a globally hyperbolic spacetime (M, g) and an observer, described by a smooth timelike curve
γ : R ⊇ I →M with unit tangent vector ua(t) at γ(t). The (classical) energy density measured
by this observer is given by ρ(t) = ua(t)ub(t)Tab(γ(t)), with Tab given by (2.19). In a tubular
neighborhood of γ we may introduce a smooth orthonormal frame, i.e. a collection of smooth
vector fields {vaµ}3µ=0 satisfying gab = ηµνvaµv

b
ν and va0(γ(t)) = ua(t). The classical expression for

ρ(t) in the field configuration φ then reads

ρ(t) =
1

2

3∑
i=0

(
vai∇aφvbi∇bφ

) ∣∣
γ(t)

+
1

2
m2φ2(γ(t)),

which is the restriction of the point split quantity

ρ(t, t′) =
1

2

(
3∑
i=0

vai (γ(t))vb
′
i (γ(t′))

)
∇aφ|γ(t)∇b′φ|γ(t′) +

1

2
m2φ(γ(t))φ(γ(t′))

to the diagonal t = t′. In order to define it as expectation value in the Hadamard state ω, we
proceed in the same way like in the definition of the quantised stress–energy tensor. Defining
the map χ : (t, t′) 7→ (γ(t), γ(t′)), we set

ω(ρ)(t, t′) =
1

2

3∑
i=0

χ∗

(
vai∇a ⊗ vbi∇bWω

2

)
+

1

2
m2χ∗Wω

2 , (2.22)

χ∗ denoting the pullback of bidistributions fromM×M to R2. It can be rigorously defined9 if
Nχ ∩WF (Wω

2 ) = ∅, where Nχ is the set of normals associated with χ, i.e.

Nχ = {(γ(t), k; γ(t′), k′) : kau
a(t) = 0 = k′bu

b(t′)}.

The above condition is certainly met in our case since γ is timelike and covectors in WF (Wω
2 )

are lightlike. The wavefront set of the pullback of Wω
2 satisfies

WF (χ∗Wω
2 ) ⊂ {(t, ξ; t′,−ξ′) : ξ, ξ′ > 0}.

The same condition is satisfied by

WF

(
χ∗

3∑
i=0

(
vai∇a ⊗ vb

′
i ∇b′Wω

2

))
,

since differential operators with smooth coefficients do not increase the wavefront set. Further-
more, since Wω

2 is induced by a state, it is of positive type:

Wω
2 (f ⊗ f) ≥ 0.

The same is then true for ω(ρ). We can now state Fewsters main result:

9For technical details see [Few00] and the literature cited therein.
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Theorem 2.4.2. Let ω and ω0 be Hadamard states on A(M, g) for the minimally coupled
Klein–Gordon field and let 〈: ρ :〉ω

.
= ω(ρ)− ω0(ρ) (see definition(2.22)). Then for all f ∈ D(I)

the quantum inequality∫
dt(f(t))2〈: ρ :〉ω(t, t) ≥ − 1

π

∫ ∞
0

dα ̂(f ⊗ f)ω0(ρ)(−α, α) (2.23)

holds true and the right–hand side of (2.23) converges for all such f .

Proof. Since ω and ω0 are Hadamard states, the difference of their two point functions is a
smooth function on M2 and so is 〈: ρ :〉ω, whose restriction to t = t′ is therefore also smooth.
Furthermore,Wω

2 andWω0
2 share the same antisymmetric part, so 〈: ρ :〉ω(t, t′) is also symmetric.

Using the Fourier representation of the delta distribution and setting fα
.
= feiαt we obtain∫

dt(f(t))2〈: ρ :〉ω(t, t) =
1

2π

∫ ∞
−∞

dα〈: ρ :〉ω(f−α ⊗ fα)

=
1

π

∫ ∞
0

dα〈: ρ :〉ω(f−α ⊗ fα)

≥ − 1

π

∫ ∞
0

dαω0(ρ)〉ω(f−α ⊗ fα)

= − 1

π

∫ ∞
0

dα ̂(f ⊗ f)ω0(ρ)(−α, α)

> −∞,

where the last line follows from the fact that the Fourier transform of ω0(ρ) is of fast decay in
the direction (−α, α), α > 0 on account of the above mentioned form of its wavefront set.

We would like to add some remarks on (2.23): Due to the construction of the bidistribution
ω0(ρ)(t, t′), the right–hand side of (2.23) depends on the reference state ω0 as well as on the
choice of the vierbein. However, in the case of a FRW–spacetime we can use an isotropic and
homogenous state ω0 and then this dependence will vanish. Furthermore, since the functional

ω 7→
∫

dtf(t)2〈: ρ :〉ω(t)

is bounded from below on the class of Hadamard states, one can ask if there exists a Hadamard
state which minimises this quantity. It turns out that this is true when restricting ω to the class
of pure quasifree isotropic and homogenous states on FRW spacetimes. The corresponding state
is called state of low energy induced by f . We will return to its construction in section 2.5.

2.4.2. Renormalisation of the Energy Density on FRW Spacetimes

The aim of this subsection is to derive a general expression for the renormalised energy density
measured by an isotropic observer in a pure quasifree homogenous and isotropic Hadamard state
ω on a FRW spacetime. We know already the general form of the two point distribution for
such states, when given by their set of mode functions Tk(t). In order to calculate ω(: ρ(t) :),
where the normal ordering does not refer to some reference state, but rather to the subtraction
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2.4. The Renormalised Stress–Energy–Tensor

of the state independent Hadamard parametrix G, we have to know the form of G on spatially
flat FRW spacetimes. This task was rigorously solved in [Sch10], and we will use this strategy.
The point–split energy density on FRW spacetimes is obtained by inserting the vierbein

va0 =

(
∂

∂t

)a
vai = a−1

(
∂

∂xi

)a
, i = 1, .., 3

into the expression (2.22). In order for the result to be smooth, we have to replace Wω
2 by

Wω
2 −G. However, we only need to be able to take its coincidence limit x→ x′. Therefore, it is

sufficient to take the truncated Hadamard parametrix G1, since the restriction to the diagonal
x = x′ of a first order bidifferential operator applied to G −Gk vanishes for k ≥ 1. Furthermore,
as we have seen in the discussion of the renormalised energy–momentum tensor, we have to “add
by hand” the term

1

3
[PxG]

in order for ω(: ρ :) to stem from a covariantly conserved : Tab :. Finally, the tt component of
the renormalisation freedom, Ctt(A,B,Γ,∆) has to be added. The result then reads

ω(: ρ̂(x) :) =

[
1

2

(
∂t∂t′ +

1

a2

3∑
i=1

∂i∂i′ +m2

)
︸ ︷︷ ︸

.
=R

(
Wω

2 (x, x′)− G1(x, x′)
) ]

+
1

3
[PxG(x, x′)] + (∂t)

a(∂t)
bCab(x).

(2.24)

From the representation (2.16) of Wω
2 , we infer that also RWω

2 has the simple form of a mode
integral. Furthermore, it can be restricted to a surface of constant (conformal) time τ on account
of its Hadamard property. Such restrictions to the “partial diagonal” τ = τ ′ will be denoted
by [.]τ in the sequel. Assuming that ω is induced by the choice of mode functions Tk(t), the
corresponding expression is easily obtained as

[RWω
2 ]t =

1

(2π)3

∫
R3

d3k
(
|Ṫk(t)|2 + ω2(k, t)|Tk(t)|2

)
eik(x−x′), (2.25)

with ω2(k, t)
.
= a−2(t)k2 + m2. Now, [RG1]t will usually be calculated in position space. How-

ever, it turns out that it can also be rewritten as a mode integral, which allows to perform
the subtraction appearing in (2.24) under the mode integral before doing the spatial coinci-
dence limit. The result will be a convergent integral in momentum space, which is suited for
numerical evaluation. When working in conformal time τ we therefore need expressions for
[G1]τ , [∂τG1]τ , [∂τ ′G1]τ and [∂τ∂τ ′G1]τ . Spatial derivatives can then be taken after the temporal
coincidence limit, since these operations commute. In order to do the explicit calculation, we
can replace Wω

2 (x, x′)− G1(x, x′) in (2.24) by Wω,s
2 (x, x′)− Gs1(x, x′), where the superscript “s”

denotes symmetrisation w.r.t. the two arguments. Thus we will only need the symmetric parts
of the distributions limε↓0 σ

−1
ε and limε↓0 log(σε) from which Gs1 is built. We denote them by
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(
1
σ+

)s
and (log σ+)s, respectively. A last remark concerns some statements10 about symmetric

functions and distributions, which will be important later on: On spatially flat FRW spacetimes,
the symmetry group of every time slice is the euclidean group E(3) of translations and rotations.
Let Î be the range of conformal time τ(t) and let f be a function on D ⊆ (Î × R3)2, open and
invariant under E(3) in the following sense:

∀g ∈ E(3), ∀(τ,x, τ ′,x′) ∈ D : (τ, gx, τ ′, gx′) ∈ D.

If also f is invariant under E(3), i.e. f(τ,x, τ ′,x′) = f(τ, gx, τ ′, gx′) ∀g ∈ E(3), then

f(τ,x, τ ′,x′) = f̃(τ, τ ′,
∥∥x− x′

∥∥).

A bidistribution on D(R3) which is invariant under E(3), i.e. T (f, f ′) = T (fg, f
′
g) ∀g ∈ E(3)

can be written as T (f, f ′) = T̃ (f ∗ f ′), the ∗ denoting convolution. Furthermore, T̃ ∈ D(R3) is
already determined by its action on radially symmetric test functions. We will refer to f̃ and T̃
as the symmetry reduced counterparts of f and T , respectively.

In the following we sketch the important steps in order to calculate (2.24), following the
reference [Sch10]. All technical proofs can of course be found there and we will omit them.

Step 1: The Distributions
(

1
σ+

)s
and (log σ+)s

In spatially flat FRW spacetimes, σ can be written as

σ(x, x′) = ρ(x, x′)q(x, x′), (2.26)

where ρ(x, x′)
.
= |x − x′|2 − (τ − τ ′)2 is the signed “Minkowskian“ squared geodesic distance.

The relation (2.6) furnishes a differential equation for q which can be used to compute a small
distance expansion of q in terms of r2 .

= |x − x′|2 and τ − τ ′ (see appendix A). A statement
analogous to (2.26) holds also true for the distributions(

1

σ+

)s
and (log σ+)s,

which is the content of the following lemmas from [Sch10]. They also furnish explicit expres-
sions for the restrictions of these distributions (and temporal derivatives thereof) to the partial
diagonal τ ′ = τ :

Lemma 2.4.3. Let
(

1
σ̃+

)s
: C∞0 (Î × Î × R3)→ C be given by(

1

σ̃+

)s
(f)

.
=

lim
ε→+0

∫
Î

∫
Î

∫
R3

1

2q̃(τ, τ ′, ||x||)

(
1

x2 − (τ − τ ′)2 + 2iε(τ−τ ′)
q̃(τ,τ ′,||x||) + ε2

q̃(τ,τ ′,||x||)

+
1

x2 − (τ − τ ′)2 + 2iε(τ ′−τ)
q̃(τ,τ ′,||x||) + ε2

q̃(τ,τ ′,||x||)

)
× f(τ, τ ′,x)C2(τ)C2(τ ′)dτdτ ′d3x.

10The proofs can be found in [Sch10] and the literature cited there.
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Then
(

1
σ̃+

)s
can be written as(

1

σ̃+

)s
(f) =

∫
Î

∫
Î
σ̃−1
τ−τ ′

(
f(τ, τ ′, .)

q̃(τ, τ ′, ||.||)

)
C2(τ)C2(τ ′)dτdτ ′

where the function ∆τ 7→ σ̃−1
∆τ (h) is (for fixed h ∈ C∞0 (R3)) twice continously differentiable with

σ̃−1
∆τ (h) �∆τ=0 = lim

ε→+0

∫
R3

h(x)

x2 + ε2
dx =:

1

r2
+

(h)

∂∆τ

(
σ̃−1

∆τ (h)
)
�∆τ=0 = 0

∂∆τ∆τ

(
σ̃−1

∆τ (h)
)
�∆τ=0 = lim

ε→+0

∫
R3

4h(x)

x2 + ε2
dx =:

2

r4
+

(h).

A similar statement holds for the distribution [log(σ̃+)]s:

Lemma 2.4.4. Let (log σ̃+)s be given by the same regularisation and symmetrisation prescrip-
tion as above. Then

(log σ̃+)s =

∫
Î

∫
Î

∫
R3

log(q̃(τ, τ ′, ||x||))f(τ, τ ′,x)C2(τ)C2(τ ′)dτdτ ′d3x

+

∫
Î

∫
Î

l̃oτ−τ ′(f(τ, τ ′, .))C2(τ)C2(τ ′)dτdτ ′

where the function ∆τ 7→ l̃o∆τ (h) is (for fixed h ∈ C∞0 (R3)) twice continously differentiable with

l̃o∆τ (h) �∆τ=0 =

∫
R3

log(x2)h(x)d3x

∂∆τ

(
l̃o∆τ (h)

)
�∆τ=0 = 0

∂∆τ∆τ

(
l̃o∆τ (h)

)
�∆τ=0 = −2 lim

ε→+0

∫
R3

h(x)

x2 + ε2
d3x.

Step 2: The Hadamard Recursion Relations

The fact that our spatially flat FRW spacetime (M, g) can be conformally embedded in Minkowski
space can be used to bring the Hadamard parametrix in a form similar to the one that it as-
sumes in Minkowski space. By representing �g in the coordinates (τ,x) and looking at the
recursion relations (2.7), it can be shown that the coefficients in the Hadamard parametrix take
the following form:

∆1/2

q
=

1√
C(τ)C(τ ′)

(1 + ρR∆) (2.27)

V (k) =
1√

C(τ)C(τ ′)

 k∑
j=0

ρj
o
vj + ρk+1Rv

 (2.28)

Using again the small distance expansion for q and the first formula of the recursion relations
(2.7), one derives a small distance expansion for R̃∆(η, r), which is given in appendix A.
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The
o
vj in (2.28) are defined to be the unique bounded solutions to the modified recursion

relations

2εµν
o
∇µρ

o
∇ν

o
v0 − 4

o
v0 = −L2Q (2.29)

2(j + 1)εµν
o
∇µρ

o
∇ν

o
vj+1 − 4(j + 1)(j + 2)

o
vj+1 = −L2

o
P x

o
vj . (2.30)

εµν denotes the Minkowski metric and the circle over the derivative operators and the vk indicates
that these objects are those defined on Minkowski space11. Namely, equations (2.29) and (2.30)
are exactly the Hadamard recursion relations for the Minkowski case except for the appearance
of the τ− dependent term

Q(τ)
.
=

(
m2 − 1

6
R(τ)

)
C(τ). (2.31)

One can then show that the difference between the “true” truncated series V (k) and

o
V

(k) .
=

1√
C(τ)C(τ ′)

k∑
j=0

ρj
o
vj (2.32)

vanishes like σk+1 when approaching the lightcone. So when taking the coincidence limits of
(derivatives of) Gsk later on, this difference can be ignored and it is sufficient for such calculations
to make the replacement

V (k) →
o
V

(k)

.

Using the method of characteristics, one finds that the
o
vj depend only on τ and τ ′. Equations

(2.29) and (2.30) thus read

(τ − τ ′)∂τ
o
v0 +

o
v0 =

L2

4
Q (2.33)

(j + 1)(τ − τ ′)∂τ
o
vj+1 + (j + 1)(j + 2)

o
vj+1 =

L2

4
(∂2
τ +Q)

o
vj . (2.34)

One can now compute coincidence limits of
o
vj and their time derivatives w.r.t. τ and τ ′ by

differentiating equations (2.33) and (2.34) sufficiently often and taking the coincidence limit
at the end (again, we refer to appendix A). We have now all the ingredients to calculate the
coordinate space expressions for [G̃sk]τ , [∂τ G̃sk]τ and [∂ττ ′ G̃sk]τ , which are homogenous and isotropic
distributions on C∞0 (R3). Putting them together, we obtain

[R̃Gs1]τ =
1

4π2

{
− 2

C2r4
+

+

(
C ′2

8C4
+
m2

2C

)
1

r2
+

+

(
m4

16
− m2C ′2

32C3
+

9C ′4

256C6
− C ′2C ′′

16C5
− C ′′2

64C4
+
C ′C ′′′

32C4

)
(lo0 + logC)

+
�R
120

+
m2C ′′

8C2
− 19C ′′2

960C4
− 11m2C ′2

96C3
− 33C ′4

640C6
− 11C ′′′C ′

480C4

+
53C ′2C ′′

480C5
− m4

8

}
.

(2.35)

11For instance,
o

P x is the Minkowskian wave operator with “time dependent mass”:
o

P x = ∂2
τ −4x +Q
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Step 3: The Hadamard Parametrix as Mode Integral

The last step consists in rewriting the singular parts of (2.35), i.e. the distributions r−4
+ , r−2

+

and lo0 as mode integrals over the momentum space associated with Σ. This is achieved by the
following lemma [Sch10, Lemma 5.6.]:

Lemma 2.4.5. Let Ω : R+ → R have asymptotic behaviour

Ω(p) =
k′∑

j=−1

bj
p2j+1

+O
(
p−2k′−3

)
, p→∞.

Then for h ∈ C∞0 (R3), the distribution

WΩ
.
= lim

ε→∞

1

(2π)3

∫
R3

e−pεeipxΩ(p)d3p

is given by

WΩ(h) =
1

2π2

(
−2

b−1

r4
+

(h) +
b0
r2

+

(h) + V k′−1lo0(h) +R2k′−1
Ω,L (h)

)
,

where

V k′−1lo0(h) = −4π

∫ ∞
0

k′−1∑
l=0

bl+1

(2l + 1)!
(−r2)l log(r/L)h(r)r2dr

R2k′−1
Ω,L (h) = 4π

∫
R+

R2k′−1
Ω,L (r)r2h(r)dr

R2k′−1
Ω,L (r) =

k′−1∑
l=0

R2l+1

(2l + 1)!
(−r2)l + o(r2k′−1)

R2l+1 = lim
M→∞

∫ M

0
p2l+1

(
pΩ(p)− b−1p

2 − b0
)

dp−
l∑

j=1

bl+1−j
2j

M2j − bl+1 log(ML)


+ bl+1

(
−γ +

2l+1∑
n=1

1

n

)

Remark 2.4.6.

1. The definition of V k′−1lo0(h) and R2k′−1
Ω,L (h) differs here from [Sch10] by a factor 4π, since

we use the definition

lo0(h) =

∫
dr3h(r) log r2 = 4π

∫
drr2h(r) log r2.
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2. Since later we will apply this lemma with regard to the coincidence limit r → 0 of [ω(ρ)]τ −
[RG1]τ , we only need the contribution of R2k′−1

Ω,L (which is the integral kernel of the dis-

tribution R2k′−1
Ω,L ) which remains finite for r → 0, i.e. we choose k′ = 1, since all higher

order contributions will vanish for r → 0.

We are now able to compute the expectation value of the energy density in a general Hadamard
state on a spatially flat FRW spacetime. It will be given as a convergent integral in momentum
space. The calculation of [PxG1] and the renormalisation freedom Ctt will be done in appendix
A and B.

2.5. States of Low Energy on FRW Spacetimes

2.5.1. Adiabatic States

Parker was the first author who introduced the notion of adiabatic states on FRW spacetimes.
He noticed that the instantanous particle picture at t0 is different from that at t1, leading to
the production of infinitely many particles. Motivated by the idea to minimise this particle
production he made the following WKB-type ansatz for the mode functions Tk(t):

Tk(t) = (2a3(t)Ω(k, t))−
1
2 e
−i
∫ t
t0

Ω(k,t′)dt′
(2.36)

with a positive function Ω(k, t). Inserting this ansatz in the mode equation (2.13) leads to the
following differential equation for Ω:

Ω2 = ω2 − 3

4

(
ȧ

a

)2

− 3

2

ä

a
+

3

4

(
Ω̇

Ω

)2

− 1

2

Ω̈

Ω

.
= F (Ω),

with ω
.
=
√
k2a−2 +m2. Next one makes an iteration ansatz(

Ω(n+1)
)2

= F
(

Ω(n)
)
, Ω(0) .

= ω,

hoping that the sequence Ω(n) converges to the exact solution Ω for n → ∞. However, almost
nothing seems to be known about its convergence properties. Parker originally defined the

adiabatic state of order n via the approximate modes T
(n)
k (t), obtained by plugging Ω(n) directly

into the ansatz (2.36). However, a better method, due to Lüders and Roberts [LR90], consists
in prescribing the initial conditions of the exact modes Tk(t) at time t0 via

Tk(t0) = T
(n)
k (t0) =

(
2a3Ω(n)

)− 1
2

∣∣∣∣
t0

Ṫk(t0) = Ṫ
(n)
k (t0) =

(
2a3Ω(n)

)− 1
2

(
−iΩ(n) − 3

2
H − 1

2

Ω̇(n)

Ω(n)

)∣∣∣∣
t0

.

(2.37)

The state induced by such mode functions Tk(t) is then called adiabatic state of order n. Note
that this procedure has to be regarded as a way to fix the asymptotic behaviour of the initial

values of the modes Tk(t) on a Cauchy surface Σ for large k, since the positivity of
(
Ω(n)

)2
can

in general only be ensured for large k > k0. In this general situation one can prescribe arbitrary
initial values for k < k0. To summarise, such adiabatic states depend on
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1. the initial time t0

2. the order n

3. the choice of the initial conditions of Tk(t) for small k

Now, the asymptotics of Tk(t0) and Ṫk(t0) in k correspond to the regularity properties of the
Hadamard point–splitting–regularised two–point function in position space (which is of course
a smooth function for Hadamard states). Indeed, this regularity behaviour was used by Junker
and Schrohe [JS02] for the more general definition of adiabatic states ωn of order n on arbitrary
spacetimes by requiring the Sobolev wavefront set WF s of its two point function to be contained
in the wave front set of a Hadamard two point function for s < n+ 3/2. The notion of Sobolev
wavefront sets WF s(u) is a refinement of the earlier introduced C∞− wavefront sets. It consists,
roughly speaking, of requiring directions in the complement of WF s(u) to be those in which the
Fourier transform of u has a decrease faster than an inverse power of maximal order s, instead
of any inverse power (for a precise definition see [DH72]). The authors of [JS02] then showed
that adiabatic states on FRW spacetimes of infinite order n in the sense of definition (2.37) are
Hadamard states.

However, for computations of the energy–momentum tensor, the point–splitting method al-
ready works if n is low, allowing for the use of such states for computations in cosmology.
The authors of [JS02] also suggested how one could in principle experimentally distinguish two
adiabatic states of different order, thus providing a physical interpretation. Quite recently, Ol-
bermann [Olb07b] could improve the concept of adiabatic states by introducing the states of
low energy on FRW spacetimes, which have the clear physical interpretation of minimising the
time- smeared energy density of all isotropic observers, where the smearing is performed over a
finite time interval with a smooth test function f of compact support. Furthermore, he could
show that they are Hadamard states. Based on this work, Küskü constructed the class of al-
most equilibrium states [Küs08], which minimise the free energy density w.r.t. f , while Them
[The10] tried to generalise the construction of SLE’s to Bianchi spacetimes. We will review the
construction of SLE’s in the following subsection.

2.5.2. Construction of SLE’s

This subsection is devoted to a brief review of the construction of SLE’s on FRW spacetimes.
According to Fewsters quantum inequality (2.23), the quantity

%ω[f ]
.
=

∫
I
f2(t)ω(: ρ(t) :))dt

is bounded from below as ω ranges in the class of Hadamard states. I is the range of the
proper time of an observer γ, to which the energy density refers and : ... : denotes in this case
normal ordering w.r.t. a reference state ω0. As argued before, in a spatially flat FRW spacetime
one can choose a homogenous and isotropic reference state ω0, in which case the bound won’t
depend on the chosen vierbein entering in the expression for the point–split energy density (2.22).
Restricting to the class of homogenous isotropic pure and quasifree states ω on A(M, g) one can
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ask if there is a state ω which minimises the functional ω 7→ %ω[f ] for fixed f ∈ D(I), I being
the range of cosmological time. We would call such a state state of low energy induced by f2

and denote it by ωf2 . If we denote the corresponding mode functions by Tk(t), the minimisation
requirement means that the quantity

%k
.
=

1

2

∫
f2(t)

(
|Ṫk(t)|2 + (a−2(t)k2 +m2)|Tk(t)|2

)
dt

has to be minimal for all modes k ∈ (0,∞) separately. Olbermann calculated the minimising
modes Tk(t) by writing them as a Bogolubov transformation of arbitrary reference modes Sk(t)
fulfilling (2.13) and (2.14):

Tk(t) = λ(k)Sk(t) + µ(k)Sk(t) (2.38)

Since Tk(t) have to fulfil (2.14) as well, the Bogolubv coefficients must satisfy

|λ(k)|2 − |µ(k)|2 = 1.

Furthermore, if Tk(t) minimises %k then also eiα(k)Tk(t) does so for all α(k) ∈ R. Thus, µ(k)
can be chosen real without loss of generality. %k is thus an ordinary function of two variables
and can be straightforwardly minimised. We cite the result from [Olb07a, Theorem 3.1.]

Theorem 2.5.1. Let (M, g) be a spatially flat FRW spacetime and A(M, g) the field algebra
of the free minimally coupled Klein–Gordon field on (M, g), γ : I → M an isotropic geodesic
parametrised by cosmological time t and f ∈ C∞0 (I). In the set of homogenous isotropic pure
and quasifree states on A(M, g) there exists a unique (up to a phase) state ωf2 for which the
smeared energy density functional

%ω[f ]
.
=

∫
dtf2(t)ω(: ρ̂(t) :)

assumes its minimum. This state is given by its two–point function (2.16) and the corresponding
modes Tk(t) are given by

Tk(t) = λ(k)Sk(t) + µ(k)Sk(t),

where the reference modes Sk(t) satisfy (2.13) and (2.14) and λ(k) and µ(k) carry the informa-
tion about the state via

λ(k) = ei(π−arg c2(k))

√
c1(k)

2
√
c1(k)2 − |c2(k)|2

+
1

2

µ(k) =

√
c1(k)

2
√
c1(k)2 − |c2(k)|2

− 1

2

c1(k) =
1

2

∫
dtf2(t)

(
|Ṡk(t)|2 + (k2a−2 +m2)|Sk(t)|2

)
c2(k) =

1

2

∫
dtf2(t)

(
Ṡk(t)

2 + (k2a−2 +m2)Sk(t)
2
)
.
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We would like to add a few remarks. First of all, this construction also works for the other two
possible spatial geometries, which we skipped here on notational grounds. Furthermore, it is
easy to see that ωf2 reduces for all f to the Minkowski vacuum if a = const. That is why the
SLE’s deserve to be seen as generalised vacua. However, ωf2 is not automatically a Hadamard
state by construction. This requires an own proof, which was also given by Olbermann [Olb07a,
Theorem 4.9.]. A last remark concerns the choice of minimal coupling: The starting point of the
construction of SLE’s was Fewster’s proof of the general wordline inequality. However, for the
sake of validity of his result for arbitrary observers and general globally hyperbolic spacetimes,
Fewster considered only the case of minimal coupling, and so did Olbermann. However, in case
of FRW spacetimes, Fewster’s and hence Olbermann’s results might be extended to the case of
arbitrary coupling ξ of the quantum field to the curvature.
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3. Calculation of ω(: ρ :) in SLE’s on de Sitter
Spacetimes

In this section we demonstrate that it is possible to obtain explicit results for the energy density
in SLE’s under certain assumptions. We shall consider the minimally coupled Klein–Gordon
field on the cosmological part of de Sitter spacetime, i.e. M = R4 and a(t) = eHt. With this
assumptions it is possible to solve (2.13) in order to obtain a set of reference modes Sk(t) needed
as starting point for the calculation of the SLE. We go over to conformal time τ and define the
function χk(τ) via

χk(τ(t))
.
= a(t)Sk(t),

which then obeys the differential equation

χ′′k(τ) +
(
k2 +Q(τ)

)
χk(τ) = 0, (3.1)

with the “time dependent mass”

Q(τ)
.
= C(τ)

(
m2 − 1

6
R(τ)

)
.

The condition (2.14) on Sk(t) then becomes

χ′kχk − χk χ′k = i. (3.2)

A solution of (3.1) for our spacetime and arbitrary mass is given by

χk(τ) =

√
−τπ
2

e
−iπν

2 H(2)
ν (−kτ), (3.3)

where H
(2)
ν denotes the Hankel function of the second kind [AS64] and

ν
.
=

√
9

4
− 2

(
m2

2H2

)
,

where ν and its imaginary part (if the expression under the square root becomes negative) are
taken to be positive. We observe that there are two cases for which χk(τ) can be expressed in
terms of elementary functions, namely ν = 1/2 and ν = 3/2, which corresponds to m2 = 2H2

and m2 = 0, respectively.

Now, given a state which is parametrised by a Bogolubov transformation w.r.t. the refer-
ence modes Sk(t) according to (2.38), we may express the temporal coincidence limit of the
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unrenormalised point split energy density (2.25) as:

[RWω,s
2 ]τ(t) =

1

2(2π)3

∫
R3

d3keik(x−x′)
((

1 + 2µ(k)2
) (
|Ṡk(t)|2 + (k2e−2Ht +m2)|Sk(t)|2

)
+ 2µ(k)|λ(k)|Re

{
eiargλ(k)

(
Ṡk(t)

2 + (k2e−2Ht +m2)Sk(t)
2
)})

,

(3.4)

where it is assumed that µ(k) is chosen to be real. There remains the task to calculate the
Bogolubov coefficients λ(k), µ(k) according to Olbermanns theorem, which we shall now tackle.
For calculational simplicity, we will use a Gaussian

f(t) =
1√
πε
e−

(t−t0)2

ε2 (3.5)

as smearing function which induces1 the SLE ωf , which was already employed in [DV10] for the
calculation of particle production. Obviously, f is not of compact support. However, our choice
is physically justified since the cosmological time interval is I = R and the Hadamard property
of ωf is ensured on account of the smoothness and rapid decrease of f .

3.1. Calculation of ω(: ρ :) for Different Regimes of the Mass

We come now to the calculation of the state ωf and the corresponding energy density expectation
value ωf (: ρ :) for the choice (3.5) on de Sitter space. We start with

The Case m2 = 2H2

Up to multiplication with an irrelevant phase factor, (3.3) reduces to

χk(τ) =
1√
2k
eikτ ,

and thus we get

[RWω,s
2 ]τ =

H4τ2

2(2π)3

∫
R3

(
(1 + 2µ2

k)

(
kτ2 +

3

2k

)
(3.6)

+ 2µk|λk|Re

{
ei(argλk+2kτ)

(
3

2k
+ iτ

)})
eik(x−x′)d3k

The remaining task is the calculation of λk and µk for the given test function f according to
Olbermann’s prescription. c1(k) can be computed exactly, because it involves only standard
Gaussian integrals:

c1(k) =

∫
R

dtf(t)

(
ke−4Ht +

3H2

2k
e−2Ht

)
= He−3Ht0

(
ze4α2

+
3

2z
eα

2

)
,

1Thus, f defined in (3.5) will be play the role of f2 from theorem 2.5.1.
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where we introduced the new variables

z
.
=

k

Ha(t0)
α
.
= εH. (3.7)

c2 is given by the expression

c2 =
1√
πε

∫
R

dtf(t)

(
e2ikτ(t)

(
3H2

2k
e−2Ht − iHe−3Ht

))
=

3H2

2k
√
πε

∫ ∞
−∞

dt exp

(
−(t− t0)2

ε2
− 2Ht+ 2ikτ(t)

)
− iH√

πε

∫ ∞
−∞

dt exp

(
−(t− t0)2

ε2
− 3Ht+ 2ikτ(t)

)
.

In order to evaluate this integral, we have to make an approximation: Under the assumption
α� 1 we may perform a Taylor expansion of τ(t) to first order around t0 and obtain standard
integrals. Clearly, the original integral falls off faster than any inverse power of k and so does the
approximated integral. Thus the error we made has the same decay behaviour. This observation
ensures the existence of the mode integral in the calculation of the renormalised energy density.
We obtain

c2 ≈He−α
2z2
e−3Ht0e−2iz

(
3

2z
eα

2−2iα2z − ie9α2/4−3iα2z

)
.

We notice that c2 decays ∝ e−α2z2
. Thus, for z small enough such that c2 is important we may

use the simplifications eα
2z ≈ 1 and eα

2 ≈ 1, since α� 1 by assumption. This leads finally to

c1 ≈ He−3Ht0

(
z +

3

2z

)
(3.8)

c2 ≈ He−3Ht0e−α
2z2√

1 + 9/(4z2) exp

(
−i
(

arctan
2z

3
+ 2z

))
. (3.9)

For our choice of m and the scale factor, we can easily determine the to-be subtracted singularity
from (2.35). It reads

[R̃Gs1]τ =
H4

2π2

(
− τ

4

r4
+

+
3τ2

4r2
+

+
23

480

)
.

Applying lemma 2.4.5 to the function Ω(k) = H4

2

(
kτ4 + 3τ2

2k

)
yields2

[R̃Gs1]τ =
H4

2(2π)3

∫
d3keikr

(
kτ4 +

3τ2

2k

)
+

1

4π2

23H4

240
.

The remaining ingredients we need are (see (A.6 and (B.1))

[PxG1] =
1

4π2

H4

20
Ctt = H4(4A− 6B),

2Up to terms which vanish for r → 0.
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and ω(: ρ̂(t) :) follows according to (2.24). As renormalisation condition we require3 that

lim
t→∞

ω(: ρ̂(t) :) = 0, (3.10)

which implies

4A− 6B =
19

240

1

4π2
. (3.11)

Introducing the auxiliary function

z 7→ u(z)
.
=

c1

2
√
c2

1 − |c2|2
=

z2 + 3/2

2
√

(z2 + 3/2)2 − e−2α2z2 (9/4 + z2)
,

the energy density for the SLE induced by the Gaussian with parameters (ε, t0) now reads

ω(: ρ̂ :) =
H4

4π2
e−2H(t−t0)

∫
R+

dzz

(
2(u(z)− 1/2)

(
z2e−2H(t−t0) +

3

2

)

−
√
u(z)2 − 1/4√
1 + 4z2/9

(
3 cos

(
2z(1− e−H(t−t0))

)(4z2e−H(t−t0)

9
+ 1

)

+ 2z sin
(

2z(1− e−H(t−t0))
)

(e−H(t−t0) − 1)

))
. (3.12)

This formula can now be evaluated numerically. Figures 3.1-3.3 show the behaviour of ωf (: ρ(t) :)
for various choices of the Gaussian test function f . The expectation value of the energy density
is given in units of H4 and all numerical values of time variables refer to the unit H−1. The
plots show very nicely how the form of the test function affects the energy density curve of the
corresponding SLE. It is remarkable that a small smearing time leads to a very high energetic
excitation of the state in contrast to broader smearings (figure 3.2). This observation shows why
the concept of instantanous vacua (i.e. states which are required to minimise energy density at
one sharp instant of time) is not a good one. Namely, such states are not sufficiently regular in
order to allow for the definition of the expectation value of the energy density via the Hadamard
point–splitting procedure. The divergence of the energy density of SLE’s as ε→ 0 is a hint for
this. Furthermore, as we can already infer from formula (3.12), the energy density depends on
t− t0 instead of t and t0 seperately. The reason for this behaviour seems to be that the energy
density for an SLE is only nontrivial if curvature is present (recall that on Minkowski space, the
SLE’s reduce to the Minkowski vacuum whose energy density is zero). The curvature in de Sitter
space in turn does not depend on time. The shifting symmetry of the energy density curve leads
to the question whether the sequence of SLE’s, induced by test functions whose support gets
shifted to −∞, converges to the Bunch Davies state as limit state. We will treat this problem
in greater generality in chapter 4.

3This is an arbitrary requirement, however this reveals information about the choice of renormalisation which
corresponds to the normal order prescription used for renormalising the energy density of the Bunch–Davies
state.
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Figure 3.1.: Renormalised energy density (solid line) for m2 = 2H2, ε = 0.02 and t0 = 1, plotted against
cosmological time t. For comparison we showed the corresponding (but rescaled) test function
f (dashed line). It is clearly seen that the test function “stamps“ its form on the energy
density curve. Furthermore, there are characteristic “bumps” in the energy density at the
times where the test function has significantly fallen off. In the plot we indicated the typical
quantities ρmin and ε.

The Case m2 = 0

In order to supplement our result of the previous subsection, we will repeat the corresponding
calculations for the case m2 = 0. The reference modes are readily calculated:

Sk(t) =
1√
2k3

(H + ie−Htk)e−i exp(−Ht)k/H .

It follows

|Ṡk(t)|2 + k2e−2Ht|Sk(t)|2 = ke−4Ht +
H2

2k
e−2Ht

Ṡk(t)
2 + k2e−2HtSk(t)

2 = e−2i exp(−Ht)k/He−2Ht

(
H2

2k
+ iHe−Ht

)
.
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Figure 3.2.: Renormalised energy density against cosmological time for m2 = 2H2, t0 = 1 and different
smearing widths: ε = 0.01 (solid), ε = 0.015 (dashed) and ε = 0.02 (dotted). The broader
the smearing, the lower is the global excitation of the state. Correspondingly, ρmin can reach
very large values if the smearing is performed over a small time.

Thus, the same integrals like in the case m2 = 2H2 have to be evaluated. Using the same
approximations and variables like in the previous subsection we obtain

c1 = He−3Ht0

(
exp(α2)

2z
+ z exp(4α2)

)
≈ He−3Ht0

(
1

2z
+ z

)
c2 = He−3Ht0e−α

2z2
e−2iz

(
exp(α2 − 2izα2)

2z
+ i exp(9α2/4− 3iα2z)

)
≈ He−3Ht0e−α

2z2
e−2iz

√
1 + 1/(4z2)ei arctan(2z),

We introduce again the function

u : z 7→ c1

2
√
c2

1 − |c2|2
.
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Figure 3.3.: Renormalised energy density against cosmological time for m2 = 2H2, ε = 0.01 and different
preparation times: t0 = 1 (dashed), t0 = 1.1 (solid). A later preparation time results in a
shift to the right while the form of the curve is unaffected (this can be seen immediately
from (3.12)). Thus, if the state is prepared at early times w.r.t. a fixed test function, then
it will show a lower excitation in a fixed time span than a later prepared one.

Note that for m = 0 we do not have any renormalisation freedom at our disposal. Hence, the
energy density follows as

ω(: ρ̂ :) =
H4

4π2
e−2(t−t0)

∫
R+

dzz

(
2(u0 − 1/2)

(
z2e−2(t−t0) +

1

2

)

−
√
u2 − 1/4√
1 + 4z2

(
cos
(

2z(1− e−H(t−t0))
)(

4z2e−H(t−t0) + 1
)

+ 2z sin
(

2z(1− e−H(t−t0))
)

(1− e−H(t−t0))

))
+
H4

4π2

1

240
. (3.13)

Apart from the different asymptotic behaviour for t → ∞, there is no significant difference to
the case m2 = 2H2. The difference of the integrands of (3.12) and (3.13) is only notable for
small z. However, for small α the main contributions to the integral come from the larger values
of z.
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The Case m2 � H2

After having investigated the small mass regime, we would like to obtain the energy density also
for large masses. However, the solutions of the mode equations then involve Bessel functions
of large imaginary order, which are hard to evaluate numerically (especially when the mode
integral has to be performed). In order to calculate the SLE’s for this regime, we will work
with the following approximation: Writing the exact reference modes Sk(t) = a−1(t)χk(τ(t)) as
before, χk(τ) must obey the differential equation (3.1). Define Ω(τ)2 .

= k2 + Q(τ). A special
solution of (3.1) can always be written as

χk(τ) =
1√
2Ω

e
i
∫ τ
τ0

Ω(τ ′)dτ ′
(1 + δ),

where δ is an error term whose modulus can be estimated from above [Olv74]. Next we define
the approximated reference modes

Pk(t)
.
=

1√
2Ωa

e
i
∫ τ
τ0

Ω(τ ′)dτ ′
,

where the lower bound of integration τ0 is defined to correspond to the localisation time t0 of
the test function f in cosmological time, i.e. τ0

.
= τ(t0). The idea is to use the Pk(t) instead of

the exact reference modes Sk(t) for the calculation of c1 and c2. The Sk(t) are defined by having
the same initial conditions like Pk(t) at t0. It is now straightforward to calculate the following
expressions:

|Ṗk(t)|2 + (k2a−2(t) +m2)|Pk(t)|2 =
Ω

a4
+

3H2

2a2Ω
+
nH4

2Ω3
+
n2a2H6

8Ω5

Ṗk(t)
2 + (k2a−2(t) +m2)Pk(t)

2 =
1

2
e

2i
∫ τ
τ0

Ω(τ ′)dτ ′
(
n2a2H6

4Ω5
+

3H2

Ωa2
+
nH4

Ω3
− 2iH

a3
− inH3

Ω2a

)
,

where we have defined

n
.
=
m2

H2
− 2.

In order to evaluate the integrals c1 and c2 it is necessary to make the following approximations:
We replace the non-oscillating terms (e.g. Ωa−4) by their zeroth–order Taylor series in cosmo-
logical time t around t0. This is justified since the correction coming from the linear term is
supressed due to its asymmetry in t− t0 (recall that f is a Gaussian in t− t0). Furthermore we
linearise the term

∫ τ

τ0

dτ ′Ω(τ ′) =

∫ t

t0

dt′Ω(τ(t′))a−1(t′) ≈
√
z2 + 1

√
nH(t− t0).
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It follows

c1 =
H

a(t0)3

(
√
n
√
z2 + 1 +

3

2
√
n
√
z2 + 1

+
1

2
√
n
√
z2 + 1

3 +
1

8
√
n
√
z2 + 1

5

)

≈ H
√
n
√
z2 + 1

a(t0)3

c2 =
H

2a(t0)3
e−(z2+1)nα2

(
1

4
√
n
√
z2 + 1

5 +
1

√
n
√
z2 + 1

3 +
3

√
n
√
z2 + 1

− i(2 +
1

(z2 + 1)
)

)

≈ −iH
2a(t0)3

e−α
2n(z2+1)

(
2 +

1

z2 + 1

)
,

(3.14)

where this time

z
.
=

k√
nHeHt0

and α as already defined in (3.7). We neglected contributions which become small for large
masses, i.e. large n. Like in the previous subsections, we were assuming that α � 1 in or-
der to make the simplifications in the integrals meaningful. This also justifies the following
approximation done for c2: Consider one of its contributions,∫

dtf(t)e
2i
∫ τ
τ0

Ω(τ ′)dτ ′ 3H2

2Ωa2
.

We claim that the linear term in the Taylor expansion of 3H2

Ωa2 around t0, given by

−3H2e−3Ht0(3 + 2z2)
√
n
√
z2 + 1

3 (t− t0),

is negligible for the result of this contribution for c2. We have

1√
πε

∫
e−(t−t0)2/ε2e2i

√
z2+1

√
nH(t−t0)(t− t0) = iε2H

√
n
√
z2 + 1e−ε

2(1+z2)H2n

Thus we would get an additional contribution

−3iα2

(
2 +

1

z2 + 1

)
in the bracket of c2 in formula (3.14)). But since α � 1, it is strongly suppressed. A similar
discussion applies to the other terms in c2. Starting from result (3.14) we can now calculate
the Bogolubov coefficients λ, µ according to Olbermann’s theorem. They can be expressed in a
simple manner, using the fact that

|c2|
c1

=
e−α

2n(z2+1)

2
√
n
√
z2 + 1

(
2 +

1

z2 + 1

)
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is small for all values of z and thus

µ =

√
1

2
√

1− |c2|2/c2
1

− 1

2
≈ e−α

2n(z2+1)

4
√
n
√
z2 + 1

(
2 +

1

z2 + 1

)

|λ| =
√

1

2
√

1− |c2|2/c2
1

+
1

2
≈ 1 +

e−2α2n(z2+1)

32n(z2 + 1)

(
2 +

1

z2 + 1

)2

argλ = π − argc2 ≈
3

2
π.

(3.15)

In order to get the time dependence of the energy density for the SLE, we would have to insert
in (3.4) the exact mode solutions Sk(t) whose initial values at t0 coincide with those of the
approximate modes Pk(t). However, since they are difficult to treat numerically, we make a
second approximation and use once more the approximate modes Pk(t) instead of the Sk(t).
That is,

[RWs
2 ]t ≈

1

(2π)3

∫
R3

d3k

(
(µ2 + 1/2)(|Ṗk(t)|2 + (k2a−2(t) +m2)|Pk(t)|2)

+ µ|λ|Re
{
eiargλ(Ṗk(t)

2 + (k2a−2(t) +m2)Pk(t)
2)
})

eik(x−x′)
(3.16)

We have

Re
{
eiargλ(...)

}
=− cos

(
2

∫ τ

τ0

dτ ′Ω(τ ′)

)(
H

a3
+
nH3

2Ω2a

)
+ sin

(
2

∫ τ

η0

dτ ′Ω(τ ′)

)(
n2a2H6

8Ω5
+

3H2

2Ωa2
+
nH4

2Ω3

)
Obviously, the contribution ∝ sin(...) is supressed by the factor n−1/2 and we will neglect it.

We turn now to the calculation of the counterterms using the Hadamard subtraction scheme.
We have

[R̃Gs1]τ =
H4

4π2

(
− 2τ4

r4
+

+
3 + n

2

τ2

r2
+

+
(2 + n)n

16

(
lo0 + log

1

H2τ2

)
+

23− 50n− 30n2

240

)
[PxG] =

H4

4π2

(
1

20
− 3n2

8

)
.

On the other hand, an asymptotic expansion for large k yields

|Ṗk(t)|2 + (k2a−2(t) +m2)|Pk(t)|2 = H4τ4k +
H4τ2(n+ 3)

2k
− H4(n2 + 2n)

8k3
+O(k−5).

Applying lemma 2.4.5 to the function Ω(k)
.
= |Ṗk(t)|2 + (k2a−2(t) +m2)|Pk(t)|2 we get

lim
ε→0

1

2(2π)3

∫
R3

d3k
(
|Ṗk|2 + (k2a−2(t) +m2)|Pk|2

)
eikre−εk

= [R̃Gs1]τ +
H4

4π2

(
5n2 + 4n

32
− 23

240
+
n2 + 2n

8
(ln
√
n− ln 2− 1− γ)

)
,
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up to terms which vanish for r → 0. One may explicitly convince oneself that a similar formula
holds for arbitrary scale factors, i.e. not only “by accident” in de Sitter case. This means that
the approximate modes Pk(t) can be used for a renormalisation prescription for the calculation
of the energy momentum tensor, since they produce the “right divergencies” which cancel those
from the unrenormalised mode expression of ω(Tab) for the Hadamard state ω in question. This
goes also under the name adiabatic renormalisation (for concrete calculational examples see
e.g. [BD82]). Schlemmer [Sch10] discussed the relation to the rigorous Hadamard subtraction
scheme in more detail.

For the renormalised expectation value of the energy density it follows

ω(: ρ :) =

nH4e−3H(t−t0)

4π2

∫ ∞
0

dzz2

(
e−2α2n(z2+1)

8(z2 + 1)

(
2 +

1

z2 + 1

)2√
z2e−2H(t−t0) + 1

− cos(2
√
nf(z, t− t0))

e−α
2n(z2+1)

4
√
z2 + 1

(
2 +

1

z2 + 1

)(
2 +

1

(z2e−2H(t−t0) + 1)

))
+
H4

4π2

(
n2 + 4n

32
− 19

240
+
n2 + 2n

8
(ln
√
n− ln 2− 1− γ)

)
+H4

(
(n+ 2)2α− 3(n+ 2)β

)
,

(3.17)

where

f(z, t− t0) =
√
z2e−2H(t−t0) + 1−

√
z2 + 1 + log

e−H(t−t0)(1 +
√
z2 + 1)

1 +
√
z2e−2H(t−t0) + 1

.

Note that we neglected terms of order O(n0), i.e. the above formula is supposed to be meaningful
for large n. Figures 3.4 and 3.5 show the energy density (in units of H4) against cosmological
time t (in units of H−1) for the regime m2 � H2, where t0 = 0 and the renormalisation constants
for each curve were chosen such that

lim
t→∞

ω(: ρ :) = 0.

However, if the renormalisation constants A and B are held fixed, the energy density curve will
get shifted by an n-dependent term with leading contribution

H4(n2 + 2n) log n

64π2
.

Plot (3.4) nicely illustrates that bigger masses “damp” the fluctuations of ωf (: ρ :). At the same
time they lead to characteristic oscillations of the energy density, whose frequency depends on
m. Plot (3.5) shows that, for fixed mass, the smearing width of the test function f has the
same effect which we already found for the low mass regime. It is also seen that the oscillation
frequency is not influenced by the smearing width.

3.2. Comparison with Fewsters Bound

Since we chose an example of a spacetime where many results can be obtained analytically, it
is instructive to examine Fewster’s general worldline QEI (2.23) explicitly for our situation. We
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Figure 3.4.: Renormalised energy density for SLE’s against cosmological time for t0 = 0, α = 0.02 and
different values of n: n = 500 (solid),n = 2000 (dashed) and n = 5000 (dotted).

shall only consider the case m2 = 2H2. The expression for ω(: ρ :) we found above corresponds
to a normal ordering prescription w.r.t. the Bunch–Davies state, which thus plays the role of
ω0 in (2.23). Its unrenormalised point–split energy density reads in conformal time

ω0(ρ(τ, τ ′)) =
H2

8π2

∞∫
0

dkkττ ′e−ik(τ−τ ′)
(

2k2ττ ′ + 3− ik(τ − τ ′)
)
.

In order to compute the bound in Fewsters general worldline QEI, we have to evaluate the
expression

Bf
.
=

∞∫
0

dγ

π

∫
dtdt′e−iγ(t−t′)√f(t)

√
f(t′)ω0(ρ(t, t′)) (3.18)

for the Gaussian

f(t) =
1√
πε
e
H2(t−t0)2

α2 ,

with α
.
= Hε. Assuming again α � 1 we may linearise τ(t) around t0 and carry out both time

integrations in (3.18). The intermediate result reads

Bf =
H4

4π5/2

∞∫
0

dγ′
∞∫

0

dk′e−(k′+γ′)2

(
2k′3

α4
e4α2

+ 3
k′

α2
eα

2 − 2 sin(α(k′ + γ′))e5α2/2k
′2

α3

)
,
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Figure 3.5.: Renormalised energy density for SLE’s against cosmological time for t0 = 0, n = 5000 and
different values of α: α = 0.01 (solid),α = 0.012 (dashed) and α = 0.015 (dotted).

where we performed the substitutions k′ = εe−Ht0k and γ′ = εγ. This integral can be explicitly
calculated and yields

Bf =
H4

32π2

(
3e4α2

2α4
+

3eα
2

α2
+
e9α2

(α2H2 − 6)

3α2

)
. (3.19)

Now we calculate the l.h.s. of (2.23) for the SLE induced by f , i.e. we calculate

Qf
.
=

∫
dtf(t)ωf (: ρ(t) :). (3.20)

Starting from the simplified formula (3.12) for ωf (: ρ(t) :), we interchange the t- und z- integra-
tion and obtain

Qf ≈
H4

4π2

∫ ∞
0

dzz

(
2

(
u− 1

2

)(
z2 +

3

2

)
− 3

√
u2 − 1

4
e−α

2z2

√
1 +

4

9
z2

)
, (3.21)

where we used e−H(t−t0) ≈ 1−H(t− t0) in order to perform the t-integration and the approxi-
mations

eα
2 ≈ 1, zα2 � 1,
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from which the last one is satisfied since the integrand in (3.21) only contributes for zα2 � 1
on account of the decay behaviour of the function u(z). We are interested in the behaviour of
Qf for small α. The integrand of (3.21) may be bounded independently of α for z ∈ (0, z0) and
thus the contribution coming from integrating from z = 0 to z0 can be estimated by a finite
constant. We choose z0 = 2 and perform the following expansions for z ≥ 2:

u ≈ 1

2
+ e−2α2z2 9/4 + z2

4(3/2 + z2)2
,

√
u2 − 1/4 ≈ e−α2z2

√
9/4 + z2

2(3/2 + z2)

Note that this appoximation is good for all α. For z ≥ 2 the integrand is now given by

−z 9/4 + z2

2(3/2 + z2)
e−2α2z2

.

For small α the exact behaviour for small z becomes less important and it is justified to write

Qf ≈ −
H4

4π2

∫ ∞
0

dz
z

2
e−2α2z2

= − H4

32π2α2
. (3.22)

Comparing this expression with (3.19) we see that Qf � −Bα for small α. That is, the f–
smeared energy density in the SLE ωf does not attain its lower bound. Moreover, it scales
differently with the smearing width. This was to be expected a priori, since Fewster obtained
a bound valid for all Hadamard states, while the class of SLE’s contains only homogenous and
isotropic Hadamard states and is thus much smaller. Physically speaking, Fewsters bound says
that there might exist states (in particular anisotropic and inhomogenous ones) whose time-
smeared energy density for certain isotropic observers becomes much lower than that of SLE’s
belonging to this smearing function. The different scaling in α of Qα and Bf for decreasing α
is due to the fact that the SLE has to minimise the energy density globally, that is in all space.

3.3. SLE’s as Reference Ground States and the Regime of
Backreaction

Our results have shown that SLE’s become more vacuum–like when we choose a larger rather
than a shorter smearing width α for the test function f , which is clearly visible in figure 3.2. A
question which arises naturally in this context is for which order of magnitude of α the backre-
action to the spacetime is no longer negligible. We will answer this question in a quantitative
way in this subsection.

Before doing that, let us discuss a numerical example for SLE’s, illustrating their properties
as reference ground states for the particle interpretation. Starting from the observation that
the present epoch of our universe can be well described by a spatially flat de Sitter space with
Hubble parameter

H0 ≈ 2× 10−42GeV

and corresponding critical energy density

ρC =
3H2

0

8πG
≈ 7× 10−47(GeV)4
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(we took these numbers from Appendix A.2 of [KT90], with h ≈ 0.9), we may take as a reference
state for a scalar QFT an SLE, induced by a test function with localisation time of “today”
and a certain smearing width ε in cosmological time, which we take to be ε = 0.02H−1

0 . On
cosmological scales, this is a rather short time. The corresponding measure of the temporal
fluctuations of the energy density in this state, ρmin in figure 3.1, can be read off this plot to be

ρmin ≈ 23H4
0 ≈ 370× 10−168GeV4.

This is 120 orders of magnitude smaller than ρC , and thus negligible for local backreaction
effects. Moreover, one can argue in a quantitative manner in which sense the particle picture
built on the SLE’s is stable under the variation of the test function f : Consider the SLE’s ωf
and ωg, induced by smearing functions f, g ∈ D(R), respectively. Consider furthermore a test
function h ∈ D(M). By using the GNS–representation of the SLE’s obtained by the one particle
Hilbert space structure (2.17), we can define the one–particle states

Ψ[h, f ]
.
= πf (Φ(h))Ωf = a†(kf ([h]))Ωf

Ψ[h, g]
.
= πg(Φ(h))Ωg = a†(kg([h]))Ωg,

where Ωf and Ωg are the vacuum vector states representing ωf and ωg. The one particle Hilbert
space is in both cases L2(R3) and the elements are momentum space wave functions. Let λf/g
and µf/g be the Bogolubov coefficients describing ωf/g w.r.t. the fixed reference modes Sk(t).
Now, according to (2.17) the respective momentum–space wave functions read:

kf ([h])(k) = ia3(t0)

((
λf Ṡk(t0) + µf Ṡk(t0)

)
Êh(t0)(k)

−
(
λfSk(t0) + µfSk(t0)

) ̂(∂tEh)(t0)(k)

)
kg([h])(k) = ia3(t0)

((
λgṠk(t0) + µgṠk(t0)

)
Êh(t0)(k)

−
(
λgSk(t0) + µgSk(t0)

) ̂(∂tEh)(t0)(k)

)
Figures 3.6 and 3.7 show some numerical examples for the difference of the particle pictures

built on different choices of f and g on de Sitter space for the case m2 = 2H2. The momenta k
are given in units of H. The plots illustrate that the particle interpretation for low momenta will
be different in the states of low energy ωf and ωg. This regime of low momenta is determined
by the smallest smearing width of f and g on account of the decay properties of µ(k), calculated
in section 3.1.

Now we would like to answer another question, namely which regime of smearing times is
physically meaningful if backreaction is neglected. The semiclassical version of the Friedmann
equation (1.13) may be rewritten as

ωf (: ρ :) =
3H2

8πG
. (3.23)

It is useful to adapt the renormalisation constants such that

lim
t→∞

ωf (: ρ :) =
3H2

8πG
,
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Figure 3.6.: Difference of the Bogolubov coefficients µ(k), describing the SLE’s ωf/g w.r.t. the Bunch–
Davies modes. The test function g is a Gaussian located at tg = 0 and having smearing
width εg = 0.01H−1. The corresponding parameters for f are εf = 0.05H−1 (dashed) and
εf = 0.02H−1 (solid), whereas the localisation time is for both curves tf = tg.

which means that (3.23) is fulfilled asymptotically in the future4. Now we require that locally

(i.e. around the localisation time t0) there should hold ωf (: ρ :) ≈ 3H2

8πG , which leads to the
condition

ρmin �
3H2

8πG
(3.24)

(see figure 3.1 for the definition of ρmin). We already know that small smearing times make ρmin
increase. Regarding first the case m2 = 2H2, we use the same arguments like in the derivation
of (3.22) out of (3.21) and obtain

ρmin ≈
∣∣∣∣H4

4π2

∫ ∞
0

dzz
z2 + 9/4

z2 + 3/2
e−α

2z2
(e−α

2z2
/2− 1)

∣∣∣∣ ,
which becomes for small α

ρmin ≈
∣∣∣∣H4

4π2

∫ ∞
0

dzze−α
2z2

(e−α
2z2
/2− 1)

∣∣∣∣ =
3H4

32α2π2

4Note that this is not possible for the case m2 = 0.
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Figure 3.7.: Difference of the Bogolubov coefficients µ(k), describing the SLE’s ωf/g w.r.t. the Bunch–
Davies modes. This time both Gaussians f and g have the same smearing widths εg = εg =
0.01H−1. The dashed curve was obtained for tg = 0 and tf = −0.5H−1; the solid curve
shows tg = 0 and tf = −0.1H−1.

Condition (3.24) is then equivalent to

ε�
√
G

4π
=

tP
2
√
π
. (3.25)

That is, only when the smearing time ε becomes as small as the the Planck time, the energy
density curve of the SLE belonging to the test function with smearing width ε will reach the value
of the critical energy density in the vicinity of the localisation time t0. It is only in this regime
where backreaction effects will become important5. Since ρmin scales with α−2, this result is
independent of the value of the Hubble constant H. It is also independent of the localisation
time t0 (see figure 3.3). In order to exclude the possibility that this result hinges on the very
special choice of mass m2 = 2H2, we repeat this calculation for the remaining two mass regimes.
We start with m2 = 0:
We have

u ≈ 1

2
+

z2 + 1/4

4(z2 + 1/2)2
e−2α2z2 √

u2 − 1/2 ≈
√
z2 + 1/4

2z2 + 1/2
e−α

2z2
.

5Of course we know that the energy density diverges for t→ −∞. Condition (3.24) should rather hold for t > T ,
T being some fixed time.
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Inserting this into formula (3.13) for t = t0 gives

ρmin ≈
H4

4π2

∫
dzz

4z2 + 1

4z2 + 2

(
e−α

2z2 − 1

2
e−2α2z2

)
≈ H4

4π2

∫
dzz

(
e−α

2z2 − 1

2
e−2α2z2

)
=

3H4

32α2π2
,

which is the same result like in the case m2 = 2H2. Now we look at the case m2 � H2. From
formula (3.17) we get

ρmin ≈
H4n

4π2

∫ ∞
0

dzz2

(
2 +

1

z2 + 1

)2 e−α
2n(z2+1)

4
√
z2 + 1

(
e−α

2n(z2+1)

2
− 1

)

=
H4e−2nα2

128π3/2α2

(
(3 + nα2)U(3/2, 0, 2nα2)− 2enα

2
(6 + nα2)U(3/2, 0, nα2)

− 8nα2
(

2enα
2
U(3/2, 1, nα2)−U(3/2, 1, 2nα2)

))
,

where U(a, b, z) is the confluent hypergeometric function [AS64]. We want to discuss the regime
for n and α for which (3.24) holds, i.e. under which conditions backreaction is negligible. In
order to do so, we define

x
.
= nα2 ≈ m2ε2 =

(
m

mP

)2( ε

tP

)2

and

s(x)
.
=

∣∣∣∣ e−2x

48
√
π

(
(3 + x)U(3/2, 0, 2x)− 2ex(6 + x)U(3/2, 0, x)

− 8x (2exU(3/2, 1, x)−U(3/2, 1, 2x))

)∣∣∣∣ (3.26)

Condition (3.24) then becomes (
ε

tP

)2

� s(x) (3.27)

Figure 3.8 shows a plot of the function s(x). Since s is bounded on [0,∞), (3.27) is fulfilled for
all possible choices of the mass (provided that m2 � 2H2, since this is the assumption for our
calculations), if ε � tP . This result assures that our findings for the special case m2 = 2H2

remain valid for other (and more physical) choices of the mass.

3.4. Comparison with Adiabatic States

In the previous section we obtained the energy density in SLE’s on de Sitter space. In particular,
we discussed how it depends on the smearing width and localisation time of our Gaussian test
function f . We would like to compare the results for the case m2 = 2H2 with an adiabatic
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Figure 3.8.: The function s(x), defined in (3.26).

state of order 1, which is regular enough to admit the definition of the energy density via the
Hadamard point–splitting method. We write it by means of a Bogolubov transformation w.r.t.
our basic modes χk:

Tk(t) = a−1(t) (αkχk(τ(t)) + βkχk(τ(t))) .

The Bogolubov coefficients are fixed by the prescription (2.37) for n = 1. Setting τ0 =
−H−1e−Ht0 , z = k|τ0|,Ω = H−1Ω(1), Ω0 = Ω(t0) and (Ω̇)0 = Ω̇(t0) we obtain

αke
−iz + βke

iz =

√
z

Ω0

αke
−iz(−1 + iz)− βkeiz(1 + iz) =

√
z

Ω0

(
−iΩ0 −

3

2
− (Ω̇)0

2HΩ0

) (3.28)

with the solution

αk =
eiz

2
√

Ω0z

(
z +

i

2
+
i

2

(Ω̇)0

HΩ0
− Ω0

H

)

βk =
e−iz

2
√

Ω0z

(
z − i

2
− i

2

(Ω̇)0

HΩ0
+

Ω0

H

)
.

(3.29)
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We calculate

Ω2
0 = z2 − 1

4
− z2

z2 + 2
+

5

4

z4

(z2 + 2)2

(Ω̇)0

HΩ0
=
−2z2 + 2z2

z2+2
− 7 z4

(z2+2)2 + 5 z6

(z2+2)3

2
(
z2 − 1

4 −
z2

z2+2
+ 5

4
z4

(z2+2)2

) .

Ω2
0 becomes negative for z < z∗, with z∗ ≈ 0.62. We therefore have to prescribe αk and βk on

(0, k(z∗)) by arbitrary functions subject to the constraint |αk|2 − |βk|2 = 1. The renormalised
energy density in the adiabatic state according to the formula in the subsection treating the case
m2 = 2H2 (with the same choice of renormalisation constants) is then given by

ω(: ρ :) =
H4

4π2

∫ ∞
0

dzz2

(
(|α2

k|+ |βk|2 − 1)

(
e−4H(t−t0) +

3

2
e−2H(t−t0)

)
+ 2Re

(
αkβke

−2iz exp(−H(t−t0))

(
3

2z
e−2H(t−t0) − ie−3H(t−t0)

)))
.

For the sake of simplicity let us now choose βk = 0 on (0, k(z∗)) according to the above remark.
Introducing the functions

A(z)
.
=

1

2Ω0z

z2 − Ω2
0 −

1

4

(
1 +

(Ω̇)0

HΩ0

)2


B(z)
.
=

1

2Ω0z

(
1 +

(Ω̇)0

HΩ0

)

C(z)
.
=

1

2Ω0z

(z − Ω0)2 +
1

4

(
1 +

(Ω̇)0

HΩ0

)2


and setting t̃
.
= (t− t0) we get

ω(: ρ :) =
H4

4π2

∫ ∞
z∗

dzz2

(
C(z)

(
e−4Ht̃ +

3

2
e−2Ht̃

)
+ cos(2z(1− exp(−Ht̃)))

(
3A(z)

2z
e−2Ht̃ + zB(z)e−3Ht̃

)
+ sin(2z(1− exp(−Ht̃)))

(
A(z)e−3Ht̃ − 3B(z)

2
e−2Ht̃

))
Figure 3.9 shows the time dependence of ω(: ρ :) for this adiabatic state (ω(: ρ :) and t are again
given in units of H4 and H−1, respectively.). A comparison with our results for SLE’s (figure
3.2) shows that this state is energetically less excited and corresponds rather to an SLE with
large smearing width. Note however that this calculation is restricted to de Sitter space. For
arbitrary scale factors this correspondence might fail.

58



3.4. Comparison with Adiabatic States
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Figure 3.9.: Renormalised energy density for the Klein Gordon field on de Sitter space with m2 = 2H2

in an adiabatic state of order n = 1 and reference time t0 = 0, plotted against cosmological
time.
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4. Relation of SLE’s to Distinguished States on
Asymptotic de Sitter Spacetimes

The explicit calculation of the renormalised energy density of SLE’s on spatially flat de Sitter
spacetimes provided some insight in the dependence of ω(: ρ :) on the choice of the test function
f . Since we chose a Gaussian in order to obtain analytic expressions, we had two parameters at
our disposal, namely the localisation time t0 and the smearing width ε. However, it seems that
these two numbers are enough to capture the most important features of ω(: ρ :). In particular,
a small smearing width will lead to large local energy density fluctuations. Furthermore we
conjecture that the particular form of f (for given smearing width) will affect the form of the
energy density curve only locally, i.e. near the support of f . We saw that a shift of f (i.e.
the choice of another localisation time t0) results in a corresponding shift of ω(: ρ :). In other
words, on a fixed time interval, the sequence of functions ωt0(: ρ(t) :) (where ωt0 denotes the
SLE induced by a Gaussian with fixed smearing width ε and localisation time t0) tends for
t0 → −∞ uniformly to 0, which is nothing but the expectation value of the energy density in
the Bunch Davies state. A similar statement seems to hold true for the sequence ωε(: ρ(t) :)
(where t0 is now held fixed) if ε→∞. One could furthermore ask if such observations are true
for arbitrary observables of the free field theory. This would be the case if we could establish a
convergence statement for the two point distribution, since from this object all observables can
be calculated. The aim of this section is to establish such a convergence property for SLE’s for
the case that t0 → −∞. We will see that this result holds in fact on a larger class of spacetimes,
namely the asymptotic de Sitter spacetimes introduced in section 1.3. As we will explain later
in the sequel, they allow for the definition of a preferred state λM and we will show that the
sequence of SLE’s will converge to λM also in this more general case. We will establish this
result for minimal coupling but arbitrary choices of the mass1 and the form of the compactly
supported test function f . This relation of the SLE’s on an asymptotic de Sitter space to the
corresponding preferred state λM allows to interpret λM as being a state of low energy for every
test function in the infinite past. This is analogous to the situation in Minkowski space, where
the distinguished Minkowski vacuum state is a SLE for every test function.

4.1. Convergence of SLE’s to Distinguished States: de Sitter Space

In this subsection we will prove the anticipated convergence statement for SLE’s on de Sitter
spacetime, where the distinguished limiting state λM is the well known Bunch Davies state. The
more general case of asymptotic de Sitter space will be treated in section 4.2. The object which
has to be analysed for this purpose is the two point distribution of the SLE ωf induced by the
arbitrary strictly positive test function f ∈ D(R). Without loss of generality, we assume that

1However we require m > 0 since the distinguished states do not exist for the massless theory.
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4. Relation of SLE’s to Distinguished States on Asymptotic de Sitter Spacetimes

suppf = [−L,L]. Let us furthermore denote by ft0 the corresponding shifted function, defined
by ft0(t)

.
= f(t− t0). For a fixed choice of f , we denote the SLE induced by ft0 by ωt0 and its

two point distribution by Wt0
2 . We want to show that the sequence of two point distributions

Wt0
2 converges to the two point distribution WλM

2 of the Bunch-Davies state λM for t0 → −∞
in the natural topology of bidistributions on M. That is, for each pair g, h ∈ D(M) we aim to
show that

lim
t0→−∞

Wt0
2 (g, h) =WλM

2 (g, h). (4.1)

The distinguished state λM for the Klein–Gordon field on spatially flat de Sitter space is defined
as follows: Consider the full de Sitter spacetime (MdS , gdS), defined in section 1.3. For the
massive scalar field there exists a unique Hadamard state λ which is invariant under the full de
Sitter group O(1, 4) see e.g. [SS76; All85]. λM is then nothing but the restriction of λ to the
domain of definition of the cosmological chart. The explicit representation of λM in terms of
the mode functions reads2

Tk(t) =

√
π

2
e−3t/2eiπν/2H

(2)
ν (ke−t), (4.2)

where H
(2)
ν is the Hankel function of the second kind and can be expressed by a linear combi-

nation of the Bessel functions J±ν [AS64]. The order ν is given by

ν =

√
9

4
− m2

H2
,

if we assume minimal coupling, ξ = 0. Furthermore we take both Reν and Imν to be positive.
We use the modes (4.2) as reference modes for the construction of ωt0 (i.e. Tk(t) plays the role
of Sk(t) in theorem 2.5.1, with which the Bogolubov coefficients λ(k) and µ(k) are calculated).
The two point distribution of ωt0 then reads

Wt0
2 (x, y) =WλM

2 (x, y) +Rt0(x, y), (4.3)

where the bidistribution Rt0 is given by

Rt0(x, y)
.
=

2

(2π)3

∫
d3k

(
µ(k)2Re

(
T k(t)Tk(t

′)
)

+ µ(k)Re
(
λ(k)Tk(t)Tk(t

′)
))

eik(x−y)
(4.4)

λ(k) and µ(k) are of course functionals of ft0 , which we supressed in the notation. In order to
arrive at (4.1), we have to show that Rt0(x, y), applied to any pair of test functions in D(M),
converges to zero as t0 → −∞. We remind the reader that the representation of the distribution
(4.4) as a mode integral is defined as follows. First the integration with the test functions
g, h ∈ D(M) in the variables x and y is performed (note that in our standard coordinates we
have dµg = d4xa(t)3) and then the k-integration. For the investigation of the limit t0 → −∞ we
will have to distinguish between the possible values of ν. In the following, we will use various
properties of Hankel- and Besselfunctions, which can be found in [AS64].

2We occasionally set H = 1.
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4.1. Convergence of SLE’s to Distinguished States: de Sitter Space

The Case ν ∈ iR \ {0}

As a warm–up, we treat first the case of imaginary ν. There holds

ReTk(t) = e−3t0/2

√
πe−π|ν|/2(1− e−π|ν|)

2 sinhπ|ν|
ReJν(ze−(t−t0))e−3(t−t0)/2

ImTk(t) = −e−3t0/2

√
πe−π|ν|/2(1 + e−π|ν|)

2 sinhπ|ν|
ImJν(ze−(t−t0))e−3(t−t0)/2,

(4.5)

and we infer that, on account of the properties of Bessel functions, the mode functions Tk(t)
are bounded for (k, t) ∈ (0,∞)× I, I being an arbitrary compact interval. We estimate the two
contributions of (4.4), applied to the test functions g, h ∈ D(M), separately. For the first one
we obtain, after integration over the spatial variables,

|
∫

d3kµ(k)2

∫
dtdt′a(t)3a(t′)3Re

(
T k(t)Tk(t

′)
)
ĝ(t,k)ĥ(t′,−k)|

≤
∫ ∞

0
dkk2µ(k)2

∫
dtdt′a(t)3a(t′)3|Tk(t)||Tk(t′)|4π | max

(ϑ,φ)∈S2
|ĝ(t,k)︸ ︷︷ ︸

=:ĝ(t,k)

| max
(ϑ,φ)∈S2

|ĥ(t′,−k)|︸ ︷︷ ︸
=:ĥ(t′,k)

.

where the hat denotes Fourier transformation in position space and in the second line θ and φ
are the angular variables of k. Since ĝ and ĥ are of compact support in time, fall off faster than
any power for k →∞ and are bounded at k = 0, we may estimate the integrations w.r.t. t and
t′ by a k-independent constant. The same arguments apply for the remaining contribution,∫

d3kµ(k)

∫
dtdt′a(t)3a(t′)3Re

(
λ(k)Tk(t)Tk(t

′)
)
ĝ(t,k)ĥ(t′,−k)|,

so that we are left with the discussion of the integrals

M
.
=

∫ ∞
0

dkk2µ2 and N
.
=

∫ ∞
0

dkk2µ|λ|. (4.6)

Now λ and µ are given by thm. 2.5.1 for the shifted test function f(t − t0). The explicit form
(4.2) of Tk(t) allows to infer that the corresponding integrals c1 and c2 can each be written as a
product of e−3t0 and a function of the variable z

.
= ke−t0 , thus µ and λ are functions of z alone,

and a change of variables gives

M = e3t0

∫ ∞
0

dzz2µ2 and N = e3t0

∫ ∞
0

dzz2µ|λ|. (4.7)

We need now to show the existence of the z-integrals, from which the desired convergence of
the SLE ωt0 to λM for t0 → −∞ then follows trivially due to the prefactor e3t0 . We thus need
some information about µ|λ| and µ2 as functions of z. To this avail, it is useful to introduce the
auxiliary function

u : z 7→ c1√
c2

1 − |c2|2
. (4.8)
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4. Relation of SLE’s to Distinguished States on Asymptotic de Sitter Spacetimes

We then have 2µ2 = (u− 1) and 2µ|λ| =
√
u2 − 1. Using the power series representation for the

Bessel function,

Jν(x) =

(
1

2
x

)ν ∞∑
k=0

(
−1

4x
2
)k

k!Γ(ν + k + 1)
, (4.9)

one can evaluate c1 and c2 near z = 0 and finds that (4.8) remains bounded for z → 0. Next we
want to show that u is regular for each finite z. To this avail we rewrite

c2
1 − |c2|2 = 4

(∫
dtft0

(
(ReṪ )2 + ω2(ReT )2

)∫
dtft0

(
(ImṪ )2 + ω2(ImT )2

)
−
(∫

dtft0

(
ReṪ ImṪ + ω2ReT ImT

))2)
,

where we suppressed the k and t dependence of Tk(t). We introduce the notation∫
dtft0h(t)g(t)

.
= 〈h, g〉t0 ,

∫
dtft0h(t)2 .

= ||h||2t0 (4.10)

for real h, g and remark that it satisfies the properties of a nondegenerate inner product in the
vector space of real measurable functions on suppft0 = [−L+ t0, L+ t0]. We obtain

c2
1 − |c2|2 =

4

(
||ReṪ ||2t0 ||ImṪ ||

2
t0 − 〈ReṪ , ImṪ 〉2t0 + ||ωReT ||2t0 ||ωImT ||2t0 − 〈ωReT, ωImT 〉2t0

+||ReṪ ||2t0 ||ωImT ||2t0 + ||ImṪ ||2t0 ||ωReṪ ||2t0 − 2〈ReṪ , ImṪ 〉t0〈ωReT, ωImT 〉t0
)

Applying the Cauchy-Schwarz inequality twice we conclude that

c2
1 − |c2|2 ≥ m4

(
||ReT ||2t0 ||ImT ||

2
t0 − 〈ReT, ImT 〉2t0

)
. (4.11)

In the definition of 〈., .〉t0 the range of the integration variable t is the interval [t0 − L, t0 +
L] = suppft0 . Assume now that z > 0. Since Jν(x) and J−ν(x) are linearly independent
(pointwise in x on (0,∞)) for ν /∈ N and J−ν = Jν for imaginary ν, ReTk(t) and ImTk(t)
are also pointwise linearly independent for t ∈ [t0 − L, t0 + L] and each fixed z > 0. That
is, ∀z > 0 and ∀λ ∈ R ∃t(λ,z) ∈ suppft0 mit ReTk(t(λ,z)) 6= λImTk(t(λ,z)). Since Tk(t) is
continous in t, the last inequality holds also on some neighborhood of t(λ,z) ∈ suppft0 . Choosing
λ∗(z) =

∫
dtft0ReTk(t)ImTk(t)/

∫
dtft0(ImTk(t))

2 this yields

0 < ε(z) ≤
∫

dtft0(t) (ReTk(t)− λ∗(z)ImTk(t))2

=||ReT ||2t0 ||ImT ||
2
t0 − 〈ReT, ImT 〉2t0

, (4.12)

which proves that the r.h.s. of (4.11), multiplied by the factor e3t0 is strictly positive for every
finite z. Together with the finiteness of e3t0c1 for finite z this implies regularity of the function
u in the regime of finite z. The last step consists in discussing the decay properties of µ|λ| and

µ2 for z →∞. H
(2)
ν (x) posesses the representation [AS64]

H(2)
ν (x) =

√
2

πx
(P (ν, x)− iQ(ν, x))e−ixei(ν/2+1/4)π (4.13)
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4.1. Convergence of SLE’s to Distinguished States: de Sitter Space

where P and Q can be asymptotically expanded in inverse powers of x. Setting t̃ = t− t0, the
integral c2 assumes the form

c2 = e−3t0

∫
dt̃f(t̃)e−3t̃

∞∑
j=0

aj(ν)ejt̃

zj
e−2iz exp(−t̃)

= −e−3t0

∫ dτf(t̃(τ))τ2
n∑
j=0

aj(ν)

(zτ)j
e−2izτ +O

(
z−(n+1)

) (4.14)

The integral of the sum over j in the second line of (4.14) is decaying faster than any inverse
power of z since it is the sum of Fourier transforms of a smooth functions of compact support in
τ . The decay properties in z of the error term can be chosen to be good enough for our purposes
via a suitable choice of the truncation n. Since we already established |c1| 6= |c2| for finite z, we
may write u(z) as the following Taylor series:

c1√
c2

1 − |c2|2
=

1√
1− |c2|2/c2

1

= 1 +
|c2|2

2c2
1

+ ...

It is easy to show that the leading asymptotics of c1 for z → ∞ is ∝ z. Hence, it follows that
µ2 and µ|λ| decay sufficiently rapid such that the z-integrals in (4.7) exist and thus M and N
converge to zero for t0 → −∞.

The Case 0 ≤ ν < 3/2

In the following calculations we will, without loss of generality, use the mode functions Tk(t),
given by (4.2), without the phase factor eiνπ/2. We thus have

ReTk(t) =

√
π

2
e−

3
2
HtJν(−kH−1e−Ht), ImTk(t) =

√
π

2
e−

3
2
HtYν(−kH−1e−Ht)

It turns out that both the functions k 7→ Tk(t) and k 7→ u(ke−t0) diverge for k → 0, which
makes it necessary to estimate (4.4) more carefully. Namely, introducing the notation

I(α)
.
=

∫ L

−L
dtf(t)eαHt

and using again the series representation of Bessel functions for small arguments, it follows for
ν > 0 and small z

c2
1 − |c2|2 ≥m4

(
||ReT ||2t0 ||ImT ||

2
t0 − 〈ReT, ImT 〉2t0

)
=m4e−6Ht0

(
I(2ν − 3)I(−2ν − 3)− I(−3)2

16 sin2(πν)Γ(1 + ν)2Γ(1− ν)2
+O(z2ν)

)
and

c1 = e−3Ht0

(
(m2 + (ν − 3/2)2)Γ(ν)2)22νπ

4 sin2(πν)Γ(ν + 1)2z2ν
I(2ν − 3) +O(1)

)
so that

u(z) = O(z−2ν).
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The values ν = 0 and 1 require a special discussion, since then J±ν are not linearly independent
any more3. For instance, in the case ν = 0 we have

u(z) = O
(
(ln z)2

)
.

For ν ∈ (0, 3/2) we may bound Tk(t) as follows:

|Tk(t)| ≤ D
√
−πτ
2a

(
(kτ)−ν +

1√
kτ

)
. (4.15)

Thus, for ν < 1/2, (4.15) combined with the above established small z− behaviour of u(z) are
sufficient in order to show the existence of the z-integral for small z in Rt0 . This can be proven
in the same manner like for the case of imaginary ν, since the measure factor z2 is sufficient to
avoid “infrared problems”. However, for ν ∈ (1/2, 3/2) we need a refined investigation of the
integral kernel in (4.4). We have

µ2Re
(
T k(t)Tk(t

′)
)

+ µRe
(
λTk(t)Tk(t

′)
)

=

πe−
3
2

(t+t′)

4

(
Yν(w)Yν(w′)

(
µ2 + µ|λ| cos(argc2)

)
+ Jν(w)Jν(w′)

(
µ2 − µ|λ| cos(argc2)

)
− µ|λ| sin(argc2)

(
Jν(w)Yν(w′) + Jν(w′)Yν(w)

)) (4.16)

where we have set w = ke−t = ze−(t−t0) and w′ = ke−t = ze−(t′−t0). The first summand on the
r.h.s. of (4.16) is potentially the most singular one for z → 0 In this regime of ν, the real part of
c2 dominates the imaginary part, as we will now show. Namely, we have for ν > 1/2 and small
z:

Rec2 = e−3t0

(
−(m2 + (ν − 3/2)2)π22ν

8 sin2(πν)Γ(1− ν)2z2ν
I(2ν − 3) +O(1)

)
Imc2 = e−3t0

(
− (m2 + (ν − 3/2)2)π

4 sin(πν)Γ(1− ν)Γ(1 + ν)
I(−3) +O(z2)

)
It follows

argc2 =π + arctan

(
z2νI(−3) sin(πν)Γ(1− ν)

I(2ν − 3)Γ(1 + ν)22ν−1
+O(z2ν+2)

)
=π +

z2νI(−3) sin(πν)Γ(1− ν)

I(2ν − 3)Γ(1 + ν)22ν−1
+O(z2ν+2)

and thus

cos(argc2) = −1 +
z4ν

2

(
I(−3) sin(πν)Γ(1− ν)

I(2ν − 3)Γ(1 + ν)22ν−1

)2

+O(z4ν+2)

We are now in the position to investigate the limit t0 → −∞ of the distribution Rt0 , applied to
the testfunctions g and h. We will demonstrate this only for the most singular part of its integral

3This is merely a notational obstacle. We will leave out the explicit treatment of these cases, which works
completely analogous.
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kernel (4.16): Note that, since u(z) ≥ 1, there holds |µ2−µ|λ|| ≤ 1. Thus, |µ2+µ|λ| cos(argc2)| =
|µ2 − µ|λ| + O(z2ν)| ≤ C for some z0, C > 0 and z ≤ z0. Furthermore we know that there
exist w∗, D > 0 such that |Yν(w)| ≤ Dw−ν for all w < w∗. In the regime z < z0 we have
w = ke−t = zet0e−t ≤ z0e

t0e−t, which can be chosen smaller than w∗ for all t ∈ supptĥ by
requiring t0 < t∗0 (and similarly for w′). It follows∣∣∣∣∫ ∞

0
dkk2(µ2 + µ|λ| cos(argc2))

∫
dtdt′a3/2(t)a3/2(t′)Yν(ke−t)Yν(ke−t

′
)ĝ(k, t)ĥ(k, t′)

∣∣∣∣
= e3t0

∣∣∣∣∫ ∞
0

dzz2(µ2 + µ|λ| cos(argc2))

∫
dtdt′a3/2(t)a3/2(t′)Yν(ze−(t−t0))Yν(ze−(t′−t0))ĝĥ

∣∣∣∣
≤ ECD2e−(2ν−3)t0

∫ z0

0
dzz−2ν+2 + e3t0

∣∣∣∣ ∫ ∞
z0

dz...

∣∣∣∣
The constant E stems from estimating the integration over t and t′ . The first integral in the
above estimate clearly exists and converges to zero for t0 → −∞ if ν < 3/2. In order to prove
existence and convergence of the second summand we use the estimate |Yν(w)| ≤ Aw−1/2+Bw−ν

for w ∈ (0,∞), |µ2 + µ|λ| cos(argc2)| ≤ µ2 + µ|λ| and the fact that µ2 and µ|λ| decay faster
than any inverse power of z (see (4.14) and the subsequent discussion, which is valid also for
ν ∈ (0, 3/2)). Similar arguments can be repeated for the remaining (even less singular) parts of
the kernel (4.16) and for the cases ν ∈ {0, 1}. This shows that the distribution Rt0 , defined by
(4.4), converges to zero for t0 → −∞ and we have thus proven the following result:

Theorem 4.1.1. Let f be an arbitrary real positive test function of compact support on the real
line and let ωt0 denote the SLE of the minimally coupled Klein-Gordon field of mass m2 > 0,
induced by the shifted function ft0 = f(t−t0), on the part of de Sitter spacetime which is isometric
to a FRW universe (M, g) with flat spatial sections. Let futhermore λM be the restriction of the
O(1, 4)-invariant ground state λ on full de Sitter spacetime to (M, g). Then

lim
t0→−∞

Wt0
2 →W

λM
2 (4.17)

in the natural topology of D′(M×M).

4.2. Convergence of SLE’s to Distinguished States: Asymptotic de
Sitter Space

We want now to extend our convergence result to a more general class of FRW spacetimes,
namely the asymptotic de Sitter spacetimes, introduced in subsection 1.3. The asymptotic de
Sitter spacetimes belong to the class of spacetimes with a cosmological past horizon. Under
certain conditions, such spacetimes allow for the definition of a distinguished quantum state λM
for a scalar field theory [DMP09a; DMP09b]. We will briefly sketch how λM arises out of the
presence of such an horizon J −: The scalar QFT defined on our expanding universe (M, g) – also
called the bulk – can be related to a QFT defined on J − – the boundary. The latter is obtained
as follows: The special geometric structure of J − (see definition 1.3.1) allows for the definition of
a symplectic space (S(J −), σJ−) which is invariant under the group of diffeomorphisms SGJ−
of J −. One can now construct the corresponding canonical CCR-Weyl algebra W(J −), giving
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4. Relation of SLE’s to Distinguished States on Asymptotic de Sitter Spacetimes

rise to a full quantum field theory in its own right. SGJ− has a representation on W(J −)
via ∗− automorphisms and there exists a unique pure quasifree state λ on W(J −) which is
invariant under these ∗−automorphisms. This construction as it stands is of course physically
meaningless if it were not possible to relate it to the QFT in the bulk, characterised by the
Weyl algebra W(M) belonging to the symplectic space (S(M), σM) of solutions of the Klein
Gordon equation with compactly supported Cauchy data. However, under certain conditions it is
possible to identify a subspace of S(J −) with S(M) by means of an injective symplectomorphism
S(M)→ S(J −). Namely, sinceM can be extended to a bigger spacetime M̂, for every solution
φ of the Klein Gordon equation with compactly supported Cauchy data in M there exists a
solution φ′ of the Klein Gordon equation in M̂ with the same Cauchy data, giving rise to the
linear map

Γφ
.
= φ′ �J− . (4.18)

In [DMP09a] it was proven that, for the case of an asymptotic de Sitter spacetime (M, g), there
holds Γφ ∈ S(J −) and σJ−(Γφ,Γψ) = σM(φ, ψ) (i.e. Γ provides an injective symplectomor-
phism), under the following conditions4: With the definition

ν
.
=

√
9

4
−
(
m2

H2
+ 12ξ

)
, (4.19)

there should hold either

a = − 1

Hτ
+O(τ−2),

da

dτ
=

1

Hτ2
+O(τ−3),

d2a

dτ2
= − 2

Hτ3
+O(τ−4) (4.20)

if Reν < 1/2 or

a = − 1

Hτ
+O(τ−4),

da

dτ
=

1

Hτ2
+O(τ−3),

d2a

dτ2
= − 2

Hτ3
+O(τ−6) (4.21)

if Reν ∈ (1/2, 3/2). These conditions5 are necessary in order to perturbatively construct and
control the behaviour of the mode functions associated to the wave equation with parameters
m and ξ (see below). Note that in the following we will work again with minimal coupling,
i.e. we will set ξ = 0. If such an injective symplectomorphism (S(M), σM) → (S(J −), σJ−)
exists, it follows that the bulk algebra W(M) is a subalgebra of W(J −). This in turn defines
the distinguished state λM on W(M) by6

λM(WM(φ))
.
= λ(WJ−(Γφ)) ∀φ ∈ S(M).

While this construction of λM works so far for the general class (i.e. not necessarily FRW)
of spacetimes obeying definition 1.3.1 (provided that the above injective symplectomorphism
exists), it is not clear if in general λM will be Hadamard. However, as shown in [DMP09b],
this is true for the class of asymptotic de Sitter spacetimes. The authors characterised the

4Which are obviosly stricter than 1.16
5They differ here from the expressions in [DMP09b]. We suppose that the authors made an error there, since

from their form one does not get the claimed asymptotic behaviour of the perturbation potential (4.23).
6For φ ∈ S(M), WM(φ) ∈ W(M) are the generators of the Weyl algebra W(M); they correspond formally to

the exponentiated fields eiΦ(f) with Φ(f) ∈ A(M, g) and Ef = φ.
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4.2. Convergence of SLE’s to Distinguished States: Asymptotic de Sitter Space

distinguished state explicitly in terms of the mode functions. Starting from the mode equation
(2.13) and introducing ρk(τ) = a(t(τ))Sk(t(τ)), we obtain the differential equation7

ρ′′k(τ) +
(
k2 + (Hτ)−2(m2 − 2H2) + V (τ)

)︸ ︷︷ ︸
.
=Ω2(k,η)

ρk(τ) = 0. (4.22)

for ρk(τ), where V (τ) is a perturbation potential coming from deviation of the scale factor from
exact de Sitter form. Splitting the scale factor according to a = adS+ap, where adS

.
= −(Hτ)−1,

V is given by

V =
(
a2
p − 2ap(Hτ)−1

)
m2 +

2τ−2ap − a′′p
ap − (Hτ−1)

, (4.23)

which has for τ → −∞ the asymptotic behaviour O(τ−3) or O(τ−5), when imposing assumption
(4.20) or (4.21), respectively. The analogon of constraint (2.14) is

ρ′kρk − ρkρ′k = i. (4.24)

For the exact de Sitter case (i.e. V = 0), we denote the special set of mode functions which
solve (4.22) and characterise the Bunch Davies state again by χk(τ). They are given by

χk(τ) =

√
−τπ
2

e
iπν
2 H

(2)
ν (−kτ). (4.25)

These modes are now used for a perturbative construction of the modes ρk(τ):

ρk(τ) = χk(τ) (4.26)

+
∞∑
n=1

(−1)n
∫ τ

−∞
dt1

∫ t1

−∞
dt2...

∫ tn−1

−∞
dtnSk(τ, t1)Sk(t1, t2)...Sk(tn−1, tn)×

V (t1)V (t2)...V (tn)χk(tn),

where Sk(t1, t2)
.
= −i (χk(t1)χk(t2)− χk(t2)χk(t1)) is the unique retarded fundamental solution

of the unperturbed problem. The convergence of the series can be proven if the perturbation
potential V has the appropriate asymptotic behaviour, which in turn follows from the asymptotic
behaviour of ap. For Reν < 1/2 one has to require (4.20), whereas for ν ∈ (1/2, 3/2) it is
necessary to have (4.21). The so constructed modes behave then asymptotically like the Bunch
Davies modes for τ → −∞ by construction. It is shown in [DMP09a; DMP09b] that they deliver
the distinguished state λM.

In order to extend our convergence result of theorem 4.1.1 for this more general class of
spacetimes, we need some technical preparation. We start with the translation of the asymptotic
requirement

a(t(τ)) = − 1

Hτ
+O(τ−2), τ → −∞

into cosmological time, which then reads

a(t) = eHt +O(e2Ht), t→ −∞.
7We work from now on again with minimal coupling, ξ = 0.
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From this we can deduce

a−n(t) = e−nHt +O(e(−n+1)Ht), t→ −∞

and

τ(t) = − 1

H
e−Ht +O(t), t→ −∞.

These relations which will be needed in the following where we often switch between cosmological
and conformal time. We now collect some properties of the modes ρk(τ). We begin with a lemma
proven in [DMP09a] which establishes the convergence of ansatz (4.26) for the case Reν < 1/2:

Lemma 4.2.1. Let ρk(τ) be the exact solution of (4.22), obtained by the perturbation series
(4.26) w.r.t. the modes χk, given by (4.25), where Reν < 1/2 and V (τ) = O(τ−3) (which is
the case if (4.20) holds). Then for their difference Rk(τ)

.
= ρk(τ)− χk(τ) there holds for some

T < −1 and τ ∈ (−∞, T ):

1. |Rk(τ)| ≤
(
kReν + k−Reν

)
CνSν,T

2.
∣∣∣∂Rk(τ)

∂τ

∣∣∣ ≤ 2
(
kReν + k−Reν

)
(1 + k)CνSν,T

where

Sν,T = (−T )1/2−Reν (exp
(
C(−T )2Reν−1

)
− 1
)

(4.27)

and C,Cν are fixed positive constants.

While the content of the preceding lemma will suffice for proving convergence of the SLE’s to
λM for imaginary ν, this is not the case for ν ∈ (0, 3/2). More precisely, for ν ∈ (0, 1/2) we
shall require that V = O(τ−4) and for ν ∈ (1/2, 3/2) we will need V = O(τ−7). The reason
for this stricter assumption is that we need to control the small k behaviour of Imρk and Reρk
seperately. The next lemma will treat the case ν ∈ (0, 1/2):

Lemma 4.2.2. Let ν ∈ (0, 1/2) and V = O(τ−4). Let furthermore χk(τ) be given by (4.25),
without the phase8 eiπν/2. Then for Rk(τ)

.
= ρk(τ) − χk(τ) there holds for some T < −1,

τ ∈ (−∞, T ) and k < 1:

1. |ReRk(τ)| ≤ kνCνUν,T

2. |ImRk(τ)| ≤ k−νC ′νUν,T ,

where Cν , C
′
ν are positive constants depending on ν and

Uν,T = |T |ν+1/2
∞∑
n=1

1

n!

(
C|T |2ν−2

2− 2ν

)n
for some positive constant C. For ν < 1/2 there clearly holds Uν,T → 0 as |T | → ∞.

8Note that a multiplication of the modes with a phase does not change the corresponding state.
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4.2. Convergence of SLE’s to Distinguished States: Asymptotic de Sitter Space

Proof. With the changed definition of χk we have for ν ∈ (0, 1/2)

Reχk =

√
−τπ
2

Jν(−kτ), Imχk =

√
−τπ
2

Yν(−kτ).

Since the retarded fundamental solution Sk used to construct the perturbation series (4.26) is
real it follows that Reρk is obtained by inserting Reχk in (4.26) and the same is true for the
imaginary part. From standard properties of Bessel functions we obtain the following estimates
if |τ | > 1 and k < 1:

|Reχk| ≤ Cν(−τ)1/2+νkν , |Imχk| ≤ C ′ν(−τ)1/2+νk−ν .

Using the estimate |Sk(t1, t2)| ≤ D|t1t2|ν+1/2 in [DMP09a] and the asymptotic behaviour O(τ−4)
of the perturbation potential V , we can do a similar estimate like in [DMP09a] of the pertur-
bation series appearing in (4.26), but this time seperately for Imρk and Reρk. This yields the
expression for Uν,T in the claim of the lemma.

The next lemma treats the behaviour of ρk(τ) for small k and the case ν ∈ (1/2, 3/2):

Lemma 4.2.3. Let ν ∈ (1/2, 3/2) and V (τ) = O(τ−7). Let ρk(τ) be the exact solution of (4.22),
given by the series (4.26), where χk(τ) is given by (4.25), again without the phase eiπν/2. Suppose
furthermore that |τ | > 1 and k < 1 and define α

.
= sup(ν, 2− ν). Then there holds:

1. |ReRk(τ)| ≤ kνCνWν,τ

2. |ImRk(τ)| ≤ k−νC̃νZν,τ

with Cν , C
′
ν as in the preceding lemma and

Wν,τ = |τ |ν+1/2
∞∑
n=1

1

n!

(
C1|τ |2α−5

5− 2α+ ν + 1/2

)n
Zν,τ =

∞∑
n=1

1

n!

(
C2|τ |2α−5

5− 2α

)n
.

where C1, C2 are positive constants and again Wν,τ ,Wν,τ → 0 for |τ | → ∞.

Proof. This time we used the estimate |Sk(t1, t2)| ≤ E|t1|2α+1 for some constant E and |t1| >
|t2| > 1 and k < 1 (see [DMP09b]), together with the improved τ uniform estimate |Imχk(τ)| ≤
C̃νk

−ν for k < 1. Using this, similar estimates like in the proof of the preceding lemma yield
then the expression for Wν,τ and Zν,τ .

We need furthermore a statement for a certain asymptotic behaviour of ρk(τ):

Lemma 4.2.4. Consider the perturbed differential equation (4.22) for arbitrary m > 0, where
the asymptotic behaviour of V (τ) is at least O(τ−3). Assume in addition that V ′(τ) = O(τ−3).
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Then, the special solution ρk(τ) and its first derivative (defined by (4.26)) can be represented as
follows:

ρk(τ) =
e−iπ/4√

2k
e−ikτ

(
1 + i

(
m2 − 2H2

2kτ
− 1

2k

∫ τ

−∞
V (τ ′)dτ ′

)
+R1(k, τ)

)
(4.28)

ρ′k(τ) =
e−iπ/4√

2
e−ikτ

√
k

(
−i+

n

2kτ
− 1

2k

∫ τ

−∞
V +R2(k, τ)

)
, (4.29)

where |Ri(k, τ)| = O(x−2) for x→∞, with x
.
= k|τ |, provided that k > 0 and |τ | is bigger than

some appropriate constant.

Proof. Theorem 2.2 in [Olv74] tells us that a special solution of (4.22) can be written as

ρk(τ) =
e−iπ/4eiφ(k,a)√

2Ω(k, τ)
e−i

∫ τ
a dτ ′Ω(k,τ ′) (1 + δ(k, τ)) . (4.30)

φ(k, a) is a phase factor (defined below) which serves to match ρk(τ) to χk(τ) for τ → −∞. For
the error term there holds

|δ(k, η)| ≤ eV−∞,τ (F ) − 1, |δ′(k, τ)| ≤ Ω(k, τ)
(
eV−∞,τ (F ) − 1

)
, (4.31)

where V−∞,τ (F ) is the variation of the error control function

F (τ) = Ω(k, τ)−1/2∂2
τΩ(k, τ)−1/2

and can be written as9

V−∞,τ (F ) =

∫ τ

−∞
dτ ′|Ω−1/2(k, τ ′)∂2

τ ′Ω(k, τ ′)−1/2|

We have

Ω−1/2(k, τ ′)∂2
τ ′Ω(k, τ ′)−1/2 =

5

16

(
−2(m2−2/H2)

H3τ3 + V ′(τ)
)2

Ω5
− 1

4

6(m2−2/H2)
H2τ4 + V ′′(τ)

Ω3

With the additional assumption on V ′(τ) we obtain V−∞,τ = k−3O(τ−3). That is, ∃τ0 > 0, C
such that V ≤ Ck−3|τ |−3 if |τ | ≥ τ0. For V → 0 there holds

eV − 1 = O (V) (4.32)

Thus, ∃D(V0),V0 such that eV − 1 ≤ D(V0)V for V ≤ V0. Put now the following condition on
k|τ |, by requiring V0 ≥ Ck−3|τ |−3 ⇔ k|τ | ≥ 3

√
C/V0. Thus, for |τ | ≥ |τ0| and x

.
= k|τ | ≥ 3

√
C/V0

we have eV − 1 ≤ DCx−3. Next we investigate the term

Ω−1/2 = k−1/2(1 + y)−1/4, y(k, τ)
.
=
m2 − 2H2

H2τ2k2
+
V (τ)

k2
= k−2O(τ−2).

9We refer the reader to [Olv74] for the proofs.
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For k > 0 we obtain

Ω−1/2 =
1√
k

(
1− n

4k2(Hτ)2
− V (τ)

4k2
+ g(y)

)
, g(y) = O(y2).

Using the same argument as before we have

|g(y)| ≤ Ex−4

for some constant E and the condition that both |τ | and x = k|τ | are sufficiently big. The last
task is to investigate the integral ∫ τ

a
Ω(k, τ ′)dτ ′.

Again, we may write

Ω(k, τ ′) = k

(
1 +

m2 − 2H2

2H2τ ′2k2
+
V (τ ′)

2k2
+ h(y(k, τ ′))

)
.

with
h(y) = O(y2) as y → 0.

Thus, ∫ τ

a
dτ ′Ω(k, τ ′) =k(τ − a)− m2 − 2H2

2H2k

(
τ−1 − a−1

)
+

1

2k

(∫ τ

−∞
V (τ ′)dτ ′ −

∫ a

−∞
V (τ ′)dτ ′

)
+ k

(∫ τ

−∞
h(y(k, τ ′))dτ ′ −

∫ a

−∞
h(y(k, τ ′))dτ ′

)
.

Repeating the above reasoning, we have

|k
∫ τ

−∞
h(y(k, τ ′))dτ ′| ≤ E(k|τ |)−3

for |τ |, k|τ | big enough. Define now

φ(k, a)
.
= −ka+

m2 − 2H2

2H2ka
− 1

2k

∫ a

−∞
V (τ ′)dτ ′ − 1

2k

∫ a

−∞
h(y(k, τ ′))dτ ′.

Then it follows

eiφ(k,a)e−i
∫ τ
a Ω(k,τ ′)dτ ′ =e−ikτe

i
(
m2−2H2

2H2kτ
− 1

2k

∫ τ
−∞ V (τ ′)dτ ′−

∫ τ
−∞ h(y(k,τ ′))dτ ′

)

=e−ikτ
(

1 + i

(
m2 − 2H2

2H2kτ
− 1

2k

∫ τ

−∞
V (τ ′)dτ ′

)
+ u(k, τ)

)
,

where |u(k, τ)| ≤ F (k|τ |)−2 for some constant F if |τ | and |kτ | are sufficiently big. Inserting
all the asymptotic expansions we made so far in formula (4.30) as well as in its first derivative
(where the estimate for δ′(k, τ) in (4.31) has to be used in addition) yields the claim of our
lemma.
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In the following we will analyse the distribution Rt0 , representing the difference between the
two point distribution of the SLE ωt0 and the distinguished state λM of our asymptotic de
Sitter spacetime. It is defined by (4.4), where Tk(t) are now of course the modes describing
the state λM. The Bogolubov coefficients λ and µ describing the SLE ωt0 are now functions
of z = kH−1e−Ht0 and t0; z will again be used as integration variable. We now proceed like
in the case of de Sitter spacetimes: In order to show that limt0→−∞Rt0(g, h) = 0 for arbitrary
g, h ∈ D(M), we transform it in a z− integral and show its existence by investigating the
integrand for z → 0, finite z and z →∞. Recall that we imposed additional10 restrictions on the
geometry of the asymptotic de Sitter spacetime (by requiring V to have appropriate asymptotic
behaviour in τ), on which our convergence investigations hold. Namely, for ν ∈ (0, 1/2) we
require V = O(τ−4) and for ν ∈ (1/2, 3/2) there should hold V = O(τ−7), whereas for imaginary
ν it is sufficient to have V = O(τ−3).

Lemma 4.2.5. Let t0 < t∗, with t∗ sufficiently small. If ν is purely imaginary, then the functions
µ2(z, t0) and |λ(z, t0)|µ(z, t0) are bounded for z → 0 and have no singularities for finite values
of z. If ν ∈ (0, 1/2), then the functions µ2(z, t0) and |λ(z, t0)|µ(z, t0) are O(z−2ν) for z → 0 and
have no singularities for finite z either.

Proof. We start with the case of imaginary ν. Writing ρk = χk + Rk and modifying for the
moment the notation 〈., .〉t0 of the previous subsection by setting

〈u,w〉t0
.
=

∫
dtft0a

−2uw

we have

c2
1 − |c2|2

≥ m4

(∫
dtft0a

−2 (Reρk)
2
∫

dtfa−2 (Imρk)
2 −

(∫
dtft0a

−2ReρkImρk

)2
)

= m4
(
||Reχk||2t0 ||Imχk||

2
t0 − 〈Reχk, Imχk〉2t0

)
+m4W,

(4.33)

where W is some linear combination of the expressions

〈Reχk,ReRk〉t0〈Imχk, ImRk〉t0 , 〈ReRk,ReRk〉t0〈Imχk, ImRk〉t0 ,
〈Reχk, ImRk〉t0〈Imχk,ReRk〉t0 , ...

(4.34)

We calculate

m4
(
||Reχk||2t0 ||Imχk||

2
t0 − 〈Reχk, Imχk〉2t0

)
=

π2m4

16 sinh2(|ν|π)

((∫
dtft0(t)

|τ(t)|
a2(t)

|Jν(−kτ(t))|2
)2

−
∣∣∣∣∫ dtft0(t)

|τ(t)|
a2(t)

(Jν(−kτ(t)))2

∣∣∣∣2
)

We use the convergent power series representation for Jν(x)J−ν(x) ([AS64]) and obtain

|Jν(x)|2 = Jν(x)J−ν(x) =
sinh(π|ν|)
|ν|π

+O(x2),

10Additional to the restrictions of [DMP09a; DMP09b] which were necessary to prove the existence of λM.

74



4.2. Convergence of SLE’s to Distinguished States: Asymptotic de Sitter Space

with
x = −kτ = z

(
e−Ht̃ + eHt0O(t̃+ t0)

)
, t̃

.
= t− t0.

Thus,∫
dtft0

|τ(t)|
a2(t)

|Jν(−kτ(t))|2 =

e−3Ht0 sinh(π|ν|)
π|ν|

(∫
dt̃f(t̃)

e−3Ht̃

H
+O(eHt0t0)

)
+ e−3Ht0O(z2)

(∫
dt̃f(t̃)

e−5Ht̃

H3
+O(eHt0t0)

)

for ke−Ht0 = z → 0 and t0 → −∞. Now we use the power series for J2
ν (x):

J2
ν (x) =

(x
2

)2i|ν|
(

1

Γ(1 + i|ν|)2
+O(x2)

)
.

Furthermore, a Taylor expansion of the logarithm for small α yields

ln(x+ α) = lnx+ α/x− α2/x2 + ...

(for x > 0 and |α| < x). Thus

x2i|ν| = (z)2i|ν| e−2i|ν|Ht̃ (1 +O(eHt0t0)
)

and∫
dtft0

|τ(t)|
a2(t)

Jν(−kτ)2 =
e−3Ht0

Γ(ν + 1)2

(z
2

)2i|ν|
(∫

dt̃f(t̃)
e−3Ht̃

H
e−2i|ν|Ht̃ +O(eHt0t0)

)

+ e−3Ht0O(z2)
(z

2

)2i|ν|
(∫

dt̃f(t̃)
e−5Ht̃

H3
e−2i|ν|Ht̃ +O(eHt0t0)

)
,

again for z → 0 and t0 → −∞. It follows

m4
(
||Reχk||2t0 ||Imχk||

2
t0 − 〈Reχk, Imχk〉2t0

)
=
m4e−6Ht0

16|ν|2H2

((∫
dt̃f(t̃)e−3Ht̃

)2

−
∣∣∣∣∫ dt̃f(t̃)e−3Ht̃e−2i|ν|Ht̃

∣∣∣∣2
)

︸ ︷︷ ︸
.
=cf,ν

+ e−6Ht0
(
O(z2) +O(eHt0t0)

)
where cf,ν is strictly positive. We look now at the terms contained in W , listed in (4.34), in
which the difference function Rk = ρk − χk enters. Since the integration range is confined to
the support of ft0 , we may choose T (which appears in formula (4.27) of lemma 4.2.1) as a
function of t0, namely by choosing Tt0 = τ(t0 + L). Thus t ∈ suppft0 ⇒ |τ(t)| ≥ |Tt0 |. Using
the expression for Sν,T in the estimate of |Rk| in lemma 4.2.1 this implies that

|Rk(τ(t))| ≤ Ce
Ht0

2
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if only t0 small enough. This entails that the strongest divergence for t0 → −∞ in (4.33) coming

from W is of order e−
11Ht0

2 . Thus,

e6Ht0(c2
1 − c2

2) ≥
m4cf,ν

16|ν|2H2
+O(z2) +O

(
e
Ht0

2

)
(4.35)

An estimate of c1 from above is easily established, by using again lemma (4.2.1) and the above
considerations. The result is that e3Ht0c1 is bounded for z → 0 uniformly in t0 (which has to be
sufficiently small). We conclude that there exists z∗ > 0 and some t∗ such that

u(z, t0) =
c1√

c2
1 − |c2|2

(4.36)

and thus |λ|µ and µ2 are bounded from above independently of t0 for all t0 < t∗ and z < z∗.
Now assume that z is strictly positive and finite. We look again at the term(∫

dtft0(t)
|τ(t)|
a2(t)

|Jν(−kτ)|2
)2

−
∣∣∣∣∫ dtft0(t)

|τ(t)|
a2(t)

Jν(−kτ)2

∣∣∣∣2 . (4.37)

We may write the argument of Jν as

−kτ = ze−Ht̃ + zO(eHt0t0)

for t0 → −∞. A Taylor expansion then yields

Jν(−kτ) = Jν(ze−Ht̃) +O(eHt0t0),

valid for fixed z. We obtain

(4.37)

=
e−6Ht0

H2

((∫
dt̃f(t̃)e−3Ht̃

∣∣∣Jν (ze−Ht̃)∣∣∣2)2

−
∣∣∣∣∫ dt̃f(t̃)e−3Ht̃Jν

(
ze−Ht̃

)2
∣∣∣∣2
)

+ e−6Ht0O(eHt0t0)

Since the real and imaginary parts of Jν are pointwise linearly independent and continous on
the interval [ze−L, zeL], we conclude (by using the same argument like in the previous chapter)
that the above expression is a strictly positive number for every finite strictly positive z and
sufficiently small t0. Returning to W in (4.33), we already saw that its contributions diverge

for t0 → ∞ at most like e−
11Ht0

2 . Since e3Ht0c1 is regular for all values of z, we conclude that
c1/
√
c2

1 − |c2|2 does not have any singularities in the transition region between small and large
z.

Now consider ν ∈ (0, 1/2). We redefine the modes Tk according to lemma 4.2.2. Choose t0
small enough such that τ(L+ t0) ≤ −C

H e
−H(L+t0) .

= T (t0) ≤ T < −1 for some positive constant
C. Then τ(t) ≤ T (t0) for t ∈ suppft0 . The starting point is again formula (4.33). Thanks
to the separate estimates for imaginary and real part of Rk in lemma 4.2.2, it is easy to see
that W contains no divergencies in k. Using again the power series expansion of Jν for small
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arguments, the estimates of lemma 4.2.2 and the fact that Uν,T ≤ Uν,T (t0) = O(e3Ht0(1/2−ν)) it
is straightforward to show that11

||ReTk||2t0 ||ImTk||
2
t0 − 〈ReTk, ImTk〉2t0

≥
π2e−6Ht0

(∫
dtf(t)e−(3+2ν)Ht

∫
dtf(t)e−(3−2ν)Ht −

(∫
dtf(t)e−3Ht

)2)
(4Γ(ν + 1)Γ(1− ν)H)2

+ e−6Ht0
(
O(z2) +O

(
e

3
2

(1−2ν)Ht0
))

,

which is manifestly strictly positive for all sufficiently small z and t0. Similarly it can be shown
that

c1 = e−3Ht0O(z−2ν)

and we conclude that u(z, t0) and thus µ2 and |λ|µ diverge at most like z−2ν for z → 0. In order
to show the absence of poles for finite strictly positive z, exactly the same arguments can be
used like in the case of imaginary ν.

Lemma 4.2.6. Let ν ∈ (1/2, 3/2) and t0 < t∗ for some t∗ small enough. Then the function

z 7→ z2
(
µ2Re

(
T k(z)(t)Tk(z)(t

′)
)

+ µRe
(
λTk(z)(t)Tk(z)(t

′)
))

is integrable for z → 0 and µ2, µ|λ| are regular for finite z.

Proof. We start the proof by analysing the behaviour of Rec2 and Imc2 for small z. Note that we
use again the “rephased” modes according to lemma 4.2.3. Consider the following contribution
to c2,

I1
.
=

∫
dtft0(t)m2Tk(t)

2. (4.38)

Using lemma 4.2.3 we first show that for small |kτ | = ze−Ht̃(1 +O(eHt0t0)), the real part of T 2
k ,

given by
ReT 2

k = (ReTk)
2 − (ImTk)

2 ,

dominates its imaginary part, which reads

ImT 2
k = 2ReTkImTk.

When writing asymptotic forms in z and t0 for z → 0 and t0 → −∞ in the following we used
the fact that, for the discussion of c1 and c2, we need properties of Tk(t) only on the compact
interval t ∈ [−L+ t0, L+ t0] or t̃

.
= t− t0 ∈ [−L,L]. Thus,

(ReTk)
2 =a−2 (Reχk(τ))2 + a−2

(
2Reχk(τ)ReRk(τ) + (ReRk(τ))2

)
=
π|τ |
4a2

(Jν(−kτ))2 + a−2
(

2Reχk(τ)ReRk(τ) + (ReRk(τ))2
)

=
πe−3Ht0z2νe−(2ν+3)Ht̃

H22+2ν

(
1

Γ(ν + 1)2
+O(z2)

)
+O(z2)O

(
e−Ht0(2α−2)

)
11Note that we use here again the notation (4.10).
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(ImTk)
2 =a−2 (Imχk(τ))2 + a−2

(
2Imχk(τ)ImRk(τ) + (ImRk(τ))2

)
=
π|τ |
4a2

(Yν(−kτ))2 + a−2
(

2Imχk(τ)ImRk(τ) + (ImRk(τ))2
)

=
πe−3Ht0z−2νe(2ν−3)Ht̃

H22−2ν sin2(πν)

(
1

Γ(−ν + 1)2
+O(z2)

)
+O(z−2ν)O

(
e−Ht0(2α−5/2+ν)

)

ReTkImTk =a−2Imχk(τ)Reχk(τ) + a−2 (Reχk(τ)ImRk(τ) + Imχk(τ)ReRk(τ) + ImRk(τ)ImRk(τ))

=
π|τ |
4a2

Jν(−kτ)Yν(−kτ) + a−2(...)

=− πe−3Ht0e−3Ht̃

4H sin(πν)

(
1

Γ(1− ν)Γ(1 + ν)
+O(zmin(2,2ν))

)
+O(z0)O

(
e−2Ht0

)
We conclude that, for z → 0 and t0 → −∞,

ImI1 = −e−3Ht0O
(
z0
) (

1 +O
(
e−2Ht0

))
and

|ReI1| = e−3Ht0O(z−2ν)
(

1 +O
(
e−Ht0(2α−5/2+ν)

))
,

and that ReI1 is negative for z small enough. Obviously, the term

I2
.
=

∫
dtft0(t)k2a−2Tk(t)

2

contributes less singular terms in z to c2. Finally, the last contribution

I3
.
=

∫
dtft0(t)(Ṫk(t))

2

can only add a negative contribution to Rec2 having at most the same divergence for z → 0 and
t0 → −∞ like ReI1, whereas ImI3 behaves like ImI1 in this respect. This can be deduced by
estimating the first τ derivative of the series in (4.26), which furnishes corresponding estimates
for the real and imaginary parts of R′k(τ). Following the argumentation in subsection 4.1 we
conclude that

cos(argc2) = −1 +O(z4ν),

like in the pure de Sitter case. We also have u(z, t0) = O(z−2ν) for sufficiently small t0, which
can be proven in the same manner like for the other values of ν, using lemma 4.2.3. Therefore,
the same line of argumentation like in subsection 4.1 can be invoked to conclude that

z 7→ z2
(
µ2Re

(
T k(z)(t)Tk(z)(t

′)
)

+ µRe
(
λTk(z)(t)Tk(z)(t

′)
))

is integrable for z → 0. The proof of regularity of µ2 and µ|λ| for finite z works in the same
manner like for the other regimes of ν.

The last lemma that we need establishes a sufficient decay behaviour of the Bogolubov coefficients
λ and µ in z:
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Lemma 4.2.7. Consider the SLE ωt0 for the minimally coupled Klein Gordon field of mass m,
induced by the smearing function ft0 on the asymptotic de Sitter spacetime specified by either
(4.20) or (4.21). Assume in addition that the assumption on V (τ) in lemma 4.2.4 is satisfied.
Let µ(k, t0) and λ(k, t0) be the Bogolubov coefficients parametrising ωt0, where the modes ρk(τ),
given by (4.26), are used as reference modes. Then there exists T such that for t0 < T µ and
µ|λ| decay at least like z−2, where z

.
= kH−1e−Ht0.

Proof. For the calculation of c1 and c2 we need properties of the modes ρk(τ) for t(τ) ∈ [−L+
t0, L+ t0]. In order to apply lemma 4.2.4, |τ | must be sufficiently big, which can be achieved by
choosing t0 small enough, t0 < T (recall that t0 will be sent to −∞ later). Inserting the results
of lemma 4.2.4, one can now show that |c2| can be estimated from above by a product of e−3Ht0

times a function that decays at least like z−1 (and is independent from t0). This result can be
established by inserting the formulae for ρk(τ) and ρ′k(τ) from lemma 4.2.4 into the definition
of c2 and by performing as many partial integrations (w.r.t. the integration variable τ) as
needed (at most two). As an example we consider the following (potentially worst behaving)
contribution for c2:∣∣∣∣∫ ft0Tk(t)

2k2a−2dt

∣∣∣∣ =

∣∣∣∣∫ ft0ρk(τ(t))2k2a−4dt

∣∣∣∣
≤ k

2

( ∣∣∣∣∫ ft0a
−3e−2ikτdτ

∣∣∣∣+
1

k

∣∣∣∣∫ ft0a
−3e−2ikτ

(
m2 − 2H2

H2τ
−
∫ τ

−∞
V (τ ′)dτ ′

)
dτ

∣∣∣∣
+

1

k2

∣∣∣∣∫ ft0a
−3Cτ−2dτ

∣∣∣∣ )
Performing two times partial integration, we get

k

2

∣∣∣∣∫ ft0a
−3e−2ikτdτ

∣∣∣∣ ≤ 1

8k

∫ ∣∣∣(ft0a−3
)′′∣∣∣dτ

=
1

8k

∫
dt

∣∣∣∣∣ f̈t0a2
− 5ḟt0

a′

a4
− 3f

(
a′′

a5
− 4

a′2

a6

)∣∣∣∣∣
(4.39)

Going over to z and using the asymptotic behaviour of a(t) in cosmological time for t → −∞
we obtain ∣∣∣∣1k

∫
dtf̈t0a

−2

∣∣∣∣ ≤ e−3Ht0

z

∫ L

−L
dt̃f̈(t̃)

(
e−2Ht̃ + CeHt0e−Ht̃

)
,

where the integral can be estimated from above by a t0− independent constant. Taking addi-
tionally the asymptotic behaviour of the scale factor into account, the remaining terms of (4.39)
can be treated similarly, requiring even less partial integrations. For c1 we obtain in the same
manner

c1 ≥
∫

dtft0k
2a−4|ρk(τ(t))|2 ≥ C ′e−3t0z, z →∞

for some constant C ′ so that
|c2|2

c2
1

= O(z−4) (4.40)

if t0 and z are sufficiently big. Using a Taylor expansion of µ and |λ|µ in the variable |c2|2/c2
1

yields the claim.
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After this rather lengthy preparations we are now able to generalise theorem 4.1 to asymptotic
de Sitter spacetimes.

Theorem 4.2.8. Let f be an arbitrary real positive test function of compact support on the real
line and let ωt0 denote the SLE of the minimally coupled free Klein-Gordon field of mass m2 > 0
(which implies Reν < 3/2), induced by the shifted function ft0 = f(t − t0), on the spatially
flat asymptotic de Sitter spacetime (M, g) introduced above. Depending on the value of ν, the
perturbation potential V (defined by (4.23)), induced by the scale factor describing (M, g) should
fulfil the following asymptotic requirements:

V = O(τ−3), Reν = 0, Imν 6= 0

V = O(τ−4), Reν ∈ [0, 1/2)

V = O(τ−7), Reν ∈ [1/2, 3/2)

V ′ = O(τ−3), ∀ν

Then

lim
t0→−∞

Wt0
2 →W

λM
2

in the natural topology of D′(M×M).

Proof. In analogy to subsection 4.1 we decompose

Wt0
2 (x, y) =WλM

2 (x, y) +Rt0(x, y), (4.41)

where the bidistribution Rt0 is given by

Rt0(x, y)
.
=

2

(2π)3

∫
d3k

(
µ2Re

(
T k(t)Tk(t

′)
)

+ µRe
(
λTk(t)Tk(t

′)
))

eik(x−y),
(4.42)

where µ, λ depend on t0, k and describe the SLE ωt0 w.r.t. the modes Tk(t) = a−1ρk(τ(t)),
with ρk given by (4.26). These modes in turn describe the preferred state λM on (M, g).
We have to show that, for any two compactly supported test functions g, h ∈ D(M), there
holds limt0→−∞Rt0(g, h) = 0. In order to analyse Rt0 we will use the above lemmas for ρk(τ)
and the Bogolubov coefficients describing ωt0 , which hold under the condition that τ and t0
are sufficiently small, respectively. Thus, we will choose t0 small enough and restrict g, h to
D(MT , g), MT

.
= {(t,x) ∈ M : t < T}, where T is sufficiently small. We denote the cartesian

product of the temporal supports (in cosmological time) of g and h by D(g, h). Furthermore,
|ĥ(t,k)| can be bounded from above for all k by a smooth and compactly supported function
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which we denote by ĥ(t); the same holds for g. Thus we have

|Rt0(g, h)|

≤C
∫
R+

dkk2|
∫∫

D(g,h)

dtdt′a3(t)a3(t′)
(
µ2Re

(
T k(t)Tk(t

′)
)

+ µRe
(
λTk(t)Tk(t

′)
))
ĝ(t)ĥ(t′)|

=H3e3Ht0C

∫
R+

dzz2|
∫∫

D(g,h)

dtdt′a3(t)a3(t′)

(
µ2Re

(
T k(z)(t)Tk(z)(t

′)
)

+ µRe
(
λTk(z)(t)Tk(z)(t

′)
))

ĝ(t)ĥ(t′)|.

We split the z integration into two parts. Call Rt01 the contribution coming from z ≤ z∗ and
Rt02 the corresponding second part. We first discuss Rt01 for all possible regimes of ν. For ν
imaginary, Rt01 is a product of e3Ht0 with an integral which can be bounded independently of t0,
due to the lemmas 4.2.1 and 4.2.5; therefore it converges to zero for t0 → −∞. If ν ∈ (0, 1/2)
we have for (t, t′) ∈ D(g, h):

|Tk(z)(t)Tk(z)(t
′)| ≤ C ′(z2νe2νHt0 + z−2νe−2νHt0 + 2).

Together with the behaviour of µ2 and µ|λ| for small z and their regularity for finite z (lemma
4.2.5) this implies convergence of Rt01 to zero as well. For ν ∈ (1/2, 3/2) we have to invoke
additionally lemma 4.2.6 to ensure integrability for z → 0. More precisely,

z2
(
µ2Re

(
T k(z)(t)Tk(z)(t

′)
)

+ µRe
(
λTk(z)(t)Tk(z)(t

′)
))

=ReTk(t)ReTk(t
′)(µ2 + µ|λ| cos argλ) + ImTk(t)ImTk(t

′)(µ2 + µ|λ| cos argc2)

− µ|λ| sin argλ(ReTk(t)ImTk(t
′) + ImTk(t)ReTk(t

′))

(4.43)

Since z ≤ z∗ = k∗e−Ht0 we have k ≤ k∗ and thus |ReTk(t)| = O(kν) and |ImTk(t)| = O(k−ν).
Furthermore, u(z) = O(z−2ν) and the same holds then for µ2 and |λ|µ. Finally, according to
lemma 4.2.6 we have cos(argc2) = −1 +O(z4ν) and boundedness of |µ2 − µ|λ||. Thus, we have

e3Ht0

∫ z∗

0
dzz2

∣∣ ∫∫
D(h,g)

dtdt′(µ2 + µ|λ| cos(argc2)ImTk(z)(t)ImTk(z)(t
′)
∣∣

≤ Ce(3−2ν)Ht0

∫ z∗

0
dzz2−2ν |µ2 − µ|λ|+O(z2ν)|.

The z integral exists and the whole term converges to zero for t0 → −∞. The same arguments
apply for the remaining terms contained in (4.43).

Now we come to the contribution Rt02 . The following discussion will be valid ∀ν. The con-
tributions of the integrand (4.43) containing µ2 are clearly integrable, since |Tk(t)| = O(k−1/2)
for k > k∗ and µ2 = O(z−4). Regarding the second contribution, the measure factor z2 cancels
with the asymptotics of µ. Since we can choose T (which is the upper bound of the temporal
support of the test functions g, h) sufficiently small and k > k∗, we may apply lemma 4.2.4 to
treat the k asymptotics of Tk(t):

Tk(t) =
e−iπ/4

a
√
k
e−ikτ (1 +O(k−1)).
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The remaining contribution to Rt02 reads

e3Ht0

∫ ∞
z∗

dzz2
∣∣ ∫∫
D(g,h)

dtdt′a3(t)a3(t′)µRe(λTk(t)Tk(t
′))ĥ(t)ĝ(t′)

∣∣
=

∫ ∞
k∗

dkk2
∣∣ ∫∫
D(g,h)

dtdt′a3(t)a3(t′)µRe(λTk(t)Tk(t
′))ĥ(t)ĝ(t′)

∣∣.
Using the asymptotic expression for ρk(τ) in lemma 4.2.4 (recall that Tk(t) = a−1ρk(τ(t)) and
performing at most one partial integration in the integration variable τ(t) (note that ĥ and ĝ
have compact support) one easliy establishes the existence of the above k− integral. Now for
k ≥ k∗ and t0 sufficiently small, z(k) is sufficiently big and we have µ|λ| ≤ Cz−2 = k−2e2Ht0 by
lemma 4.2.7, which proves the convergence of Rt02 to zero for t0 → −∞. In order to complete
the proof we remark that Wt0

2 is fully determined by knowing its restriction to D(MT ×MT ),
since the Klein–Gordon field on a globally hyperbolic spacetime fulfils the time slice axiom.

We would like to add the following remark: In order to show the above convergence of SLE’s
to λM, we had to require a more restrictive asymptotic behaviour for V (and thus for the
scale factor) than the authors of [DMP09a; DMP09b]. The technical reason for doing so was to
control the behaviour of the expression c2

1−|c2|2, which enters in the definition of the Bogolubov
coefficients of ωt0 . More precisely, we had to control it uniformly for small k and all t0. This
made it necessary to obtain estimates of ρk(τ) for its real and imaginary part separately (lemma
4.2.2 and 4.2.3). Maybe more abstract arguments could be used to prove that c2

1 − |c2|2 is
larger than some finite positive constant independently of k and t0, in which case our additional
requirements could be dropped. However, for the discussion of the large k-behaviour of the
Bogolubov coefficients, the condition on V ′ seems to be indispensable.
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5. The Semiclassical Backreaction Problem for
SLE’s

One of the most interesting problems in the realm of QFT on curved spacetimes, both physically
and mathematically, is certainly the study of the semiclassical Einstein equation

Gab = −8πGω(: Tab :), (5.1)

even when restricting to free field theories. We do not want to motivate here how (5.1) could
be derived from a potential quantum theory of gravity (the interested reader is referred to
[Hac10, sec IV.1] and the literature cited there.) As a matter of fact, (5.1) is the simplest way to
describe the interaction of quantum matter with the spacetime metric in a semiclassical manner.
Since the expectation value of the quantum stress energy tensor is a probabilistic quantity, it is
expected that the semiclassical Einstein equation will be meaningful if the relative fluctuations
of : Tab : in the Hadamard state ω are small. The Hadamard property at least guarantees
that they are finite [Wal77]. However, the smallness can only be checked after one has found
a particular solution to (5.1), since the properties of the state itself depend on the spacetime
(M, g). Thus, one of the big conceptual problems for dealing with the backreaction problem
is how to disentangle the choice of a Hadamard state ω and the specific background (M, g).
In other words, we would like to find a possibility of fixing the state ω without knowing the
spacetime explicitly. There are several ways to deal with this problem. First of all one may
restrict the analysis to a particular class C of spacetimes. For instance, one might require that
all (M, g) belonging to C possess a unique geometrical structure, such as a cosmological past
horizon (see definition 1.3.1), which in turn can be used to single out a unique preferred state
λM, as we discussed earlier. Such a state can then be fixed and one can try to find a solution of
(5.1) for ω = λM and (M, g) ∈ C. Another possibility is to restrict to cosmological (i.e. FRW-)
spacetimes. In this case (5.1) simplifies considerably to the semiclassical Friedmann equation,

H2 =
8πG

3
ω(: ρ :). (5.2)

It turns out that for the conformally coupled massless scalar field (which is then conformally
invariant), the semiclassical Einstein equation can be solved without knowing ω explicitly. This
problem was studied in [Wal78],[Sta80] and more recently in [DFP08], where the latter authors
carefully analysed the renormalisation freedom and showed that it can be used to obtain stable
de Sitter solutions without the need of introducing a cosmological constant. In [DFP08] the
case of a massive field was also discussed. By using adiabatic states in the high mass regime
it was shown that the exact choice of the state does not perturb the dynamics of the solution
significantly.

In the following we want to pursue the idea to take SLE’s as reference states for the semiclas-
sical Einstein equation in the class of FRW spacetimes. Since the test function f (depending on
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cosmological time), which induces the SLE ωf , is a spacetime–independent object, the same is
then true for ωf . That is, we have an unambiguous and physically well motivated prescription
at our disposal to prescribe a Hadamard state in order to study (5.1) in FRW spacetimes. While
this point of view is conceptually appealing, there remains however the task of doing analytic
computations! It is useful to look first for applications which are both physically interesting
and admit for simplifications. Our idea is to start with a fixed background FRW–spacetime
(M0, g0), with scale function a0(t), and to formulate the backreaction problem perturbatively
over (M0, g0), the perturbation parameter being a perturbation function δa(t) of the background
scale factor a0(t). This perturbative approach can be tackled by analytic means and allows for
the investigation of stability questions of the background spacetimes. In the case of Minkowski
space (R4, η), we know already that this spacetime is a fixpoint of (5.1) if ω is the Minkowski
vacuum ωMink and provided that the renormalisation constants are chosen appropriately. Fur-
thermore, we know that each SLE ωf reduces to ωMink on (R4, η). An obvious question is then
the following: Do there exist other nontrivial fixpoints of (5.1) for the fixed state ωf in the class
of FRW spacetimes? The question of stability of (R4, η) can then be answered by investigat-
ing properties of the (nontrivial) perturbative solutions δa(t) of a perturbative version of (5.1).
While we do not aim to give a mathematically precise notion of stability of spacetimes here, we
can nevertheless impose some conditions that a “stable solution” would have to fulfil. Namely,
in case of the perturbation background (R4, η), δa should be globally defined on R and stay
bounded together with its derivatives. While this merely excludes runaway solutions, one could
in addition require that δa and its derivatives converge to zero for t→ ±∞. In the following we
will work out this perturbative ansatz for the case of Minkowski space as reference background.
We consider the class of FRW spacetimes with flat spatial sections and a scale factor of the form

a = 1 + δa, (5.3)

i.e. we consider spatially homogenous and isotropic perturbations of Minkowski space, where
δa is contained in a suitable function space. In particular, δa is supposed to be smooth and
δa� 1. Furthermore we consider again the minimally coupled massive (m2 > 0) Klein Gordon
field, which we prescribe to be in a SLE ωf induced by the test function f . Our first goal is to
derive a functional Taylor expansion of the renormalised energy density

a 7→ ωf (: ρ(t) :)[a], a ∈ C∞(R,R+)

in the vicinity of the Minkowski scale factor a0 = 1. The energy density, obtained via a point
splitting procedure, is also a smooth function. We assume that ωf (: ρ(t) :)[a] posesses an
expansion

ωf (: ρ(t) :)[a0 + δa] = ωf (: ρ(t) :)[a0] +

〈
δ

δa
ωf (: ρ(t) :)[a]

∣∣∣∣
a0

, δa

〉
+ ...

It will turn out that – in order to obtain a nontrivial semiclassical Einstein equation – this has
to be done up to second order in δa. To proceed, we introduce the following notation: For
any functional of the scale factor F [a] = F [1 + δa] we use the notation F<n>[δa] for its Taylor
expansion up to order n, where we ocassionally supress the argument δa. For the contribution
of order n we will write F (n). Unfortunately, we denote by δa(n) also the n− th derivative of the
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5.1. Perturbative Semiclassical Einstein Equation over Minkowski Space

metric perturbation with respect to conformal time τ . But since this notation will only be used
for δa and the test function f , it will not lead to confusions. The strategy of our calculation will

be the following: First we calculate the correction to the Minkowski mode functions χ
(0)
k , which

are the basic objects for the calculation of the energy density. We will do this in conformal time
τ , defined by dτ = dta−1. Having obtained the modes as functionals of δa up to second order,
we calculate the Bogolubov coefficients λ, µ describing the SLE for the test function f according
to Olbermann’s prescription. λ and µ will then be functionals of δa. These are the ingredients
for the calculation of the unrenormalised energy density. A similar functional expansion in δa
has then also to be done for the truncated Hadamard parametrix G1. Since we already know
its form both in the position- and momentum space representation for our considered class of
spacetimes (we refer the reader to section 2.4.2), this will be a rather easy task. Finally we
determine the renormalisation freedom for the energy density coming from the tt component
of the covariantly conserved tensors gab, Gab, Iab and Jab. We will then be in the position to
write down the perturbed semiclassical Einstein equation, being a nonlinear integro–differential
equation for δa. This equation will then be analysed with regard to asymptotic properties of its
solutions and we will furthermore present a numerical solution.

5.1. Perturbative Semiclassical Einstein Equation over Minkowski
Space

The Mode Functions

Our starting point is the full mode equation

χ′′k(τ) + (k2 +Q(τ))χk(τ) = 0. (5.4)

As already discussed in the previous chapters, we work with the auxiliary modes χk(τ) in
conformal time τ , which are linked with the original modes Sk(t) via

χk(τ(t)) = a(t)Sk(t). (5.5)

Sk(t) in turn has to fulfil the differential equation (2.13) and the normalisation condition (2.14).
The latter translates to the requirement

χ′kχk − χkχ′k = i. (5.6)

The “time dependent mass” Q(τ), defined by

Q(τ)
.
= a(t(τ))2

(
m2 − R(τ)

6

)
,

reads with a(t(τ)) = 1 + δa(τ):

Q(τ) = m2 + 2m2δa+m2(δa)2 − δa′′

1 + δa︸ ︷︷ ︸
.
=Vp(τ)

.
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We perform the expansion
(a2R)<2> = 6δa′′(1− δa)

and obtain
Q<2> = m2 + 2δam2 − δa′′︸ ︷︷ ︸

.
=Q(1)

+m2δa2 + δa′′δa︸ ︷︷ ︸
.
=Q(2)

(5.7)

For δa = 0, the special solutions of (5.4) are chosen to be the Minkowski modes

χ
(0)
k (τ)

.
=

1√
2ω
eiωτ ,

where throughout this chapter we define ω
.
=
√
k2 +m2. For δa 6= 0 a formal solution of (5.4)

may be given by

χk(τ) =χ
(0)
k (τ) (5.8)

+
∞∑
n=1

(−1)n
∫ τ

0
dt1...

∫ tn−1

0
dtnSk(τ, t1)...Sk(tn−1, tn)Vp(t1)...Vp(tn)χ

(0)
k (tn)

with

Sk(t1, t2)
.
= i
(
χ

(0)
k (t1)χ

(0)
k (t2)− χ(0)

k (t2)χ
(0)
k (t1)

)
=

1

ω
sin(ω(t1 − t2))

Starting from (5.8) and inserting Vp = Q(1) +Q(2) +O(δa3) we obtain the following expression
for the first and second order contributions to χk and χ′k:

χ
(1)
k (τ) =− 1√

2ωω

((
I(1) + iII(1)

)
sinωτ −

(
II(1) + iIII(1)

)
cosωτ

)
χ
′(1)
k (τ) =− 1√

2ω

((
I(1) + iII(1)

)
cosωτ +

(
II(1) + iIII(1)

)
sinωτ

)
χ

(2)
k (τ) =

1√
2ωω2

((
U − ω

(
I(2) + iII(2)

))
sinωτ −

(
V − ω

(
II(2) + iIII(2)

))
cosωτ

)
χ
′(2)
k (τ) =

1√
2ωω

((
U − ω

(
I(2) + iII(2)

))
cosωτ +

(
V − ω

(
II(2) + iIII(2)

)
sinωτ

))
,

where we defined

I(i)(τ) =

∫ τ

0
dτ ′ cos2 ωτ ′Q(i)(τ ′)

II(i)(τ) =

∫ τ

0
dτ ′ sinωτ ′ cosωτ ′Q(i)(τ ′)

III(i)(τ) =

∫ τ

0
dτ ′ sin2 ωτ ′Q(i)(τ ′)

U(τ) =

∫ η

0
dτ ′Q(1)

(
sinωτ ′ cosωτ ′

(
I(1) + iII(1)

)
− cos2 ωτ ′

(
II(1) + iIII(1)

))
V (τ) =

∫ τ

0
dτ ′Q(1)

(
sin2 ωτ ′

(
I(1) + iII(1)

)
− sinωτ ′ cosωτ ′

(
II(1) + iIII(1)

))
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It is a straightforward calculation to show that condition (5.6) is satisfied1 up to second order

by the above constructed χ
(1)
k and χ

(2)
k .

The Bogolubov Coefficients for an SLE and the Unrenormalised Energy Density

Now we turn to the calculation of the state ωf , for whose construction we use the reference modes
χ<2>
k . The SLE ωf , described by the modes Tk(t), is parametrised by Bogolubov coefficients
λk, µk via the relation

Tk(t) =
1

a(t)
(λkχk(τ(t)) + µkχk(τ(t))) ,

with

|λk|2 − |µk|2 = 1,

and its (unrenormalised) energy density per mode reads

ρk =
1

2

(
|Ṫk|2 + (k2a−2 +m2)|Tk|2

)
=

(
1

2
+ µ2

k

)(
|Ṡk|2 + (k2a−2 +m2)|Sk|2

)
+ Re

(
λkµk

(
Ṡ2
k + (k2a−2 +m2)S2

k

))
,

(5.9)

with Sk(t) defined in (5.5). For the calculation of λk and µk describing ωf we need first to
expand the expressions

|Ṡk|2 + (k2a−2 +m2)|Sk|2 and Ṡ2
k + (k2a−2 +m2)S2

k

up to order two in δa by inserting χ<2>
k . We obtain

(
|Ṡk|2 + (k2a−2 +m2)|Sk|2

)(0)
= ω,(

|Ṡk|2 + (k2a−2 +m2)|Sk|2
)(1)

= −
(

3ω +
k2

ω

)
δa+ 2Re

(
χ
′(0)
k χ

′(1)
k + ω2χ

(0)
k χ

(1)
k

)
and

(
|Ṡk|2 + (k2a−2 +m2)|Sk|2

)(2)

=

(
13

2
ω +

7k2

2ω

)
(δa)2 +

(δa′)2

2ω
− 8δaRe

(
χ
′(0)
k χ

′(1)
k

)
− 4δa(2k2 +m2)Re

(
χ

(0)
k χk

(1)
)

− 2δa′Re

(
χ
′(0)
k χ

(1)
k + χ

(0)
k χ

′(1)
k

)
+ |χ′(1)

k |
2 + ω2|χ(1)

k |
2 + 2Re

(
χ
′(0)
k χ

′(2)
k + ω2χ

(0)
k χ

(2)
k

)
1This actually follows already from the ansatz (5.8).
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We calculate the following terms:

Re

(
χ
′(0)
k χ

′(1)
k

)
= −1

2

(
sinωτ cosωτ

(
III(1) − I(1)

)
+ II(1)(cos2 ωτ − sin2 ωτ)

)
Re

(
ω2χ

(0)
k χ

(1)
k

)
=

1

2

(
sinωτ cosωτ

(
III(1) − I(1)

)
+ II(1)(cos2 ωτ − sin2 ωτ)

)
Re

(
χ
′(0)
k χ

(1)
k

)
=

1

2ω

(
I(1) sin2 ωτ + III(1) cos2 ωτ − 2II(1) sinωτ cosωτ

)
Re

(
χ

(0)
k χ

′(1)
k

)
= − 1

2ω

(
III(1) sin2 ωτ + I(1) cos2 ωτ + 2II(1) sinωτ cosωτ

)
|χ′(1)
k |

2 + ω2|χ(1)
k |

2 =
1

2ω

(
2
(
II(1)

)2
+
(
I(1)
)2

+
(
III(1)

)2
)

Re

(
χ
′(0)
k χ

′(2)
k + ω2χ

(0)
k χ

(2)
k

)
=

1

2ω

((
II(1)

)2
− I(1)III(1)

)
Thus,(

|Ṡk|2 + (k2a−2 +m2)|Sk|2
)(0)

= ω(
Ṡ2
k + (k2a−2 +m2)S2

k

)(0)
= 0(

|Ṡk|2 + (k2a−2 +m2)|Sk|2
)(1)

= −
(

3ω +
k2

ω

)
δa(

Ṡ2 + (k2a−2 +m2)S2
)(1)

=
δam2

ω
e2iωτ + 2II(1) + i

(
III(1) − I(1)

)
− iδa′e2iωτ

and (
|Ṡk|2 + (k2a−2 +m2)|Sk|2

)(2)

=

(
13

2
ω +

7k2

2ω

)
(δa)2 +

(δa′)2

2ω
+

1

2ω

(
4
(
II(1)

)2
+
(
I(1) − III(1)

)2
)

+ 2δa
m2

ω2

((
III(1) − I(1)

)
sinωτ cosωτ + II(1)(cos2 ωτ − sin2 ωτ)

)
− δa′

ω

((
III(1) − I(1)

)
(cos2 ωτ − sin2 ωτ)− 4II(1) sinωτ cosωτ

)
To proceed, we write ci = c

(0)
i + c

(1)
i with2

c
(i)
1

.
=

∫
dtf(t)

(
|Ṡk|2 + (k2a−2 +m2)|Sk|2

)(i)

c
(i)
2

.
=

∫
dtf(t)

(
Ṡ2
k + (k2a−2 +m2)S2

k

)(i)
,

2We dropped here the prefactor 1/2 of Olbermanns definition.
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and remark that c0
1 = ω and c0

2 = 0. For calculating ρ<2>
k we need the following functions of λ

and µ, which we expand3 in c
(1)
i :

(
µ2
)<2>

=

(
Rec

(1)
2

)2
+
(

Imc
(1)
2

)2

4ω2

(λµ)<1> =
iImc

(1)
2 − Rec

(1)
2

2ω

The explicit expressions for c
(1)
i read

Rec
(1)
2 =

∫
dτf(t(τ))

(
2II(1) +

m2

ω
cos(2ωτ)δa+ sin(2ωτ)δa′

)
Imc

(1)
2 =

∫
dτf(t(τ))

(
III(1) − I(1) +

m2

ω
sin(2ωτ)δa− cos(2ωτ)δa′

)
.

Note that in the last two equations we used dt = dτ(1 + δa). Thus, in the required perturbation
order of Rec2 and Imc2 we are allowed to use dt = dτ since(

Ṡ2
k + (k2a−2 +m2)S2

k

)(0)
= 0

Inserting the results into (5.9) gives for every order

ρ
(0)
k =

ω

2

ρ
(1)
k =− δa

2

(
3ω +

k2

ω

)
ρ

(2)
k =

(
13

4
ω +

7k2

4ω

)
(δa)2 +

(δa′)2

4ω

+
δam2

2ω2

(
sin 2ωτ

(
III(1) − I(1) − Imc

(1)
2

)
+ cos 2ωτ

(
2II(1) − Rec

(1)
2

))
− δa′

2ω

(
cos 2ωτ

(
III(1) − I(1) − Imc

(1)
2

)
− sin 2ωτ

(
2II(1) − Rec

(1)
2

))
+

1

4ω

((
2II(1) − Rec

(1)
2

)2
+
(
III(1) − I(1) − Imc

(1)
2

)2
)

The Hadamard Parametrix and the Renormalisation Freedom

The next task is to renormalise the point split energy density by means of the Hadamard

subtraction scheme. We start by collecting the divergent terms4 of ρ
(i)
k . We introduce the

decomposition

ρ(i)(k) = Ω(i)(k) +R(i)(k), (5.10)

3In order to obtain ρk up to second order we need only the first order terms of the ci.
4Divergent w.r.t. the integration

∫∞
0

dkk2...
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where Ω(i)(k) is supposed to contain the divergencies5 in k. For zeroth and second order we
make the obvious definitions

Ω(0)(k)
.
=
ω

2

Ω(1)(k)
.
= −δa

2

(
3ω +

k2

ω

)
.

In order to extract Ω(2)(k) from ρ
(2)
k , we calculate

2II(1) − Rec
(1)
2 = −Q

(1)(τ) cos(2ωτ)

2ω
+

1

2ω
X1(τ)−

∫
A(τ)f(t(τ))dτ

III(1) − I(1) − Imc
(1)
2 = −Q

(1)(τ) sin(2ωτ)

2ω
+

1

2ω
Y1(τ)−

∫
B(τ)f(t(τ))dτ

(5.11)

where we defined

A(τ)
.
=
δa′′ cos(2ωτ)

2ω
+ sin(2ωτ)δa′

B(τ)
.
=
δa′′ sin(2ωτ)

2ω
− cos(2ωτ)δa′

Xi(τ)
.
=

∫ τ

0
dτ ′ cos(2ωτ ′)

(
∂iτQ

(1)
)

(τ ′)−
∫

dτ ′f

∫ τ ′

0
dτ ′′ cos(2ωτ ′′)

(
∂iτQ

(1)
)

(τ ′′)

Yi(τ)
.
=

∫ τ

0
dτ ′ sin(2ωτ ′)

(
∂iτQ

(1)
)

(τ ′)−
∫

dτ ′f

∫ τ ′

0
dτ ′′ sin(2ωτ ′′)

(
∂iτQ

(1)
)

(τ ′′)

Inserting identities (5.11) into the expression obtained for ρ
(2)
k , its singular part may be defined

as

Ω(2)(k)
.
=

(
13

4
ω +

7k2

4ω

)
(δa)2 +

(δa′)2

4ω
− m2δaQ(1)(τ)

4ω3
+
δa′Q′(1)(τ)

8ω3

+

(
Q(1)(τ)

)2
16ω3

.

Consequently,

R(2)(k) =− δa′

8ω3
(cos(2ωτ)(X2(τ) + F1) + sin(2ωτ)(Y2(τ) + F2))

− B(τ)

2ω

∫
dτ ′fB − A(τ)

2ω

∫
dτ ′fA+

δa′′

8ω3
(cos(2ωτ)X1 + sin(2ωτ)Y1)

+
1

4ω

((
X1(τ)

2ω
−
∫

dτ ′fA

)2

+

(
Y1(τ)

2ω
−
∫

dτ ′fB

)2
)
,

(5.12)

with

F1
.
=

∫
dτf(t(τ))Q′(1)(τ) cos(2ωτ)

F2
.
=

∫
dτf(t(τ))Q′(1)(τ) sin(2ωτ).

5Note that such a decomposition is not unique; thus (5.10) is meaningless until Ω(i)(k) is defined seperately.
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We can immediately read off this formula that R(2)(k) depends on the perturbation δa via its
derivatives, beginning with the first one. To proceed, recall that the temporal coincidence limit
of the unrenormalised point-split energy density of order i is the distribution

[ρ(i)]τ = lim
ε→0

1

(2π)3

∫
d3ke−kεeikrρ

(i)
k ,

whose singular part, according to (5.10), is defined by

W
(i)
Ω

.
= lim

ε→0

1

(2π)3

∫
d3ke−kεeikrΩ(i)(k).

In order to link W
(i)
Ω with the to-be-subtracted Hadamard singularity [RG1]τ we apply lemma

2.4.5. Accordingly, we first have to determine the asymptotics of Ω(i) in k:

Ω(0)(k) =
k

2
+
m2

4k
− m4

16k3
+O(k−5)

Ω(1)(k) = −2kδa− m2δa

2k
+O(k−5)

Ω(2)(k) = 5kδa2 +
3m2δa2 + δa′2

4k
+
δa′′2 + 2m2δa′2 − 2δa′δa′′′

16k3
+O(k−5).

In the following, we use the notations of lemma 2.4.5. Since we are interested in the coincidence

limit r → 0 of [ρ(i)]τ − [RG1]
(i)
τ , we only need the contribution of R2k′−1

Ω,L (which is the intergral

kernel of the distribution R2k′−1
Ω,L ) which remains finite for r → 0; i.e. we choose k′ = 1. We then

obtain

R
(0)
1 =

m4

64
(4 logmL− log 16− 3 + 4γ)

R
(1)
1 =

m4δa

16

R
(2)
1 =− m4

32
δa2 − m2

16
(1 + γ − log 4 + 2 logmL) δa′2

+
1

8
(γ + log 4 + logmL− 1)

(
δa′δa′′′ − 1

2
δa′′2

)
.

We have thus identified the singular distributions W
(i)
Ω with distributions in position space.

More explicitly,

W
(0)
Ω =

1

4π2

(
− 2

r4
+

+
m2

2r2
+

+
m4

16
lo0

)
+

m4

32π2

(
logmL− log 2− 3

4
+ γ

)
W

(1)
Ω =

1

4π2

(
8δa

r4
+

− m2δa

r2
+

+
m4δa

8

)
W

(2)
Ω =

1

4π2

(
−20δa2

r4
+

+
3m2δa2 + δa′2

2r2
+

− δa′′2 + 2m2δa′2 − 2δa′δa′′′

16
lo0

)
+

1

16π2

(
δa′δa′′′ − 1

2
δa′′2

)
− m2δa′2

32π2
(1 + γ − log 4 + 2 logmL)− m4δa2

64π2
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On the other hand, according to (2.35) and (A.6), we know that

[RG1]τ −
1

3
[PxG1] =

1

4π2

(
− 2

C2r4
+

+

(
C ′2

8C4
+
m2

2C

)
1

r2
+

+

(
m4

16
− m2C ′2

32C3
+

9C ′4

256C6
− C ′2C ′′

16C5
− C ′′2

64C4
+
C ′C ′′′

32C4

)
(lo0 + logC)

+
11C ′′2

960C4
− C ′4

24C6
+

37C ′2C ′′

480C5
− 5m2C ′2

96C3
− 11C ′′′C ′

480C4

)
,

where

C(τ)
.
= a2(t(τ)).

Expansion in δa up to second order gives

(
[RG1]τ −

1

3
[PxG1]

)(0)

=
1

4π2

(
− 2

r4
+

+
m2

2r2
+

+
m4

16
lo0

)
(

[RG1]τ −
1

3
[PxG1]

)(1)

=
1

4π2

(
8δa

r4
+

− m2δa

r2
+

+
m4

8
δa

)
(

[RG1]τ −
1

3
[PxG1]

)(2)

=
1

4π2

(
− 20δa2

r4
+

+
δa′2 + 3m2δa2

2r2
+

+

(
δa′δa′′′

8
− δa′′2

16
− m2δa′2

8

)
lo0

− m4δa2

16
+

11δa′′2

240
− 5m2δa′2

24
− 11δa′δa′′′

120

)
,

and we see that the distributions W
(i)
Ω have the correct singularities in every order. Furthermore,

the expansion of the renormalisation freedom (B.1) up to second order in δa reads

C<2>
tt = Am4 − 3Bm2δa′2 + 6(3Γ + ∆)

(
δa′′2 − 2δa′′′δa′

)
(5.13)

The renormalised quantum expectation value in order i is given by

ωf (: ρ :)(i)(τ) = lim
r→0

(
[ρ]τ − [RG1]τ +

1

3
[PxG1]

)(i)

+ C
(i)
tt (τ).
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Thus,

ωf (: ρ :)(0) =
m4

32π2

(
logML− log 2− 3

4
+ γ

)
+Am4

ωf (: ρ :)(1) =0

ωf (: ρ :)(2) =δa′2
m2

4π2

(
1

12
− γ − log 4 + 2 logmL

8

)
+

1

4π2

(
δa′δa′′′ − 1

2
δa′′2

)(
2γ + 2 log 4 + 2 logmL

4
+

11

120

)
− 3Bm2δa′2 − 12(3Γ + ∆)

(
δa′′′δa′ − 1

2
δa′′2

)
+R(2)[f, δa′],

(5.14)

where

R(2)[f, δa′]
.
=

1

2π2

∫
dkk2R(2)(k), (5.15)

with R(2)(k) defined in (5.12). We have thus collected all the necessary ingredients for our first
goal, the formulation of the semiclassical Einstein equation in our perturbational setting.

The Renormalised Semiclassical Einstein Equation

By putting together the pieces of the previous subsections and remarking that the expansion of
the left hand side of (5.2) reads

(H2)<2> = δa′2,

we get the following result:

Proposition 5.1.1. Let (M, g) be a FRW spacetime which has flat spatial sections and a scale
factor of the form a = 1+δa, where δa is a smooth perturbation function. Then the semiclassical
Einstein equation for the minimally coupled Klein Gordon field in the state of low energy ωf
with m2 > 0 reads

0 =
m4

32π2

(
logmL− log 2− 3

4
+ γ

)
+Am4 (5.16)

in zeroth order and

0 =m2δa′2R1(B,m) +

(
δa′δa′′′ − 1

2
δa′′2

)
R2(3Γ + ∆,m) +R(2)[f, δa′], (5.17)

in second order order perturbation theory in δa, while the first order is trivial. Here we defined
the modified renormalisation constants

R1(B,m)
.
=

1

48π2
− γ − log 4 + 2 logmL

32π2
− 3B− 3

8πm2G

R2(3Γ + ∆,m)
.
=

2γ + 2 log 4 + 2 logmL

16π2
+

11

480π2
− 12(3Γ + ∆),

where A,B,Γ and ∆ are the original renormalisation constants appearing in (B.1) and R(2)[f, δa′]
is given by (5.15).
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5. The Semiclassical Backreaction Problem for SLE’s

5.1.1. Coherent States

We have derived the semiclassical Friedmann equation for the perturbation δa of the scale factor
over Minkowski space in second order perturbation theory, using SLE’s as reference states. It
was necessary to go to order two since the first order was trivial. We considered a quantum
mechanical pure vacuum state, namely the SLE ωf . However, starting from such a state, we
can construct a more general class of states, namely the coherent states6. These states can
be interpreted as quantum mechanical description of classical field configurations, in the sense
that expectation values of the quantised field in a coherent state fulfils the classical equation
of motion. We want now to discuss how such a coherent state might change our perturbative
backreaction problem. Coherent states can be defined as follows: Consider the automorphism
map αψ on the field algebra A(M, g), given by

αψ(Φ) = Φ + ψ1, (5.18)

where ψ is a real smooth solution of the Klein–Gordon–equation. Given a quantum state ω, we
can define the coherent state ωψ by

ωψ = ω ◦ αψ. (5.19)

If we want this state to be homogenous and isotropic, then ψ must have this property as well.
That is, it must satisfy the differential equation for the zero mode,

ψ̈ + 3Hψ̇ +m2ψ = 0. (5.20)

Since ψ is uniquely determined by two initial values, we obtain a two–parameter family of
coherent homogenous isotropic states. Now we require our reference quantum state ω to be
quasifree. For the two point function of ωψ it follows

Wωψ
2 (x, y) = ωψ(Φ(x)Φ(y))

= ω (αψΦ(x)αψΦ(y))

= ω((Φ(x) + ψ(x)1)(Φ(y) + ψ(y)1))

=Wω
2 (x, y) + ψ(x)ψ(y),

where we used the fact that ω is linear and normalised, its one point function vanishes and ψ(x)
is a C− number. The point splitting definition of the energy density in the state ωψ thus yields

ωψ(: ρ :) = ω(: ρ :) +
1

2

(
ψ̇2 +m2ψ2

)
.

In order to look at the backreaction problem via perturbation theory over Minkowski space, we
have to determine the general solution of (5.20) as series in δa (and its derivatives). This time
there is no constraint on the Wronskian of ψ and ψ has to be real. Defining again the auxiliary
function λ by

λ(τ)
.
= a(t(τ))ψ(t(τ)),

6We restrict our considerations here to pure coherents states. Note that it is straightforward to construct mixed
coherent states by summing over pure coherent states with a normalised weight. This allows in particular for
the definition of isotropic and homogenous mixed coherent states parametrised by infinitely many parameters.
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5.1. Perturbative Semiclassical Einstein Equation over Minkowski Space

we have
λ′′ + a2(m2 −R/6)λ = 0.

We have to find again a perturbative expression of λ in δa for the fixed initial conditions

λ(0) =β λ′(0) =αm,

with (α, β) ∈ R2. Following the steps from the above calculation of the modes we obtain

λ(0)(τ) =α sin(mτ) + β cos(mτ)

λ′(0)(τ) =m (α cos(mτ)− β sin(mτ))

λ(1)(τ) =
1

m

(
cos(mτ)

(
αIII(1) + βII(1)

)
− sin(mτ)

(
αII(1) + βI(1)

))
λ′(1)(τ) =−

(
cos(mτ)

(
αII(1) + βI(1)

)
+ sin(mτ)

(
αIII(1) + βII(1)

))
.

The coherent part of the energy density reads

ρψ
.
=

1

2

(
ψ̇2 +m2ψ2

)
=

1

2a2

(
λ′2

a2
− 2

λ′λa′

a3
+

(
a′2

a4
+m2

)
λ2

)
.

Thus we obtain

ρ
(0)
ψ =

m2(α2 + β2)

2

ρ
(1)
ψ =−m2δa

(
α2 + β2 + (α cos(mτ)− β sin(mτ))2

)
−mδa′

(
αβ cos(2mτ) +

1

2
(α2 − β2) sin(2mτ)

)
+m

(
αβ
(
III(1) − I(1)

)
+ II(1)(β2 − α2)

)
.

Now consider the semiclassical Friedmann equation up to first order δa in the coherent state
over ωf belonging to ψ. It reads

0 =
m4

32π2

(
logmL− log 2− 3

4
+ γ

)
+Am4 + ρ

(0)
ψ + ρ

(1)
ψ .

If we insist that the renormalisation parameter A should be fixed by the first equation7 of (5.16),
we obtain

0 = ρ
(0)
ψ + ρ

(1)
ψ (5.21)

Differentiating w.r.t. τ gives

0 = −3mδa′(α cos(mτ)− β sin(mτ))2,

whose only solution is δa = const. Inserting this into (5.21) it follows

δa =
α2 + β2

2(2α2 + β2)
.

7This is reasonable since A should not depend on the choice of the coherent state.
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5. The Semiclassical Backreaction Problem for SLE’s

We have 1/4 ≤ δa ≤ 1/2. This fits quite nice in the results we have obtained so far, since the
solution space of (5.17) is invariant under a shift of the scale factor by a constant. That is,
taking into account the contribution of a coherent state does not restrict the possible solutions
of (5.17).

5.1.2. An Application of the Perturbative Formula for ωf (: ρ :)

Before we proceed with the analysis of the semiclassical Friedmann equation, we would like to
pursue a small excursion. Namely, as a byproduct of our analysis, we can use our perturbative
formula (5.14) for the energy density in the SLE ωf for a cross–check of the results we obtained
for the energy density of SLE’s on de Sitter space in chapter 3. Let us write the de Sitter scale
factor as a perturbation of Minkowski space in the vicinity of t = 0:

a(t) = 1 + eHt − 1

Consequently, our perturbation δa is given by

δa = eHt − 1.

We consider furthermore the same test function as in chapter 3, namely a Gaussian centered at
t = 0 with smearing width ε:

f(t) =
1√
πε
e−

t2

ε2 .

We assume again that
Hε� 1.

Since we want to calculate the energy density in the state ωf only in the vicinity of t = 0, we
assume also Ht� 1. Thus we have in zeroth order Ht:

δa′ ≈H δa′′ ≈2H2

δa′′′ ≈6H3 δa′′′′ ≈24H4

and
dτ ≈ dt.

Inserting these approximations in (5.12) we obtain after some lengthy calculation

R(2)(k) =e−2ε2ω2 1

4ω

(
H2

ω2
+

(
H +

m2H − 3H3

2ω2

)2
)

− e−ε2ω2
cos(2ωt)

(
H2

2ω
+
H4

2ω3
+
m2H2 − 3H4

4ω3

(
1 +

m2 − 3H2

2ω2

))
− e−ε2ω2

sin(2ωt)
m2H3 − 6H5

2ω4
+
H2(m2 − 3H2)2

16ω5

We define our energy density as

ω(: ρ :)(2) =
1

2π2

∫ ∞
0

dkk2R̃(2)(k),
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5.2. Asymptotic Analysis of the Semiclassical Einstein Equation

where

R̃(2)(k)
.
= R(2)(k)− H2(m2 − 3H2)2

16ω5
,

i.e. we subtracted a constant term. Figure 5.1 shows the result for the same choice of m and
α = εH that was used for the corresponding plot 3.4. A comparison of the two plots shows

-0.10 -0.05 0.05 0.10
t

-20

-10

10

20

ΩH : Ρ :L

Figure 5.1.: Renormalised energy density for SLE’s in units H4 against cosmological time in units H−1.
These plots were calculated in the perturbative approach. The testfunction f is centered
at t = 0 and the smearing width is α = εH = 0.02. The solid, dashed and dotted curves

represent the mass values n = 500, n = 2000 and n = 5000, respectively, where n = m2

H2 − 2.

indeed that our cross–check was succesful. The deviations of the results (the curves in figure 5.1
are symmetric in t in contrast to 3.4) stem from the fact that we took for simplicity only the
zeroth order of the Taylor expansions of δa and its derivatives into account.

5.2. Asymptotic Analysis of the Semiclassical Einstein Equation

We have now the task of finding solutions to the system of equations (5.16) and (5.17). The
first of them (zeroth order) obviously fixes the renormalisation constant A as a function of
m, ensuring that Minkowski space is a solution of the semiclassical Einstein equation for the
Minkowski vacuum. The first order perturbation theory gives no information at all, so the
question of stability can only be answered by investigating the second order equation. Since
R(2)[f, δa′] contains integrals of δa′ with f , (5.17) is a ordinary homogenous nonlinear integro–
differential equation for δa′ and therefore explicit solutions can in general only be obtained
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5. The Semiclassical Backreaction Problem for SLE’s

numerically. As already remarked (and indicated in the notation), R(2)[f, δa′] does not depend
on δa itself but rather on its higher derivatives, beginning with the first one. However, a closer
inspection of (5.17) reveals that it can be converted into a linear equation: Differentiating w.r.t.
τ on both sides yields after a rather long calculation

0 = δa′δa′′2m2R1 + δa′δa′′′′R2 + δa′
(
(F [f, δa′](τ) + G[f, δa′](τ)

)
, (5.22)

where the functionals F and G (both linear in f and δa′) are given by

F [f, δa′](η)
.
=

1

2π2

∫ ∞
0

dkk2

16ω4

(
cos(2ωη)(Y4 − 2m2Y2)− sin(2ωη)(X4 − 2m2X2)

)
G[f, δa′](η)

.
=− 1

2π2

∫ ∞
0

dkk2

16ω4

∫ d

−d
dτ ′ sin(2ω(τ ′ − τ))×(

5fδa(5) + 10f ′δa(4) + δa′′′(10f ′′ − 12m2f)

+ δa′′(5f ′′′ − 12m2f ′) + δa′(f (4) − 4m2f ′′ + 4m4f)

)
Recall that [−d, d] is the support of f . Excluding the trivial solution δa′ = 0 we are left with a
linear integro differential equation for δa′, which is much simpler to handle (both numerically
and analytically) than the original one. In the derivation of the above result we used as many
partial integrations (of the terms which are integrals in time such as Xi and Yi) as necessary
in order to obtain an absolutely convergent k–integral. The price to pay in the occurrence of
higher derivatives of δa in F and G up to order six. We can now interchange the k– and τ–
integration in the functionals F and G: Introducing the integral kernel

Z(m,x)
.
=

∫ ∞
0

dkk2

ω4
sin(2ωx) (5.23)

and rewriting

Xi(τ) =

∫ τ

d
dτ ′ cos(2ωτ ′)

(
∂iτQ

(1)
)

(τ ′) +

∫ d

−d
dτ ′F (τ ′) cos(2ωτ ′)

(
∂iτQ

(1)
)

(τ ′)

(and analogously for Yi), where F (τ)
.
=
∫ τ
−d dτ ′f(t(τ ′)), we obtain finally

F + G =
1

32π2

∫ τ

d
dτ ′Z(m, τ ′ − τ)(4m2δa(4) − δa(6) − 4m4δa′′)

− 1

32π2

∫ d

−d
dτ ′Z(m, τ ′ − τ)

(
δa(6)F + 5fδa(5) + δa(4)(10f ′ − 4m2F )

+ δa′′′(10f ′′ − 12m2f) + δa′′(5f ′′′ − 12m2f ′ + 4m4F )

+ δa′(f (4) − 4m2f ′′ + 4m4f)

)
. (5.24)

The so obtained linear equation of motion for δa will be used for a later numerical treatment.
For our subsequent asymptotic analysis, we have to use nevertheless the original form (5.17),
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5.2. Asymptotic Analysis of the Semiclassical Einstein Equation

since (5.22) has a larger space of solutions. In particular, it allows for solutions approaching
zero for large times, which is not compatible with (5.17) as we shall show now. In order to
do so, we will assume asymptotic properties of potential solutions δa and investigate if these
properties are compatible with (5.17) by looking at the asymptotic limit τ → ±∞. We start
with the following asymptotic requirement:

Case 1: δa′ and its Derivatives Converge to Zero for τ → ±∞

Let us assume that δa′ and its higher derivatives have the following asymptotic behaviour for
τ →= ±∞:

δa′ = O
(
(log |τ |)−α

)
, δa(n) = O

(
1

|τ |(log |τ |)1+α

)
, n ≥2, α > 0 (5.25)

This defines a class of scale factor perturbations which we would call (asymptotically) stable.
Our aim is now to check if such a decay behaviour is compatible with (5.17).

Lemma 5.2.1. Let δa belong to the class of stable perturbations in the sense of (5.25) and let ψ
be a smooth function vanishing at a and whose derivatives have compact support in [a, b]. Then
for n ≥ 1 the function

G : τ 7→
∫ ∞

0

dkk2

ω3
sin(2ωτ + φ)

∫ τ

a
dτ ′ψ(τ ′)δa(n)(τ ′) sin(2ωτ ′ + γ)

converges to zero for τ →∞.

Proof. Partial integration yields∫ τ

a
dτ ′ψ(τ ′)δa(n)(τ ′) sin(2ωτ ′ + γ)

= −cos(2ωτ + γ)

2ω
ψ(τ)δa(n)(τ) +

1

2ω

∫ τ

a
dτ ′
(
ψ(τ ′)δa(n)

)′
(τ ′) cos(2ωτ ′ + γ).

Furthermore∫ τ

a
dτ ′
(
ψδa(n)

)′
(τ ′) cos(2ωτ ′ + γ)

=

∫ ∞
a

dτ ′
(
ψδa(n)

)′
(τ ′) cos(2ωτ ′ + γ)︸ ︷︷ ︸

.
=I(ω)

−
∫ ∞
τ

dτ ′
(
ψδa(n)

)′
(τ ′) cos(2ωτ ′ + γ)︸ ︷︷ ︸

.
=J(τ,ω)

.

Since
(
ψδa(n)

)′ ∈ L1(a,∞), we can estimate |I(ω)| by a constant and

|J(ω, τ)| ≤
∫ ∞
τ

dτ ′
∣∣∣∣(ψδa(n)

)′
(τ ′)

∣∣∣∣ .
It follows

|G(τ)| ≤
(
|ψ(τ)δa(n)(τ)|+

∫ ∞
τ

dτ ′
∣∣∣∣(ψδa(n)

)′
(τ ′)

∣∣∣∣) ∫ ∞
0

dkk2

2ω4

+

∣∣∣∣∫ ∞
0

dkk2

2ω4
sin(2ωτ + φ)I(ω)

∣∣∣∣ .
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5. The Semiclassical Backreaction Problem for SLE’s

It is clear that the first term vanishes in the limit τ → ∞ while the second one does so by the
Riemann-Lebesgue lemma.

Since we may rewrite

X1(ω, τ) =

∫ τ

−d
dτ ′F (τ ′)Q′(τ ′) cos(2ωτ ′), τ > d

X1(ω, τ) =

∫ d

τ
dτ ′(F (τ ′)− 1)Q′(τ ′) cos(2ωτ ′), τ < −d

and analogously for Y1, Y2, X2, where

F (τ)
.
=

∫ τ

−∞
f(τ ′)dτ ′,

we arrive at the following

Proposition 5.2.2. Let δa have the asymptotic form (5.25). Then the semiclassical Friedmann
equation (5.17) reads in the limit τ → ±∞

0 = lim
τ→±∞

∫ ∞
0

dkk2

8π2ω

((
X1

2ω
−
∫

dτ ′fA

)2

+

(
Y1

2ω
−
∫

dτ ′fB

)2
)
.

Proof. The assertion follows directly from the application of the above lemma to the contribu-
tions of R(2)(k).

Let us now analyse the above asymptotic form. Since for τ →∞,

|X1(ω, τ)| ≤ 1

2ω

∫ τ

−d
dτ ′|(F∂τQ(1))′(τ ′)| ≤ C

ω

for all τ and
∫

dτfA falls off faster than any inverse power of k (similar arguments work again for
Y1,
∫

dτfB and τ → −∞), we may interchange limit and integration by dominated convergence
and get the conditions

lim
τ→±∞

(
X1

2ω
−
∫

dτ ′fA

)
= 0

and

lim
τ→±∞

(
Y1

2ω
−
∫

dτ ′fB

)
= 0

for almost every k if δa is supposed to be a solution of (5.17) with decay properties (5.25). After
some partial integrations it follows

lim
τ→∞

(
X1

2ω
−
∫

dτ ′fA

)
=

1

2ω

∫ ∞
−∞

cos(2ωτ ′)
(
2m2δa′F − (Fδa′)′′

)
dτ ′

= − 1

4ω2

∫ ∞
−∞

sin(2ωτ ′)
(
2m2δa′F − (Fδa′)′′

)′
dτ ′,
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and similarly

lim
τ→∞

(
Y1

2ω
−
∫

dτ ′fB

)
=

1

4ω2

∫ ∞
−∞

cos(2ωτ ′)
(
2m2δa′F − (Fδa′)′′

)′
dτ ′.

This means that the Fourier transform of the smooth L1 function

ψ′(τ)
.
=
(
2m2δa′F − (Fδa′)′′

)′
can only have support on (−2m, 2m):

ψ′(τ) =

∫ 2m

−2m
dk(cos k(τ + d)h(k) + sin k(τ + d)g(k))

Since ψ′ and all its derivatives vanish at τ = −d, we conclude that h(k) and g(k) are anti-
symmetric and symmetric, respectively and thus ψ′ = 0 for all τ . This in turn means ψ = 0
(ψ = const 6= 0. would contradict the assumed decay property of δa) and thus δa′F = ce−

√
2mτ .

Since this function has to vanish at τ = −d, we conclude δa′ = 0. We summarise our finding in
the following theorem:

Theorem 5.2.3. Let δa be a nontrivial solution of the perturbative semiclassical Einstein equa-
tion (5.17), i.e. δa 6= const. Then it cannot be stable in the sense of (5.25).

This result seems to be surprising, since it implies that Minkowski space is not stable when
coupled to a scalar field which is in an isotropic homogenous state of low energy. However, our
situation does not really correspond to the setting usually considered in physics when analysing
stability: The term “pertubation” usually refers to a local displacement of a physical system,
which is in our case the spacetime metric. But for the sake of simplicity, we restricted our
considerations only to FRW spacetimes and quantum states sharing its symmetries with the
benefit of being left with a single dynamical quantity δa. But the perturbation of the spacetime
described by a perturbation of the scale factor over Minkowski background is a highly nonlocal
one, since it affects simultanously all space. Thus, the perturbation has no “possibility to spread
out” and vanish for large times. Taking this picture into account, it is not astonishing that the
perturbation cannot entirely relax back to Minkowski geometry.

Case 2: δa with Oscillatory Asymptotics

As shown in the previous subsection, we cannot have stability of Minkowski space in the sense
that every solution of (5.17) converges to zero in the past and future. This asymptotic behaviour
is not compatible with the structure of (5.17), due to a ”memory effect” which is a rather general
feature of integro–differential equations. As we will argue in this section, one way out is to allow
for an oscillatory asymptotics of solutions for δa, which could then provide a weaker notion of
stability of Minkowski space in the sense that δa and its derivatives stay at least bounded. By
assuming δa to have a purely oscillatory asymptote8, we may write down the following ansatz
for δa without loss of generality:

δa = δasd + α−C−(τ) sin(λ−τ + φ−) + α+C+(τ) sin(λ+τ + φ+). (5.26)

8By “purely” we mean a constant frequency.
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5. The Semiclassical Backreaction Problem for SLE’s

δasd is a smooth function of sufficient fast decrease in |τ | according to the criterion (5.25),
whereas C± are smooth cutoff functions whose derivatives are compactly supported in [d, e] and
[−e,−d], respectively (recall that [−d, d] is the support of f). Note that we have the freedom to
fix the form of C±. Choosing C± = 1 for τ ≷ ±e, we may fix C± by requiring its first derivative
to be a normalised bump function. The ansatz (5.26) leads to the following

Proposition 5.2.4. Let δa be a solution of (5.17) which is of the form (5.26). Then its frequency
λ±

.
= x±m > 0 and amplitude α± must fulfil the consistency equations

0 = R1x
2
± −R2

x4
±
2
−
x2
±(2 + x2

±)2

32π2
I1(x±) (5.27)

and

0 = α2
±

(
x4
±(2± + x2

±)

32π2
((2 + x2

±)I2(x±)− 2I1(x±))−
R2x

4
±

2

)
+ U±, (5.28)

where the functions

I1(x)
.
=

∫ ∞
0

z2

√
z2 + 1

3
(x2 − 4(z2 + 1)2)

dz

I2(x)
.
=

∫ ∞
0

dz2

√
z2 + 1

3
(x2 − 4(z2 + 1)2)2

dz

are defined for x ∈ [0, 2) and

U±
.
=

1

8π2m4

∫ ∞
0

dkk2

ω

(
Y ±2

1 + Y ±2
2 + 2α±(Y ±1 Z±1 + Y ±2 Z±2 ) + α2

±(Z±2
1 + Z±2

2 )
)
.

Furthermore, for fixed C± the additional condition

1

8π2

∫ ∞
0

dkk2

ω

(
Y ±1 Z±1 + Y ±2 Z±2

)
= 0 (5.29)

must hold, which determines the phases φ± uniquely. The expressions Y ±i and Z±i are defined
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by

Y +
1

.
=− 1

4ω2

∫ ∞
−d

dτ sin(2ωτ)(2m2Fδa′sd − (Fδa′sd)
′′)′

Y −1
.
=− 1

4ω2

∫ d

−∞
dτ sin(2ωτ)(2m2(F − 1)δa′sd − ((F − 1)δa′sd)

′′)′

Y +
2

.
=

1

4ω2

∫ ∞
−d

dτ cos(2ωτ)(2m2Fδa′sd − (Fδa′sd)
′′)′

Y −2
.
=

1

4ω2

∫ d

−∞
dτ cos(2ωτ)(2m2(F − 1)δa′sd − ((F − 1)δa′sd)

′′)′

Z±1
.
=± (m2 + 2ω2)

{
cosφ±

(
ImĈ ′±(λ± + 2ω)

λ± + 2ω
−

ImĈ ′±(λ± − 2ω)

λ± − 2ω

)

+ sinφ±

(
ReĈ ′±(λ± + 2ω)

λ± + 2ω
−

ReĈ ′±(λ± − 2ω)

λ± − 2ω

)}

Z±2
.
=(m2 + 2ω2)

{
− cosφ±

(
ReĈ ′±(λ± + 2ω)

λ± + 2ω
+

ReĈ ′±(λ± − 2ω)

λ± − 2ω

)

+ sinφ±

(
ImĈ ′±(λ± + 2ω)

λ± + 2ω
+

ImĈ ′±(λ± − 2ω)

λ± − 2ω

)}

Proof. We have to insert ansatz (5.26) in (5.17) and to evaluate every term for τ → ±∞, which is
a lenghty but elementary task. We first calculate the following expressions, where the subscripts
± refer to τ ≷ 0:

δa′ =δa′sd + C ′±α± sin(λ±τ + φ±) + C±α±λ± cos(λ±τ + φ±)

δa′′ =δa′′sd + 2C ′±α±λ± cos(λ±τ + φ±) + C ′′±α± sin(λ±τ + φ±)

− C±α±λ2
± sin(λ±τ + φ±)

δa′′′ =δa′′′sd − 3C ′±α±λ
2
± sin(λ±τ + φ±) + 3C ′′±α±λ± cos(λ±τ + φ±)

+ C ′′′±α± sin(λ±τ + φ±)− C±α±λ3
± cos(λ±τ + φ±)

δa′′′′ =δa′′′′sd + C ′′′′± α± sin(λ±τ + φ±)− 6C ′′±α±λ
2
± sin(λ±τ + φ±)

+ 4C ′′′±α±λ± cos(λ±τ + φ±)− 3C ′±α±λ
3
± cos(λ±τ + φ±)

+ C±α±λ
4
± sin(λ±τ + φ±)

and thus

Q(1) =Q
(1)
sd + C±α±(2m2 + λ2

±) sin(λ±τ + φ±)

Q′(1) =Q
′(1)
sd + C±α±λ±(2m2 + λ2

±) cos(λ±τ + φ±)

Q′′(1) =Q
′′(1)
sd − C±α±λ

2
±(2m2 + λ2

±) sin(λ±τ + φ±)
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with

Q
(1)
sd

.
=2m2δasd − δa′′sd − 2C ′±α±λ± cos(λ±τ + φ±)

− C ′′±α± sin(λ±τ + φ±)

Q
′(1)
sd

.
=2m2δa′sd − δa′′′sd + C ′±α±(2m2 + 3λ2

±) sin(λ±τ + φ±)

− 3C ′′±α±λ± cos(λ±τ + φ±)− C ′′′±α± sin(λ±τ + φ±)

Q
′′(1)
sd

.
=2m2δa′′sd − δa′′′′sd + C ′±α±λ±(4m2 + 3λ2

±) cos(λ±τ + φ±)

+ C ′′±α± sin(λ±τ + φ±)(2m2 + 6λ2
±)− 4C ′′′±α±λ± cos(λ±τ + φ±)

− C ′′′′± α± sin(λ±τ + φ±)

Now we can analyse the contributions of the energy density ωf (: ρ :)(2) by plugging in the ansatz
for δa. We start with the expressions X1 and Y1. For τ > e we have

X1(τ) =

∫ τ

−d
dτ ′F (τ ′) cos(2ωτ ′)

(
2m2δa′sd − δa′′′sd

)
(τ ′)

+
α+λ+(2m2 + λ2

+)

λ2
+ − 4ω2

(λ+ sin(λ+τ + φ+) cos(2ωτ)− 2ω cos(λ+τ + φ+) sin(2ωτ))

+ 2α+ω(m2 + 2ω2)

{
cosφ+

(
ImĈ ′+(λ+ + 2ω)

λ+ + 2ω
−

ImĈ ′+(λ+ − 2ω)

λ+ − 2ω

)

+ sinφ+

(
ReĈ ′+(λ+ + 2ω)

λ+ + 2ω
−

ReĈ ′+(λ+ − 2ω)

λ+ − 2ω

)}

Y1(τ) =

∫ τ

−d
dτ ′F (τ ′) sin(2ωτ ′)

(
2m2δa′sd − δa′′′sd

)
(τ ′)

+
α+λ+(2m2 + λ2

+)

λ2
+ − 4ω2

(λ+ sin(λ+τ + φ+) sin(2ωτ) + 2ω cos(λ+τ + φ+) cos(2ωτ))

+ 2α+ω(m2 + 2ω2)

{
− cosφ+

(
ReĈ ′+(λ+ + 2ω)

λ+ + 2ω
+

ReĈ ′+(λ+ − 2ω)

λ+ − 2ω

)

+ sinφ+

(
ImĈ ′+(λ+ + 2ω)

λ+ + 2ω
+

ImĈ ′+(λ+ − 2ω)

λ+ − 2ω

)}
,
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and for τ < −e :

X1(τ) =

∫ d

τ
dτ ′(F (τ ′)− 1) cos(2ωτ ′)

(
2m2δa′sd − δa′′′sd

)
(τ ′)

+
α−λ−(2m2 + λ2

−)

λ2
− − 4ω2

(λ− sin(λ−τ + φ−) cos(2ωτ)− 2ω cos(λ−τ + φ−) sin(2ωτ))

− 2α−ω(m2 + 2ω2)

{
cosφ−

(
ImĈ ′−(λ− + 2ω)

λ− + 2ω
−

ImĈ ′−(λ− − 2ω)

λ− − 2ω

)

+ sinφ−

(
ReĈ ′−(λ− + 2ω)

λ− + 2ω
−

ReĈ ′−(λ− − 2ω)

λ− − 2ω

)}

Y1(τ) =

∫ d

τ
dτ ′(F (τ ′)− 1) sin(2ωτ ′)

(
2m2δa′sd − δa′′′sd

)
(τ ′)

+
α−λ−(2m2 + λ2

−)

λ2
− − 4ω2

(λ− sin(λ−τ + φ−) sin(2ωτ) + 2ω cos(λ−τ + φ−) cos(2ωτ))

− 2α−ω(m2 + 2ω2)

{
− cosφ−

(
ReĈ ′−(λ− + 2ω)

λ− + 2ω
+

ReĈ ′−(λ− − 2ω)

λ− − 2ω

)

+ sinφ−

(
ImĈ ′−(λ− + 2ω)

λ− + 2ω
+

ImĈ ′−(λ− − 2ω)

λ− − 2ω

)}

Similar identities can be established for X2 and Y2. Application of lemma 5.2.1 yields then for
τ → ±∞:

δa′′
∫ ∞

0

dkk2

16π2ω3
(cos(2ωτ)X1 + sin(2ωτ)Y1)→ −

α2
±λ

4
±(2m2 + λ2

±) sin2(λ±τ + φ±)

16π2
I1(m−1λ±)

and

− δa′
∫ ∞

0

dkk2

16π2ω3
(cos(2ωτ)X2 + sin(2ωτ)Y2)→ −

α2
±λ

4
±(2m2 + λ2

±) cos2(λ±τ + φ±)

16π2
I1(m−1λ±)

Now we turn to the last remaining contribution9 for R(2)[f, δa′],

∫ ∞
0

dkk2

8π2ω

((
X1

2ω
−
∫

dτ ′fA

)2

+ ...

)
.

As already shown in the last subsection, we may interchange the limit in τ and the integration

9We left out the explicit discussion of the contributions of R(2)[f, δa′] which vanish for τ → ±∞. However, this
is a rather easy task.
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in k. We obtain for τ ≷ ±e:(
X1

2ω
−
∫

dτ ′fA

)
=Y ±1 (τ) + α±Z

±
1

+
α±λ±(2m2 + λ2

±)

2ω(λ2
± − 4ω2)

(
λ± sin(λ±τ + φ±) cos(2ωτ)

− 2ω cos(λ±τ + φ±) sin(2ωτ)
)(

Y1

2ω
−
∫

dτ ′fB

)
=Y ±2 (τ) + α±Z

±
2

+
α±λ±(2m2 + λ2

±)

2ω(λ2
± − 4ω2)

(
λ± sin(λ±τ + φ±) sin(2ωτ)

+ 2ω cos(λ±τ + φ±) cos(2ωτ)
)

The functions Y ±i (τ) are obtained from the definitions of the Y ±i in proposition 5.2.4 by replacing
the respective infinite integration limit by τ . It follows∫ ∞

0

dkk2

8π2ω

((
X1

2ω
−
∫

dτ ′fA

)2

+

(
Y1

2ω
−
∫

dτ ′fB

)2
)

→U± +
α2
±λ

4
±(2m2 + λ2)2

32π2
I2(m−1λ±)−

α2
±λ

2
±(2m2 + λ2)2 cos2(λ±τ + φ±)

32π2
I1(m−1λ±).

Finally, the local terms appearing on the right hand side of (5.17) have the following asymptotes
for τ → ±∞:

(δa′)2 → α2
±λ

2
± cos2(λ±τ + φ±)

δa′δa′′′ − 1

2
(δa′′)2 → −

α2
±λ

4
±

2
(cos2(λ±τ + φ±) + 1).

Now we have analysed all contributions of (5.17) in their asymptotic limit. Comparison of
the coefficients for the oscillating part (∝ cos2(λ±τ + φ±)) leads to (5.27); from the remaining
constant term we get (5.28). (5.27) determines the possible values for λ± as a function of R1 and
R2, whereas (5.28) is a condition on the amplitude α±. I1 and I2 can be explicitly calculated:

I1(x±) =
1

x2
±

√4− x2

|x±|
arccos

√
4− x2

±

2
− 1


I2(x±) = − 3

2x4
±

+
(6− x2

±)(π − 2 arcsin

√
4−x2

±
2 )

2|x±|5
√

4− x2
±

Since solutions of (5.17) possess the symmetry δa → −δa, we have to require that (5.28) must
have exactly two symmetric solutions for α±. Since it is a quadratic equation in α of the general
form

pα2 + qα+ r = 0,

this implies q = 0, which can only be true if (5.29) holds, which in turn leads to the consistency
equation (5.29) for the phases φ±.
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5.3. Numerical Solution

By inspecting (5.28) and taking the definitions of I1(x) and I2(x) into account, we arrive at the
following

Proposition 5.2.5. A necessary condition on the renormalisation constants for the existence
of solutions of (5.17) which are asymptotically oscillatory with frequency λ is

0 >

(
λ4(2m2 + λ2)

32π2m4

(
(2m2 + λ2)I2m

2(λ/m)− 2m2I1(λ/m)
)
− R2λ

4

2

)
, (5.30)

where λ ∈ (0, 2m) is determined by (R1, R2) via (5.27). This implies in particular R2 > 0.

Proof. (5.30) is obviously necessary in order for (5.28) to have real solutions for α± under the
condition (5.29). However, the expression

(
2 + x2

)
I2(x)− 2I1(x)

can be checked to be positive for x ∈ (0, 2) and thus R2 must be positive.

The existence of oscillatory asymptotics can in principle also depend on the test function f
inducing the SLE as well as on the initial conditions of δa, since the functions Z±i depend on
the solution δa via φ±. In other words, if a certain choice of (R1, R2) enables an oscillatory
stable solution for given f and initial conditions for δa, there might exist f̃ and/or other initial
conditions for δa which furnish only unstable solutions.

We have thus shown that Minkowski space is “weakly stable” under homogenous and isotropic
perturbations induced by a state of low energy, by proving the compatibility of asymptotically
oscillatory solutions with the semiclassical Friedmann equation in perturbation theory. This
notion of stability is however quite weak, since the excitation δa of Minkowski space described
by a nontrivial solution δa will persist forever. An interesting question, which is however beyond
the scope of our perturbative ansatz over Minkowski background, would be the following: Do
“unstable solutions” solutions δa move to some “attracting” scale factor? In order to answer
this question, one could perform the perturbation ansatz for other backgrounds like de Sitter
space.

5.3. Numerical Solution

As we already observed above, we may derive from (5.17) the following linear ordinary homoge-
nous integro differential equation for δa′:

0 = 2m2R1δa
′′ +R2δa

′′′′ +H[f, δa′, ..., δa(6)], (5.31)
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where we defined, with (5.24),

H .
=F + G

=
1

32π2

∫ τ

d
dτ ′Z(m, τ ′ − τ)(4m2δa(4) − δa(6) − 4m4δa′′)

− 1

32π2

∫ d

−d
dτ ′Z(m, τ ′ − τ)

(
δa(6)F + 5fδa(5) + δa(4)(10f ′ − 4m2F )

+ δa′′′(10f ′′ − 12m2f) + δa′′(5f ′′′ − 12m2f ′ + 4m4F )

+ δa′(f (4) − 4m2f ′′ + 4m4f)

)
and the kernel Z(m,x) is given by (5.23). Equation (5.31) is of third order in δa′, so it re-
quires three initial conditions. For the numerical approach we choose the following method: We
discretise the symmetric time domain D

.
= (−T, T ) into n intervals. Call the corresponding

supporting points τ(i), with i = 0, ..., n. Next we approximate δa′ by a piecewise polynomial of
degree five (also known as spline), i.e. for τ ∈ [τ(i), τ(i+ 1)] and i = 0, ..., n− 1 we set

δa′s(τ)
.
=

5∑
κ=0

ai,κ(τ − τ(i))κ.

In order for δa′s to be four times continously differentiable, the following constraints must hold
for the coefficients ai,κ for i = 0, ..., n− 2:

5∑
κ=0

ai,κ(τ(i+ 1)− τ(i))κ = ai+1,0

5∑
κ=1

κai,κ (τ(i+ 1)− τ(i))(κ−1) = ai+1,1

5∑
κ=2

κ(κ− 1)ai,κ (τ(i+ 1)− τ(i))(κ−2) = 2ai+1,2

5∑
κ=3

κ(κ− 1)(κ− 2)ai,κ (τ(i+ 1)− τ(i))(κ−3) = 6ai+1,3

5∑
κ=4

κ(κ− 1)(κ− 2)(κ− 3)ai,κ (τ(i+ 1)− τ(i))(κ−4) = 24ai+1,4

(5.32)

Inserting this approximation for δa′ into (5.31), the right hand side becomes a function of the
coefficients ai,κ, with i = 0, ..., n− 1 and κ = 0, ..., 5, subject to the constraints (5.32). Now δa′

is an exact solution of (5.31) on (−T, T ) if and only if10

0 =

∫ T

−T
dτ
(

2m2R1δa
′′ +R2δa

(4) +H[f, δa′]
)2
.

10We could choose any strictly positive function of the right hand side x of (5.31); the most simple choice for our
subsequent numerical treatment is however x2.
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We may thus obtain a approximate solution for δa′ by searching for the global minimum of the
function

M({ai,κ})
.
=

∫ T

−T
dτ
(

2m2R1δa
′′
s +R2δa

(4)
s +H[f, δa′s]

)2
(5.33)

under the constraints (5.32) and three additional initial and/or boundary conditions for δa′s.
We implemented this approach using Mathematica. The normalised test function f was

chosen to be a piecewise polynomial of degree five, being four times continously differentiable
and vanishing together with its first four derivatives at t = ±2δ:

f(t) =


(t+2δ)5

16δ6 −2δ ≤ t ≤ −δ
1

16δ + 5(t+δ)
16δ2 + 5(t+δ)2

8δ3 + 5(t+δ)3

8δ4 + 5(t+δ)4

16δ5 − 15(t+δ)5

16δ6 −δ ≤ t ≤ 0
1

16δ + 5(δ−t)
16δ2 + 5(δ−t)2

8δ3 + 5(δ−t)3

8δ4 + 5(δ−t)4

16δ5 − 15(δ−t)5

16δ6 0 ≤ t ≤ δ
(2δ−t)5

16δ6 δ ≤ t ≤ 2δ

The supporting points were chosen as follows:

τ(i) =


−2δ − h

(
n
2 − 2

)
+ ih 0 ≤ i ≤ n

2 − 2

−2δ + δ
(
i− n

2 + 2
)

n
2 − 2 < i < n

2 + 2

2δ − h
(
n
2 + 2

)
+ ih n

2 + 2 ≤ i ≤ n
(5.34)

That is, the step width is δ within the support of f and h elsewhere. The functional M is
calculated by Mathematica’s numerical integration routine for a fixed choice of m, supporting
points τ(i) and the above test function f , whereas the renormalisation constants R1 and R2

remain free parameters of M . Being a positive polynomial of second degree in the variables ai,κ,
M always posseses a global minimum under the linear constraints (5.32) plus the three initial
conditions for δa′s. After choosing numerical values for R1 and R2, the minimisation of M can
be performed using Mathematica’s built in function “Minimize“.

In the following we present some plots for δa′ obtained by the above numerical method. The
time t and the mass m refer to a fixed choice of a lengthscale. The first plot 5.2 suggests that
the numerical results become asymptotically reliable if the ratio of the step width h and the
expected oscillation period11 T = 2π

mx is smaller than ≈ 1/6. For the choice of m,R1 and R2

made for plot 5.2, equation (5.27) has the solutions x1 = 0.91 and x2 = 1.78. Only the first
one satisfies the constraint (5.30), and the corresponding oscillation period is T = 2π

mx1
= 3.45.

The solid curve shows exactly this period and we conjecture that this plot shows the oscillatory
regime. Note that by choosing an appropriate ratio of the initial conditions we may adjust the
solution δa′ in such a way that it asymptotically oscillates about zero. This is necessary if δa′

shall also be a solution to the original equation (5.17). In figure 5.3 we compared the solutions
for a fixed choice of m,R1 and R2, when varying the smearing width δ. It seems that the ratio
of mass and smearing width has an important influence on the solution. Namely, if the smearing
width becomes larger for fixed mass, the contributions of the functional H in (5.31) will become
smaller and the character of the dynamics of (5.31) will be dominated by the choice of R1 and R2.
The nonlocal contribution H may thus be seen as the quantum contribution to the Friedmann
equation, since only there the form of the test function f enters. A similar interpretation applies

11Recall that x is predicted by formula (5.27).
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to figure 5.4. There we held the mass and the test function fixed, while the magnitude of R1

and R2 was varied in such a way that the asymptotic frequency of the solution stays the same.
Here we see that increasing R1 and R2 will dominate the influence of the test function f at some
stage. The solution will then look like a pure sinusoidal curve. This can already be inferred
from equation (5.31). The term 2m2R1δa

′′ + R2δa
′′′′ will then dominate the functional H and

(5.31) gets the character of the equation of motion of the harmonic oscillator with frequency

λ =
√

2m2R1
R2

.

-15 -10 -5 5 10 15
t

-0.3

-0.2

-0.1

0.1

0.2

0.3

∆a '

Figure 5.2.: Numerical solution for δa′. We chose the parameters δ = 1, m = 2, R1 = 0.001, R2 = 0.008
and initial conditions δa′(0) = −0.284, δa′′(0) = 0 and δa′′′(0) = 0.1. The curves were
obtained for step widths h = 1 (dashed) and h = 0.5 (solid) and the minimisation values
Mmin are 5.28× 10−5 and 4.19× 10−5, respectively.
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-10 -5 5 10
t

-0.4

-0.2

0.2

0.4
∆a '

Figure 5.3.: Numerical solutions for δa′. We chose the parameters h = 0.5, m = 2, R1 = 0.001, R2 =
0.008. Solid: δ = 2, δa′(0) = −0.285, δa′′(0) = 0, δa′′′(0) = 0.379. Dashed: δ = 1, δa′(0) =
−0.285, δa′′(0) = 0, δa′′′(0) = 0.1. Dotted: δ = 0.5, δa′(0) = −0.285, δa′′(0) = 0, δa′′′(0) =
0.580.
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Figure 5.4.: Numerical solutions for δa′. For all three plots we chose the parameters h = 0.5, m = 1 and
δ = 1. The first plot was obtained for R1 = 0.0015, R2 = 0.0092 and the initial conditions
δa′(0) = −0.117, δa′′(0) = 0, δa′′′(0) = 0.057. The second plot shows the solution for
R1 = 0.007, R2 = 0.023 and δa′(0) = −0.117, δa′′(0) = 0, δa′′′(0) = 0.056. For the third
plot we chose R1 = 0.015, R2 = 0.042 and initial conditions δa′(0) = −0.117, δa′′(0) =
0, δa′′′(0) = 0.056.
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A. Calculation of [RGs1]τ and [PxG1] on Spatially
Flat FRW Spacetime

In this appendix we will work out the steps already discussed in section 2.4.2. This will lead
to an explicit expression of the Hadamard parametrix and its derivatives in terms of the scale
factor and its derivatives. We use the notation introduced in section 2.4.2. Lets start with the
calculation of [PxG1]. In conformal time τ we have the following relations:

Px
.
= �x +m2 =

1

C
∂ττ +

C ′

C2
∂η −

1

C
4+m2

R =
3C ′′

C2
− 3C ′2

2C3
.

We introduce the notation

Gs1
.
= 4π2

√
C(τ)C(τ ′)Gs1.

To first order in the signed squared geodesic distance σ, Gs1 is given by

G̃s1(τ, τ ′, r) =

(
q̃

σ̃+

)s
+ R̃∆ +

1

L2

(
o
v0 +

o
v1

ρ̃

L2
+ ρ̃2R̃v

)(
log

(
σ̃+

L2

))s
. (A.1)

For the functions R̃∆ and q̃ we have the following expansions [Sch10]:

q̃(τ, τ ′, r) =C(τ ′) +
C ′(τ ′)

2
(τ − τ ′) +

(
C ′′(τ ′)

6
− C ′(τ ′)2

48C(τ ′)

)
(τ − τ ′)2 (A.2)

+
C ′(τ ′)2

48C(τ ′)
r2 + ...

R̃∆(τ, τ ′, r) = (A.3)

C(τ ′)R(τ ′)

72
+

(CR)′(τ ′)

144
(τ − τ ′)

+

(
(CR)′′(τ ′)− 3

4

(
C ′′(τ ′)

C(τ ′)

)2

+
C ′′(τ ′)C ′(τ ′)2

C3(τ ′)
− 3

8

(
C ′(τ ′)

C(τ ′)

)4)(τ − τ ′)2

480

+

(
15

8

(
C ′(τ ′)

C(τ ′)

)4

− 11

3

C ′′(τ ′)C ′(τ ′)2

C3(τ ′)
+

3

4

(
C ′′(τ ′)

C(τ ′)

)2

+
C ′(τ ′)C ′′′(τ ′)

C2(τ ′)

)
r2

480

+ ...
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They allow for the calculation of coincidence limits of derivatives of q̃ and R̃∆ w.r.t. τ and r.
Furthermore, from (2.33) and (2.34) one can deduce the following coincidence limits:

[
o
v0]τ =

L2

4
Qm,ξ [∂τ

o
v0]τ =

L2

8
Q′m,ξ (A.4)

[∂ττ
o
v0]τ =

L2

12
Q′′m,ξ [

o
v1]τ =

L4

32
(Q′′m,ξ/3 +Q2

m,ξ)

For the subsequent calculation we make use of the identity

Px
f(τ,x, τ ′,x′)√
C(τ)C(τ ′)

=
1√

C(τ)C(τ ′)C(τ)

(
o
�x +Q(τ)

)
f(τ,x, τ ′,x′),

with
o
�x

.
= ∂2

τ −4x. Furthermore, there holds

[(
o
�x +Q(τ))(

o
v0 +

o
v1ρ)] = 0. (A.5)

By means of a rather lengthy calculation, using the information about temporal derivatives and
restrictions of the involved distributions according to lemmas 2.4.3 and 2.4.4 and the distribu-
tional identities

o
�x

(
q̃

σ̃+

)s
= 0,

[
o
�x

(
log

σ+

q

)s]
τ

= − 4

r2
+

,

one can explicitly convince oneself that all singular terms that appear in PxGs1 cancel each
other (this is a priori clear by construction of Gk). The finite contribution which survives the
coincidence limit x→ x′ is

[PxGs1] =
1

4π2C2

[(
o
�x +Q(τ)

)(
R∆ + (

o
v0 +

o
v1ρ+O(ρ2)) log q

)
− 12

o
v1

]
=

1

4π2C2

([
o
v0

]([q′′q − q′2
q2

]
−
[
q∂2
r q − (∂rq)

2

q2
+

2∂rq

rq

])
+ 2

[
∂τ

o
v0

] [q′
q

]
+

[(
∂2
τ − ∂2

r −
2

r
∂r +Q

)
R∆

]
− 12

[
o
v1

])
.

It can be written as function of the scale factor and the curvature scalar:

[PxGs1] =
1

4π2

(
�R
40
− 3

8
m4 +

1

8
m2R− 19

640

C ′4

C6
+
C ′2C ′′

10C5
− 3

32

C ′′2

C4

)
=

1

4π2

(
9

40
Ḣ2 +

3

20

...
H +

7

20
H2Ḣ +

21

20
HḦ − 29

20
H4 − 3

8
m4 +

m2

4
(6H2 + 3Ḣ)

) (A.6)

This expression agrees with the one given in Appendix A of [DFP08] for ξ = 0, taking into
account their sign convention (−,+,+,+) and the relation [v1] = −1

3 [PxGs1], where [v1] is defined
in this reference. For the special case m2 = 2H2 and C = (Hτ)−2 we obtain

[PxGs1] =
1

4π2

1

20
H4. (A.7)
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Now we turn to the calculation of [RGs1]τ , which is the “counterterm” for the unrenormalised
point split energy density, [RWs

2 ]τ , restricted to τ = τ ′. We will derive an expression for general
masses m but minimal coupling ξ = 0. Expressing the differential operator R in conformal
coordinates we obtain

[RGs1]τ =
1

2C

[(
∂ττ ′ − ∂2

r −
2∂r
r

+ Cm2

)
G̃s1
]
τ

(A.8)

=

(
C ′2

8C4
+
m2

2C
− 1

2C2

(
∂rr +

2∂r
r

))
[G̃s1]τ −

C ′

2C3
[∂τ G̃

s
1]τ

+
1

2C2
[∂ττ ′G̃

s
1]τ .

The ingredients for the calculation are again the lemmas 2.4.3 and 2.4.4, the knowledge of
R∆ and q (given in (A.3) and (A.2)) and the coincidence limits (A.4). We also need to take
derivatives w.r.t. τ ′, which we obtain in the following way: Differentiating (2.33) with respect
to τ ′ yields

(τ − τ ′)∂τ ′τ
o
v0 − ∂τ

o
v0 + ∂τ ′

o
v0 = 0,

which gives the result [∂τ
o
v0] = [∂τ ′

o
v0]. Similarly, one deduces the relation [∂ττ ′

o
v0] = 1

2 [∂2
τ
o
v0].

We are now in the position to compute the contributions appearing in (A.8):

[G1]τ =
1

r2
+

+ [R∆]τ + [
o
v0]τ (log[q]τ + lo0)

[4G1]τ =
2

r4
+

+ [4R∆]τ +
2[
o
v0]

r2
+

+ [
o
v0][4 log q]τ + [

o
v1](6(log[q]τ + lo0) + 10)

[∂τG1]τ = [∂τR∆]τ + [∂τ
o
v0]τ (log[q]τ + lo0) + [

o
v0]

[
∂τq

q

]
τ

[∂ττ ′G1]τ = − 2

r4
+

+ [∂ττ ′R∆]τ +
1

2
[∂2
τ
o
v0](log[q]τ + lo0) + 2[∂τ

o
v0]

[
∂τq

q

]
τ

+ [
o
v0]

(
[∂ττ ′ log q]τ +

2

r2
+

)
+ 2[

o
v1](log[q] + lo0 + 1)

The Laplacian4 refers to r = |x−x′| and acts on spherically symmetric functions as ∂rr+2∂r/r.
The result, expressed in terms of the curvature scalar and the scale factor, reads

[RGs1]τ =
1

4π2

{
− 2

C2r4
+

+

(
C ′2

8C4
+
m2

2C

)
1

r2
+

+

(
m4

16
− m2C ′2

32C3
+

9C ′4

256C6
− C ′2C ′′

16C5
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− m4

8

}
.
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A. Calculation of [RGs1]τ and [PxG1] on Spatially Flat FRW Spacetime

We reexpress the result in terms of the Hubble function H
.
= ȧ

a :

[RGs1]τ =
1

4π2

{
− 2

a4r4
+

+
H2 +m2

2a2

1

r2
+

+

(
m4

16
− m2H2

8
+
ḦH

8
+

3H2Ḣ

8
− Ḣ2

16

)
(lo0 + log a2)

+
�R
120

+m2

(
7

24
H2 +

1

4
Ḣ

)
− m4

8
+
H4

80
− 11HḦ

120

− 61H2Ḣ

120
− 19Ḣ2

240

}
For the scale factor a(t) = exp(Ht) and arbitrary mass m this reduces to

[RGs1]τ =
1

4π2

{
− 2

a4r4
+

+
H2 +m2

2a2

1

r2
+

+

(
m4

16
− m2H2

8

)
(lo0 + log a2)

+
7m2H2

24
− m4

8
+
H4

80

}
.

Note that for the cases m2 = 0 and m2 = 2H2 the logarithmic singularity is absent.
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B. Renormalisation Freedom of ω(: ρ :) on
Spatially Flat FRW Spacetime

The tt− components of the covariantly conserved tensors Iab and Jab are readily calculated.
Using

R = 6(2H2 + Ḣ)

R̈ = �R− 3HṘ

Rtt = 3
(
H2 + Ḣ

)
RµνR

µν = 12
(

3H4 + 3H2Ḣ + Ḣ2
)

RµνRµtνt = 9H4 + 3Ḣ2 + 12H2Ḣ

(∂t)
a (∂t)

b�Rab =
1

2
�R− 6Ḣ2 − 6ḦH − 30ḢH2

it follows

Itt = 18Ḣ2 − 36ḦH − 108ḢH2

Jtt = 6Ḣ2 − 12ḦH − 36ḢH2

We see that Itt and Jtt are not independent (this could have been inferred by more abstract
arguments) and thus our renormalisation freedom is given by

Ctt = Am4 − 3Bm2H2 + (3Γ + ∆)(6Ḣ2 − 12ḦH − 36ḢH2) (B.1)

In the Sitter space (H = const) there obviously holds Itt = Jtt = 0. Thus, the remaining
renormalisation freedom for the energy density consists in the tt− components of gab and Gab.
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Conclusions

In this thesis we showed that is is possible to reach at various results of interest for states of low
energy for the minimally coupled Klein Gordon field on cosmological spacetimes in a rigorous
manner. To begin with, we introduced the necessary concepts of quantum field theory on curved
spacetimes with focus on the algebraic approach. We then discussed how expectation values of
observables involving products of fields at the same point can be defined. We argued that this is
always possible if the state ω is of Hadamard type. For concrete calculations, one has therefore
to compute the Hadamard singularity G, which is needed to define the expectation values of the
above observables via a point splitting procedure. Following this approach, we calculated the
expecation value of the energy density in SLE’s on spatially flat de Sitter space. To this end, we
used a calculational method developed in [Sch10], which permits to determine the Hadamard
singularity G on spatially flat FRW spacetimes and to convert it into an integral over momentum
space. Similar calculations in this realm are usually done using adiabatic states together with
a subtraction recipe called adiabatic renormalisation. In contrast, our results were obtained in
a conceptually clean way. Moreover, SLE’s are an improved version of adiabatic states and can
be controlled by the choice of an appropriate test function, which permits in principle to model
many physical situations.

Inspired by the results obtained for the energy density, we could prove that SLE’s converge to
the distinguished Bunch Davies state on de Sitter space if the support of the smearing function
is shifted to the infinite past. We then generalised this result to the class of asymptotic de Sitter
spacetimes, where an analogon of the Bunch Davies state exists due to the geometric structure
of a past cosmological horizon. However, in order to do so, we had to impose conditions on
the asymptotic behaviour of the scale factor and its derivatives which are stricter than those
which are necessary for the existence of the preferred state λM. Our convergence result allows
for an interpretation of λM as state of low energy in the infinite past, independently of the
form of the smearing function. This is reminiscent to the situation in Minkowski space, where
the distinguished state (the Minkowski vacuum) is also a state of low energy for all smearing
functions f .

Finally we discussed the problem of semiclassical backreaction for SLE’s on FRW spacetimes.
Generally, one obstacle for solving the semiclassical Einstein equation is the necessity of fixing
a quantum state independently of the spacetime. However, SLE’s have the big advantage that
they can be specified without having explicit knowledge of the scale factor, which allows for a
direct formulation of the semiclassical Friedmann equation by using an SLE as fixed reference
state. Since the resulting functional equation for the scale factor is very complicated, we applied
this idea to the case of small perturbations δa of the scale factor of a fixed FRW background,
for which we chose Minkowski space. In order to obtain an equation of motion for δa, we
had to calculate the point split regularised energy density and the renormalisation freedom
perturbatively up to second order. The corresponding perturbative semiclassical Friedmann
equation was then analysed with respect to the asymptotic behaviour of solutions for large
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B. Renormalisation Freedom of ω(: ρ :) on Spatially Flat FRW Spacetime

times. It turned out that stable solutions for δa are not possible in the strict sense that the
perturbations and its derivatives converge to zero for times which are far away from the support
of the test function. However, oscillatory asymptotics are possible if certain constraints on the
renormalisation parameters are fulfilled. In this case, the oscillation frequencies are constrained
to lie in the interval (0, 2m) and depend on the renormalisation constants. We also demonstrated
a numerical method of solving for δa. With these results in mind it seems that, in order to answer
the question of semiclassical stability of Minkowski space, it is presumably too restrictive to
consider homogenous and isotropic perturbations, since such perturbations cannot “spread out“
by construction. Nevertheless, we could show that the problem of backreaction can be treated in
a rigorous manner by using SLE’s. It would be interesting to pursue this problem by giving up at
least the assumption of homogeneity. The corresponding quantum states for the perturbational
backreaction problem could be e.g. an isotropic one particle state in the folium of an SLE.
Another possibility would be to construct a more general class of SLE’s which minimise the
time–smeared energy density only in a compact radially symmetric region of space. Moreover,
one could try to do the same perturbative investigation for other background spacetimes, such
as de Sitter space.
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