

II. Institut für Theoretische Physik Universität Hamburg

Cosmological Horizons and Reconstruction of Quantum Field Theory

Claudio Dappiaggi Hamburg - 07/06/2008

based upon:

 $\cdot\,$ C. D., V. Moretti and N. Pinamonti,

"Cosmological horizons and reconstruction of quantum field theory" arXiv:0712.1770 [gr-qc]

Motivations

- General one: Cosmology is nowadays the main viable source for experimental data related to QFT on curved backgrounds, but... many models, a lot of folk results, few mathematically sound statements.
- Particular one: It was recently shown that it is possible to encode the information of a bulk field theory in terms of a suitable counterpart living on the boundary; this holds both in AdS^a and in asymptotically flat spacetimes^b.

An idea:

- 1. What about cosmological spacetimes considering the cosmological horizon as a boundary? Is it feasible?
- 2. Does it exists also in this scenario a distinguished algebraic state as in the asymp. flat case?

^aK. H. Rehren, Annales Henri Poincare **1** (2000) 607,

M. Dütsch and K. H. Rehren, Annales Henri Poincare 4 (2003) 613. ^bC. D., V. Moretti and N. Pinamonti: Rev. Math. Phys. **18** (2006), 346

Outline of the talk

- 1. Looking at the Geometry of the Problem: The distinguished role of the cosmological horizon
- 2. Looking at the Field Theoretical Side of the Problem: a real scalar QFT on FRW spacetimes and the counterpart on the horizon
- 3. What Holography teaches us: how to construct a bulk-to-boundary correspondence and the notion of preferred state

Recap. of previous episodes

What is an asymptotically flat spacetime? Why is interesting?

A 4D manifold M with a metric g solving Einstein vacuum equations is called asymptotically flat with past timelike infinity at null infinity \mathfrak{T}^- , if it exists a second manifold $(\widehat{M}, \widehat{g})$, an embedding $\lambda : M \to \widehat{M}$, a preferred point $i^- \in \widehat{M}$ and a conformal factor $\Omega \geq 0$ such that

- 1. $\Omega^2 g_{\mu\nu} = \lambda^*(\widehat{g}_{\mu\nu})$ in M,
- 2. $\lambda(M) = J^+(i^-) \setminus \partial J^+(i^-)$ and $\partial(\lambda(M)) = \Im^- \cup i^-$,
- 3. $\Omega \in C^{\infty}(\widehat{M})$ and $\Omega = 0$ on $\Im^{-} \cup i^{-}$,
- 4. $d\Omega \neq 0$ on $\Im^- \cup i^-$ but $\widehat{\nabla}_{\mu} \widehat{\nabla}_{\nu} \Omega = -2\widehat{g}_{\mu\nu}$ on i^- ,
- 5. other technical requirements.

N.B. \Im^- plays the role of a preferred codimension one submanifold of a bulk field theory. For a real massless scalar field conformally coupled to scalar curvature, this entails the selection of a preferred bulk Hadamard state etc. etc. etc...

Geometrical Setup

First hypothesis: Cosmological Principle \implies

$$g_{FRW} = -dt^2 + a^2(t) \left[\frac{dr^2}{1 - kr^2} + r^2 dS^2(\theta, \varphi) \right], \quad M \sim I \times X_3$$

where k = 0, 1, -1 and $a(t) \in C^{\infty}(I, \mathbb{R}^+)$, being $I \subset \mathbb{R}$.

Important properties:

- Consider a co-moving observer as the integral line $\gamma(t)$ of ∂_t . If $M \setminus J^-(\gamma) \neq \emptyset$, then causal signal departing from each $x \in M \setminus J^-(\gamma)$ never reach $\gamma(t)$. Then we call $\partial J^-(\gamma)$ the (future) cosmological horizon
- if one introduces the conformal time $d\tau = \frac{dt}{a(t)}$ and rescales the metric as

$$g_{FRW} = a^2(\tau) \left[-d\tau^2 + \frac{dr^2}{1 - kr^2} + r^2 dS^2(\theta, \varphi) \right],$$

then τ ranges in $(\alpha, \beta) \subset \mathbb{R}$. Sufficient condition for the existence of an horizon is $\alpha > -\infty$ and/or $\beta < \infty$.

Second hypothesis: Let us consider a FRW spacetime with k = 0 and $M \sim I \times \mathbb{R}^3$. Third hypothesis: $a(\tau) = \frac{\gamma}{\tau} + O(\frac{1}{\tau^2})$ with $I = (-\infty, 0)$ and $\gamma < 0$ or $I = (0, \infty)$ and $\gamma > 0$.

• If we perform the coordinate change $U = \tan^{-1}(\tau + r)$ and $V = \tan^{-1}(\tau - r)$

$$g_{FRW} = \frac{a^2(U,V)}{\cos^2 U \cos^2 V} \left[-dUdV + \frac{\sin^2(U-V)}{4} dS^2(\theta,\varphi) \right].$$

Theorem: Under the previous assumptions the spacetime (M, g_{FRW}) can be extended to a larger spacetime $(\widehat{M}, \widehat{g})$ which is a conformal completion of the asymptotically flat spacetime at past (or future) null infinity $(M, a^{-2}g_{FRW})$, *i.e.*, "a" plays the role of the conformal factor.

The manifold $M \cup \Im^{\pm}$ enjoys:

- 1. the vector field ∂_{τ} is a conformal Killing vector for \hat{g} in M,
- 2. the vector ∂_{τ} becomes tangent to \mathfrak{T}^{\pm} approaching it and coincides with $-\gamma \widehat{\nabla}^{b} a$,
- 3. the metric restricted on \mathfrak{S}^{\pm} takes a Bondi-like form $\widehat{g}|_{\mathfrak{S}^{\pm}} = \gamma^2 \left[-2dlda + dS^2(\theta, \varphi)\right]$

Cosmological horizon: general notion

A globally hyperbolic spacetime (M, g) equipped with $\Omega \in C^{\infty}(M, \mathbb{R}^+)$ and with a future-oriented timelike vector X on M is called an **expanding Universe with** cosmological past horizon if:

- 1. (M,g) can be isometrically embedded as the interior of a submanifold with boundary $(\widehat{M},\widehat{g})$ such that $\Im^- = \partial M$ and $\Im^- \cap J^+(M,\widehat{M}) = \emptyset$,
- 2. Ω can be made smooth on \widehat{M} and $\Omega|_{\mathfrak{F}^-} = 0$, but $d\Omega|_{\mathfrak{F}^-} \neq 0$,
- 3. X is a conformal Killing field on \hat{g} in a neighbourhood of \mathfrak{F}^- in M with

$$\mathcal{L}_X(\widehat{g}) = -2X(\ln\Omega)\widehat{g},$$

4. $\Im^- \sim \mathbb{R} \times S^2$ and the metric $\widehat{g}|_{\Im^-}$ takes in a suitable frame the form

$$\widehat{g} = \gamma^2 \left[-2dld\Omega + dS^2(\theta,\varphi) \right] \, .$$

N.B.

- \Im^- is a null 3-submanifold and the curves $l \mapsto (l, \theta, \varphi)$ are null \widehat{g} -geodesics.
- $(\widehat{M}, \widehat{g})$ is the conformal completion of the asymp. flat spacetime at past infinity $(M, \Omega^{-2}g)$ and $\widehat{g}|_M \equiv g$.

On the role of X

N.B.: An Expanding universe with cosmological horizon is characterised by $(M, g, \Omega, X, \gamma)$.

Question: What tells us X?

- 1. X is a Killing vector for the metric $\Omega^{-2}g$ in a neighbourhood of \mathfrak{T}^- in M.
- 2. X extends smoothly to a unique smooth vector field \tilde{X} on \mathfrak{T}^- which can vanish at most on a closed subset of \mathfrak{T}^- with empty interior.
- 3. \widetilde{X} has the form $f(\theta, \varphi)\partial_l$ when we represent \mathfrak{T}^- as $\mathbb{R} \times S^2$ and f is smooth and nonnegative.

Consequence: In a FRW universe f = 1. Therefore a non constant f is a measure of the failure of (M, g) to be isotropic!

Interplay with bulk isometries

Question: How are isometries of g and of \hat{g} encoded on the horizon?

Consider an expanding Universe with cosmological horizon and Y a Killing field of (M, g), then

- a) Y extends to a smooth vector field of \widehat{Y} on \widehat{M} ,
- b) $\mathcal{L}_{\widehat{Y}}\widehat{g} = 0$ on $M \cup \mathfrak{S}^-$,

c) $\widetilde{Y} = \widehat{Y}|_{\mathfrak{T}^-}$ is uniquely determined by Y and it is tangent to \mathfrak{T}^- iff $\lim_{\mathfrak{T}^-} g(Y, X) = 0$

N.B. Killing vectors of (M, g) are represented on \mathfrak{T}^- faithfully.

Definition: A Killing vector field Y of (M, g) is said to preserve \mathfrak{T}^- iff $g(Y, X) \to 0$ approaching \mathfrak{T}^- . A similar statement holds for the local 1-parameter group of isometries generated out of Y. The group SG_{\Im^-} of isometries of the horizon

What is the group of all isometries preserving the horizon structure?

Definition: The horizon symmetry group SG_{\Im^-} is the set of all diffeomorphisms of $\mathbb{R} \times S^2$ such that, given a Bondi-like frame (l, z, \overline{z})

$$z \longrightarrow z' = R(z) \doteq \frac{az+b}{cz+d}, \qquad \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SO(3)$$
$$l \longrightarrow l' \doteq e^{f(z,\bar{z})}l + g(z,\bar{z}),$$

where $g(z, \overline{z})$ and $f(z, \overline{z})$ lie in $C^{\infty}(S^2)$.

The composition law between two elements of SG_{\Im^-} is

$$(R, f, g)(R', f', g') = (RR', f' + f \circ R, e^{f \circ R'}g' + g \circ R').$$

The horizon symmetry group has the structure of an **iterated semidirect product**:

$$SG_{\Im^-} = SO(3) \ltimes (C^{\infty}(S^2) \rtimes C^{\infty}(S^2)).$$

SG_{\Im^-} "Trivia"

The group of symmetries of the cosmological horizon enjoys the following properties:

- it is an **infinite dimensional nuclear Lie group** as the BMS in asymptotically flat spacetimes
- there is no known theory of representation!!! Mackey's induction techniques cannot be blindly applied!
- each Killing vector Y of (M, g) can be restricted on \mathfrak{T}^- to \widetilde{Y} , a generator of the algebra of $SG_{\mathfrak{T}^-}$. Therefore $exp(t\widetilde{Y})$ with $t \in \mathbb{R}$ is a one-parameter subgroup of $SG_{\mathfrak{T}^-}$.

Goal: Construct a SG_{\Im^-} invariant (real scalar) field theory on $\Im^-!$

Field Theory on the Horizon

Prequel: The bulk

N.B. Since (M, g) is globally hyperbolic, Cauchy problems are meaningful.

Proposition: Consider a real scalar field $\phi : M \to \mathbb{R}$ on a cosmological spacetime with horizon. If ϕ solves $(\Box + \xi R + m^2) \phi = 0$ with $\xi \in \mathbb{R}$, $m^2 > 0$ and with compactly supported Cauchy data, then

 $\bullet \ \phi \in C^\infty(M)$

• The set of solutions S(M) of our equation is a symplectic space if endowed with the Cauchy-independent nondegenerate symplectic form:

$$\sigma(\phi_1,\phi_2)\doteq\int\limits_S \left(\phi_1
abla_N\phi_2-\phi_2
abla_N\phi_1
ight)d\mu_g^{(S)}$$

• A Weyl C^* -algebra $\mathcal{W}(M)$ can be associated to $(S(M), \sigma)$. This is, up to *-isomorphisms, unique and its non vanishing generators $W_M(\phi)$ satisfy:

$$W_M(-\phi) = W_M(\phi)^*, \quad W_M(\phi)W_M(\phi') = e^{\frac{i}{2}\sigma(\phi,\phi')}W_M(\phi+\phi'),$$

Part I: The boundary

What is the space of wavefunctions on the horizon?

Def: The space of real wavefunctions is

$$\mathcal{S}(\Im^-) = \left\{\psi: \Im^- o \mathbb{R} \mid \psi \text{ and } \partial_l \psi \in L^2\left(\mathbb{R} imes \mathbb{S}^2, dldS^2(z, ar{z})
ight)
ight\}.$$

N.B.: $\mathcal{S}(\mathfrak{T})$ is a symplectic space if endowed with $\sigma': \mathcal{S}(\mathfrak{T}) \times \mathcal{S}(\mathfrak{T}) \to \mathbb{R}$ such that

$$\sigma'(\psi_1,\psi_2) = \int_{\mathbb{R}\times\mathbb{S}^2} \left(\psi_1 \frac{\partial\psi_2}{\partial l} - \psi_2 \frac{\partial\psi_1}{\partial l}\right) dl dS^2(z,\bar{z})),$$

on which the **left action** of SG_{\Im^-} acts as a symplectomorphism, *i.e.*,

- $L(g)\psi(x) \doteq \psi(g^{-1}x) \in SG_{\Im^-}$ iff $\psi(x) \in \mathcal{S}(\Im^-)$ for all $x \in \Im^-$ and for all $g \in SG_{\Im^-}$,
- $\sigma'(L(g)\psi, L(g)\psi') = \sigma'(\psi, \psi')$, for all $g \in SG_{\Im^-}$ and for all $\psi, \psi' \in \mathcal{S}(\Im^-)$

Consequence: We can associate a Weyl C^* -algebra $\mathcal{W}(\mathfrak{T})$ to $(\mathcal{S}(\mathfrak{T}), \sigma')$ as well as an $SG_{\mathfrak{T}}$ -representation α_g :

 $\alpha_g\left(W(\psi)\right) \doteq W(L(g)\psi), \quad \forall W(\psi) \in \mathcal{W}(\Im^-), \; \forall g \in SG_{\Im^-}$

Part II: The state

We can introduce a distinguished state $\lambda : \mathcal{W}(\mathfrak{F}) \to \mathbb{C}$ unambiguously defined as

$$\lambda(W(\psi)) = e^{-\frac{\mu(\psi,\psi)}{2}}, \quad \forall W(\psi) \in \mathcal{W}(\mathfrak{F})$$

where $\forall \psi, \psi' \in \mathcal{S}(\Im^-)$

$$\mu(\psi,\psi') = \int_{\mathbb{R}\times S^2} 2k\Theta(k)\overline{\widehat{\psi}(k,\theta,\varphi)}\widehat{\psi}'(k,\theta,\varphi)dkdS^2(\theta,\varphi),$$

being $\psi(k), \psi'(k)$ the Fourier-Plancherel transform

$$\psi(k) = \int_{\mathbb{R}} dl \; \frac{e^{ikl}}{\sqrt{2\pi}} \psi(l,\theta,\varphi).$$

The state λ enjoys the following (almost straightforward) properties:

- it is quasifree and pure,
- referring to its GNS triple $(\mathcal{H}, \Pi, \Upsilon)$ it is invariant under the left action of the SG_{\Im^-} group.

Furthermore the state λ enjoys the following (much less straightforward) remarkable properties. Let us consider a timelike future directed vector field Y whose projection on the horizon is \widetilde{Y} , a generator of the algebra of SG_{\Im^-} . Then

• The unitary group $U_t^{\widetilde{Y}}$ which implements $\alpha_{\exp(t\widetilde{Y})}$ $(t \in \mathbb{R})$ leaving fixed the cyclic GNS vector is strongly continuous with nonnegative self-adjoint generator

$$H^{\widetilde{Y}} = -i \left. \frac{dU_t^{\widetilde{Y}}}{dt} \right|_{t=0},$$

- The restriction of $H^{\widetilde{Y}}$ to the 1-particle Hilbert space in the GNS representation of λ has no zero modes iff \widetilde{Y} vanishes on a zero-measure subset of \mathfrak{T}^- ,
- if $\tilde{Y} = \partial_l$, then λ is the **unique** quasifree pure state on $\mathcal{W}(\mathfrak{S}^-)$ which is invariant under $\alpha_{\exp(t\partial_l)}$ $(t \in \mathbb{R})$ and the unitary group implementing such representation leaving fixed the cyclic GNS vector is strongly continuous with nonnegative self-adjoint generator,
- Each folium of states on W(S⁻) contains at most one pure state which is invariant under α_{exp(t∂l)}.

Part III: Bulk to Boundary Interplay

Notice: each element $\phi \in S(M)$ can be extended to a unique smooth solution of the same equation on the whole \widehat{M} and, hence, $\Gamma \phi \doteq \phi|_{\Im^-} \in C^{\infty}(\Im^-)$.

Hypothesis: Suppose that each element $\phi \in S(M)$

- projects/can be restricted to \mathfrak{T}^- to an element $\Gamma \phi \in \mathcal{S}(\mathfrak{T}^-)$,
- the projection/restriction preserves symplectic forms, *i.e.*, for any $\phi_1, \phi_2 \in S(M)$:

$$\sigma(\phi_1,\phi_2)=\gamma^2\sigma(\Gamma\phi_1,\Gamma\phi_2),$$

then it exists an isometric *-homomorphism $i: \mathcal{W}(M) \to \mathcal{W}(\mathfrak{T})$ unambiguously determined by

$$i(W_M(\phi)) \doteq W(\Gamma \phi) \quad \forall \phi \in \mathcal{W}(M).$$

In other words we see the bulk algebra a sub *-algebra of the boundary counterpart.

What's next?!

The injection map between algebras allows to pull-back states!

Big Statement: The distinguished state λ in the boundary identifies a bulk state λ_M as

$$\lambda_M(a) = \lambda(i(a)). \quad \forall a \in \mathcal{W}(M).$$

Furthermore λ_M enjoys some interesting properties:

- it is invariant under the natural action of any bulk isometry Y on the algebra. The one-parameter U_t^Y group implementing such an action leaves fixed the cyclic vector in the GNS representation of λ_M ,
- if Y is everywhere timelike and future-directed in M then the 1-parameter group U_t^Y has positive self-adjoint operator,
- the generator has no zero mode in the one-particle subspace if the projection of Y on the horizon vanishes on a zero-measure subset of \mathfrak{T}^- .

Epilogue: Testing the (hypotheses of the) correspondence The last big question: when do the hypotheses hold true?

One can prove the following statements:

Test 1: Consider an expanding Universe with $a(\tau) = \frac{\gamma}{\tau}$ and a Klein-Gordon field with $m^2 + \xi R > 0$. Then, whenever every $m^2 + \xi R > \frac{5}{48}R$, then any $\phi \in S(M)$ can be projected to $\Gamma \phi \in \mathcal{S}(\Im^-)$ and the symplectic form is preserved.

N.B. In this case the state λ_M coincides with the Euclidean Bunch-Davies state.

Test 2: Suppose now that $a(\tau) = \frac{\gamma}{\tau} + O\left(\frac{1}{\tau^2}\right)$ with $\ddot{a}(\tau)$ such that $R = \frac{12}{\gamma^2} + O\left(\frac{1}{\tau}\right)$. Then, if $M = (-\infty, 0) \times \mathbb{R}^3$, $g = g_{FRW}$ and $X = \partial_{\tau}$, then:

• whenever $m^2 + \xi R > 2$, each $\phi \in S(M)$ extends smoothly to $\Gamma \phi \in S(\Im^-)$ and the symplectic form is preserved!

The hypotheses hold true in <u>the Friedmann-Robertson-Walker</u> spacetimes we considered at the beginning of the talk.

Conclusions

- Can we test our hypotheses for scalar fields on the other backgrounds we considered?
- Can we prove that the bulk state is Hadamard?
- Can we prove explicitly that the correspondence holds for non scalar-field without claiming "it is a simple extension of the scalar case"? (dedicated to a good friend)
- Can we recast the construction for a scalar field interacting with a non constant potential $V(\phi)$? This could provide useful insights on cosmological theories^a.

^aSee also: C. D., Klaus Fredenhagen & Nicola Pinamonti: Phys. Rev. D. 77 (2008) 104015