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Motivations
• General one: Cosmology is nowadays the main viable source for experimental data

related to QFT on curved backgrounds, but... many models, a lot of folk results, few

mathematically sound statements.

• Particular one: It was recently shown that it is possible to encode the information of

a bulk field theory in terms of a suitable counterpart living on the boundary; this

holds both in AdSa and in asymptotically flat spacetimesb.

An idea:

1. What about cosmological spacetimes considering the cosmological horizon as a

boundary? Is it feasible?

2. Does it exists also in this scenario a distinguished algebraic state as in the asymp.

flat case?

aK. H. Rehren, Annales Henri Poincare 1 (2000) 607,

M. Dütsch and K. H. Rehren, Annales Henri Poincare 4 (2003) 613.
bC. D., V. Moretti and N. Pinamonti: Rev. Math. Phys. 18 (2006), 346



Outline of the talk

1. Looking at the Geometry of the Problem: The distinguished role of the cosmological

horizon

2. Looking at the Field Theoretical Side of the Problem: a real scalar QFT on FRW

spacetimes and the counterpart on the horizon

3. What Holography teaches us: how to construct a bulk-to-boundary correspondence

and the notion of preferred state



Recap. of previous episodes

What is an asymptotically flat spacetime? Why is interesting?

A 4D manifold M with a metric g solving Einstein vacuum equations is called

asymptotically flat with past timelike infinity at null infinity =−, if it exists a second

manifold (M̂, ĝ), an embedding λ : M → M̂ , a preferred point i− ∈ M̂ and a conformal

factor Ω ≥ 0 such that

1. Ω2gµν = λ∗(ĝµν) in M ,

2. λ(M) = J+(i−) \ ∂J+(i−) and ∂(λ(M)) = =− ∪ i−,

3. Ω ∈ C∞(M̂) and Ω = 0 on =− ∪ i− ,

4. dΩ 6= 0 on =− ∪ i− but ∇̂µ∇̂νΩ = −2ĝµν on i−,

5. other technical requirements.

N.B. =− plays the role of a preferred codimension one submanifold of a bulk field theory.

For a real massless scalar field conformally coupled to scalar curvature, this entails the

selection of a preferred bulk Hadamard state etc. etc. etc...



Geometrical Setup

First hypothesis: Cosmological Principle =⇒

gFRW = −dt2 + a2(t)

[
dr2

1− kr2
+ r2dS2(θ, ϕ)

]
, M ∼ I ×X3

where k = 0, 1,−1 and a(t) ∈ C∞(I, R+), being I ⊂ R.

Important properties:

• Consider a co-moving observer as the integral line γ(t) of ∂t. If M \ J−(γ) 6= ∅, then

causal signal departing from each x ∈M \ J−(γ) never reach γ(t). Then we call

∂J−(γ) the (future) cosmological horizon

• if one introduces the conformal time dτ = dt
a(t)

and rescales the metric as

gFRW = a2(τ)

[
−dτ2 +

dr2

1− kr2
+ r2dS2(θ, ϕ)

]
,

then τ ranges in (α, β) ⊂ R. Sufficient condition for the existence of an horizon is

α > −∞ and/or β <∞.



Second hypothesis: Let us consider a FRW spacetime with k = 0 and M ∼ I × R3.

Third hypothesis: a(τ) = γ
τ

+O( 1
τ2 ) with I = (−∞, 0) and γ < 0 or I = (0,∞) and

γ > 0.

• If we perform the coordinate change U = tan−1(τ + r) and V = tan−1(τ − r)

gFRW =
a2(U, V )

cos2 U cos2 V

[
−dUdV +

sin2(U − V )

4
dS2(θ, ϕ)

]
.

Theorem: Under the previous assumptions the spacetime (M, gFRW ) can be extended to

a larger spacetime (M̂, ĝ) which is a conformal completion of the asymptotically flat

spacetime at past (or future) null infinity (M,a−2gFRW ), i.e., “a” plays the role of the

conformal factor.

The manifold M ∪ =± enjoys:

1. the vector field ∂τ is a conformal Killing vector for ĝ in M ,

2. the vector ∂τ becomes tangent to =± approaching it and coincides with −γ∇̂ba,

3. the metric restricted on =± takes a Bondi-like form ĝ|=± = γ2
[
−2dlda+ dS2(θ, ϕ)

]



Cosmological horizon: general notion

A globally hyperbolic spacetime (M, g) equipped with Ω ∈ C∞(M,R+) and with a

future-oriented timelike vector X on M is called an expanding Universe with

cosmological past horizon if:

1. (M, g) can be isometrically embedded as the interior of a submanifold with boundary

(M̂, ĝ) such that =− = ∂M and =− ∩ J+(M, M̂) = ∅,

2. Ω can be made smooth on M̂ and Ω|=− = 0, but dΩ|=− 6= 0,

3. X is a conformal Killing field on ĝ in a neighbourhood of =− in M with

LX(ĝ) = −2X(ln Ω)ĝ,

4. =− ∼ R× S2 and the metric ĝ|=− takes in a suitable frame the form

ĝ = γ2
[
−2dldΩ + dS2(θ, ϕ)

]
.

N.B.

• =− is a null 3−submanifold and the curves l 7→ (l, θ, ϕ) are null ĝ−geodesics.

• (M̂, ĝ) is the conformal completion of the asymp. flat spacetime at past infinity

(M,Ω−2g) and ĝ|M ≡ g.



On the role of X

N.B.: An Expanding universe with cosmological horizon is characterised by

(M, g,Ω, X, γ).

Question: What tells us X?

1. X is a Killing vector for the metric Ω−2g in a neighbourhood of =− in M .

2. X extends smoothly to a unique smooth vector field X̃ on =− which can vanish at

most on a closed subset of =− with empty interior.

3. X̃ has the form f(θ, ϕ)∂l when we represent =− as R× S2 and f is smooth and

nonnegative.

Consequence: In a FRW universe f = 1. Therefore a non constant f is a measure of the

failure of (M, g) to be isotropic!



Interplay with bulk isometries

Question: How are isometries of g and of ĝ encoded on the horizon?

Consider an expanding Universe with cosmological horizon and Y a Killing field of

(M, g), then

a) Y extends to a smooth vector field of Ŷ on M̂ ,

b) L
Ŷ
ĝ = 0 on M ∪ =−,

c) Ỹ = Ŷ |=− is uniquely determined by Y and it is tangent to =− iff lim=− g(Y,X) = 0

N.B. Killing vectors of (M, g) are represented on =− faithfully.

Definition: A Killing vector field Y of (M, g) is said to preserve =− iff g(Y,X)→ 0

approaching =−. A similar statement holds for the local 1-parameter group of isometries

generated out of Y .



The group SG=− of isometries of the horizon

What is the group of all isometries preserving the horizon structure?

Definition: The horizon symmetry group SG=− is the set of all diffeomorphisms of R× S2

such that, given a Bondi-like frame (l, z, z̄)

z −→ z′ = R(z)
.
=
az + b

cz + d
,

 a b

c d

 ∈ SO(3)

l −→ l′
.
= ef(z,z̄)l + g(z, z̄),

where g(z, z̄) and f(z, z̄) lie in C∞(S2).

The composition law between two elements of SG=− is

(R, f, g)(R′, f ′, g′) = (RR′, f ′ + f ◦R, ef◦R′g′ + g ◦R′).

The horizon symmetry group has the structure of an iterated semidirect product:

SG=− = SO(3) n (C∞(S2) o C∞(S2)).



SG=− “Trivia”

The group of symmetries of the cosmological horizon enjoys the following properties:

• it is an infinite dimensional nuclear Lie group as the BMS in asymptotically

flat spacetimes

• there is no known theory of representation!!! Mackey’s induction techniques cannot

be blindly applied!

• each Killing vector Y of (M, g) can be restricted on =− to Ỹ , a generator of the

algebra of SG=− . Therefore exp(tỸ ) with t ∈ R is a one-parameter subgroup of

SG=− .

Goal: Construct a SG=− invariant (real scalar) field theory on =−!



Field Theory on the Horizon

Prequel: The bulk

N.B. Since (M, g) is globally hyperbolic, Cauchy problems are meaningful.

Proposition: Consider a real scalar field φ : M → R on a cosmological spacetime with

horizon. If φ solves
(
� + ξR+m2

)
φ = 0 with ξ ∈ R, m2 > 0 and with compactly

supported Cauchy data, then

• φ ∈ C∞(M)

• The set of solutions S(M) of our equation is a symplectic space if endowed with the

Cauchy-independent nondegenerate symplectic form:

σ(φ1, φ2)
.
=

∫
S

(φ1∇Nφ2 − φ2∇Nφ1) dµ
(S)
g

• A Weyl C∗-algebra W(M) can be associated to (S(M), σ). This is, up to

∗-isomorphisms, unique and its non vanishing generators WM(φ) satisfy:

WM(−φ) = WM(φ)∗, WM(φ)WM(φ′) = e
i
2
σ(φ,φ′)WM(φ+ φ′),



Part I: The boundary

What is the space of wavefunctions on the horizon?

Def: The space of real wavefunctions is

S(=−) =
{
ψ : =− → R | ψ and ∂lψ ∈ L2

(
R× S2, dldS2(z, z̄)

)}
.

N.B.: S(=−) is a symplectic space if endowed with σ′ : S(=−)× S(=−)→ R such that

σ′(ψ1, ψ2) =

∫
R×S2

(
ψ1
∂ψ2

∂l
− ψ2

∂ψ1

∂l

)
dldS2(z, z̄)),

on which the left action of SG=− acts as a symplectomorphism, i.e.,

• L(g)ψ(x)
.
= ψ(g−1x) ∈ SG=− iff ψ(x) ∈ S(=−) for all x ∈ =− and for all g ∈ SG=− ,

• σ′(L(g)ψ,L(g)ψ′) = σ′(ψ,ψ′), for all g ∈ SG=− and for all ψ,ψ′ ∈ S(=−)

Consequence: We can associate a Weyl C∗-algebra W(=−) to (S(=−), σ′) as well as an

SG=−-representation αg:

αg (W (ψ))
.
= W (L(g)ψ), ∀W (ψ) ∈ W(=−), ∀g ∈ SG=−



Part II: The state

We can introduce a distinguished state λ :W(=−)→ C unambiguously defined as

λ (W (ψ)) = e−
µ(ψ,ψ)

2 , ∀W (ψ) ∈ W(=−)

where ∀ψ,ψ′ ∈ S(=−)

µ(ψ,ψ′) =

∫
R×S2

2kΘ(k)ψ̂(k, θ, ϕ)ψ̂′(k, θ, ϕ)dkdS2(θ, ϕ),

being ψ(k), ψ′(k) the Fourier-Plancherel transform

ψ(k) =

∫
R

dl
eikl
√

2π
ψ(l, θ, ϕ).

The state λ enjoys the following (almost straightforward) properties:

• it is quasifree and pure,

• referring to its GNS triple (H,Π,Υ) it is invariant under the left action of the SG=−

group.



Furthermore the state λ enjoys the following (much less straightforward) remarkable

properties. Let us consider a timelike future directed vector field Y whose projection on

the horizon is Ỹ , a generator of the algebra of SG=− . Then

• The unitary group U Ỹ
t which implements α

exp(tỸ )
(t ∈ R) leaving fixed the cyclic GNS

vector is strongly continuous with nonnegative self-adjoint generator

H Ỹ = −i
dU Ỹ

t

dt

∣∣∣∣∣
t=0

,

• The restriction of H Ỹ to the 1-particle Hilbert space in the GNS representation of λ

has no zero modes iff Ỹ vanishes on a zero-measure subset of =−,

• if Ỹ = ∂l, then λ is the unique quasifree pure state on W(=−) which is invariant

under αexp(t∂l) (t ∈ R) and the unitary group implementing such representation

leaving fixed the cyclic GNS vector is strongly continuous with nonnegative

self-adjoint generator,

• Each folium of states on W(=−) contains at most one pure state which is invariant

under αexp(t∂l).



Part III: Bulk to Boundary Interplay

Notice: each element φ ∈ S(M) can be extended to a unique smooth solution of the same

equation on the whole M̂ and, hence, Γφ
.
= φ|=− ∈ C∞(=−).

Hypothesis: Suppose that each element φ ∈ S(M)

• projects/can be restricted to =− to an element Γφ ∈ S(=−),

• the projection/restriction preserves symplectic forms, i.e., for any φ1, φ2 ∈ S(M):

σ(φ1, φ2) = γ2σ(Γφ1,Γφ2),

then it exists an isometric ∗-homomorphism i :W(M)→W(=−) unambiguously

determined by

i(WM(φ))
.
= W (Γφ) ∀φ ∈ W(M).

In other words we see the bulk algebra a sub ∗-algebra of the boundary counterpart.



What’s next?!

The injection map between algebras allows to pull-back states!

Big Statement: The distinguished state λ in the boundary identifies a bulk state λM as

λM(a) = λ(i(a)). ∀a ∈ W(M).

Furthermore λM enjoys some interesting properties:

• it is invariant under the natural action of any bulk isometry Y on the algebra. The

one-parameter UY
t group implementing such an action leaves fixed the cyclic vector

in the GNS representation of λM ,

• if Y is everywhere timelike and future-directed in M then the 1-parameter group UY
t

has positive self-adjoint operator,

• the generator has no zero mode in the one-particle subspace if the projection of Y on

the horizon vanishes on a zero-measure subset of =−.



Epilogue: Testing the (hypotheses of the) correspondence

The last big question: when do the hypotheses hold true?

One can prove the following statements:

Test 1: Consider an expanding Universe with a(τ) = γ
τ

and a Klein-Gordon field with

m2 + ξR > 0. Then, whenever every m2 + ξR > 5
48
R, then any φ ∈ S(M) can be

projected to Γφ ∈ S(=−) and the symplectic form is preserved.

N.B. In this case the state λM coincides with the Euclidean Bunch-Davies state.

Test 2: Suppose now that a(τ) = γ
τ

+O
(

1
τ2

)
with ä(τ) such that R = 12

γ2 +O
(

1
τ

)
. Then,

if M = (−∞, 0)× R3, g = gFRW and X = ∂τ , then:

• whenever m2 + ξR > 2, each φ ∈ S(M) extends smoothly to Γφ ∈ S(=−) and the

symplectic form is preserved!

The hypotheses hold true in the Friedmann-Robertson-Walker spacetimes we considered

at the beginning of the talk.



Conclusions

• Can we test our hypotheses for scalar fields on the other backgrounds we considered?

• Can we prove that the bulk state is Hadamard?

• Can we prove explicitly that the correspondence holds for non scalar-field without

claiming “it is a simple extension of the scalar case”? (dedicated to a good friend)

• Can we recast the construction for a scalar field interacting with a non constant

potential V (φ)? This could provide useful insights on cosmological theoriesa.

aSee also: C. D., Klaus Fredenhagen & Nicola Pinamonti: Phys. Rev. D. 77 (2008) 104015


