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Motivations

e General one: Cosmology is nowadays the main viable source for experimental data
related to QFT on curved backgrounds, but... many models, a lot of folk results, few

mathematically sound statements.

e Particular one: It was recently shown that it is possible to encode the information of
a bulk field theory in terms of a suitable counterpart living on the boundary; this

holds both in AdS® and in asymptotically flat spacetimesP.

An idea:

1. What about cosmological spacetimes considering the cosmological horizon as a

boundary? Is it feasible?

2. Does it exists also in this scenario a distinguished algebraic state as in the asymp.

flat case?
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Outline of the talk

. Looking at the Geometry of the Problem: The distinguished role of the cosmological

horizon

. Looking at the Field Theoretical Side of the Problem: a real scalar QFT on FRW

spacetimes and the counterpart on the horizon

. What Holography teaches us: how to construct a bulk-to-boundary correspondence

and the notion of preferred state



Recap. of previous episodes

What is an asymptotically flat spacetime? Why is interesting?

A 4D manifold M with a metric g solving Einstein vacuum equations is called

asymptotically flat with past timelike infinity at null infinity &, if it exists a second

manifold (]\A4 ,g), an embedding A : M — M , a preferred point i~ € M and a conformal
factor €2 > 0 such that

1.
2.
3

4.
D.

Q2gW = XN (Guv) in M,
AM)=J @ )\oJ (i7) and O(AN(M)) =S Ui,

. QeC®(M)and Q=0o0n S Ui,

dQ £ 0on S Ui~ but V,V,Q = —2§,, on i,

other technical requirements.

N.B. & plays the role of a preferred codimension one submanifold of a bulk field theory.

For a real massless scalar field conformally coupled to scalar curvature, this entails the

selection of a preferred bulk Hadamard state etc. etc. etc...



Geometrical Setup

First hypothesis: Cosmological Principle =

2

1 — kr?

grrw = —dt* + a2(t) { + TZdSQ(G, go)] , M~ 1T x X3

where k = 0,1,—1 and a(t) € C*°(I, R"), being I C R.

Important properties:

e Consider a co-moving observer as the integral line y(t) of ;. If M \ J~ () # 0, then
causal signal departing from each x € M \ J~(v) never reach v(¢). Then we call

0J~ (y) the (future) cosmological horizon

e if one introduces the conformal time dr = % and rescales the metric as

JFRW = a2(T) —dT2 +

then 7 ranges in («, 3) C R. Sufficient condition for the existence of an horizon is

a > —oo and/or 8 < oo.




Second hypothesis: Let us consider a FRW spacetime with k =0 and M ~ I x R3.

Third hypothesis: a(r) = T+ O(T%) with I = (—00,0) and v < 0 or I = (0,00) and
v > 0.

e If we perform the coordinate change U = tan~!'(7 +r) and V = tan~!'(7 — r)

a’(U, V) sin?(U — V)

cos? U cos?

—dUdV + dS*(, )

gFRW —

Theorem: Under the previous assumptions the spacetime (M, grrw) can be extended to
a larger spacetime (M ,g) which is a conformal completion of the asymptotically flat
spacetime at past (or future) null infinity (M, a 2grrw), i.e., “a” plays the role of the

conformal factor.

The manifold M U 3* enjoys:
1. the vector field 0; is a conformal Killing vector for g in M,
2. the vector 9, becomes tangent to ST approaching it and coincides with —wﬁba,

3. the metric restricted on ST takes a Bondi-like form g|g+ = 72 [—2dlda + dS?(6, ¢)]



Cosmological horizon: general notion

A globally hyperbolic spacetime (M, g) equipped with Q € C*°(M,R*") and with a
future-oriented timelike vector X on M is called an expanding Universe with

cosmological past horizon if:

1. (M, g) can be isometrically embedded as the interior of a submanifold with boundary

(M, ) such that S~ = M and S~ N J+(M, M) = 0,
2. Q can be made smooth on M and Q|- = 0, but dQ|q- # 0,

3. X is a conformal Killing field on g in a neighbourhood of &~ in M with
Lx(9) = —2X(In)g,
4. 3~ ~ R x S? and the metric g|g- takes in a suitable frame the form
g =" [—2dldQ+ dS*(0,¢)] .

N.B.

e 3 is a null 3—submanifold and the curves [ — (I, 0, ) are null g—geodesics.

o (M ,g) is the conformal completion of the asymp. flat spacetime at past infinity

(M,Q2g) and G|y = g.



On the role of X
N.B.: An Expanding universe with cosmological horizon is characterised by
<M7 g7 Q7X7 7)'
Question: What tells us X7
1. X is a Killing vector for the metric Q272¢g in a neighbourhood of &~ in M.

2. X extends smoothly to a unique smooth vector field X on § which can vanish at

most on a closed subset of &~ with empty interior.

3. X has the form f(0,©)9;, when we represent I~ as R x S? and f is smooth and

nonnegative.

Consequence: In a FRW universe f = 1. Therefore a non constant f is a measure of the

failure of (M, g) to be isotropic!



Interplay with bulk isometries

Question: How are isometries of g and of g encoded on the horizon?
Consider an expanding Universe with cosmological horizon and Y a Killing field of

(M, g), then

a) Y extends to a smooth vector field of Y on M,

b) ,C};@:OOH MU,

c) Y = f/|g_ is uniquely determined by Y and it is tangent to S~ iff limg- g(Y, X) =0
N.B. Killing vectors of (M, g) are represented on &~ faithfully.
Definition: A Killing vector field Y of (M, g) is said to preserve & iff g(Y, X) — 0

approaching &~. A similar statement holds for the local 1-parameter group of isometries

generated out of Y.



The group SG4- of isometries of the horizon

What is the group of all isometries preserving the horizon structure?

Definition: The horizon symmetry group SGq— is the set of all diffeomorphisms of R x S?

such that, given a Bondi-like frame (I, z, Z)

b
z—>z’:R(z)iaz+ ,
cz+d c d

c SO(3)

| — 1 = e/ 4 g(z2, 2),
where g(z,z) and f(z, z) lie in C>(S?).

The composition law between two elements of SG4- is

(R, f,9)(R, f',¢) = (RR, f'+ foR, /B¢ + go R).

The horizon symmetry group has the structure of an iterated semidirect product:

SGa- = SO(3) X (C™(8%) x C™(S%).



SGg- “Trivia”
The group of symmetries of the cosmological horizon enjoys the following properties:

e it is an infinite dimensional nuclear Lie group as the BMS in asymptotically

flat spacetimes

e there is no known theory of representation!!! Mackey’s induction techniques cannot

be blindly applied!

e cach Killing vector Y of (M, g) can be restricted on &~ to Y, a generator of the

algebra of SGg-. Therefore eacp(tiv/) with ¢ € R is a one-parameter subgroup of
SGy-.

Goal: Construct a SG4- invariant (real scalar) field theory on 37!



Field Theory on the Horizon

Prequel: The bulk

N.B. Since (M, g) is globally hyperbolic, Cauchy problems are meaningful.

Proposition: Consider a real scalar field ¢ : M — R on a cosmological spacetime with
horizon. If ¢ solves (D + &R+ m2) ¢ =0 with £ € R, m? > 0 and with compactly
supported Cauchy data, then

¢ $ € C*(M)

e The set of solutions S(M) of our equation is a symplectic space if endowed with the

Cauchy-independent nondegenerate symplectic form:

o (b1, d2) = / ($1V N2 — 62V ebr) Al

S

e A Weyl C*-algebra W (M) can be associated to (S(M), o). This is, up to

x-isomorphisms, unique and its non vanishing generators Wy, (¢) satisfy:

War(—¢) = War(é)*,  War(e)War(¢') = e27 @ Wi (¢ + ¢),



Part I: The boundary

What is the space of wavefunctions on the horizon?

Def: The space of real wavefunctions is

SS)={¢:S — R |y and gy € L* (R x §*,dldS?*(z,2)) } .

N.B.: S(37) is a symplectic space if endowed with ¢’ : S(S7) x S(&7) — R such that

0 o
o) = | (m%—w%) dldS? (2, 7)),

RxS2

on which the left action of SG4- acts as a symplectomorphism, z.e.,
o L(g)Y(z) =¢(g9tx) € SGy iff Y(x) € S(I7) for all z € I~ and for all g € SGy-,
o o'(L(g)Y, L(g)Y') = o' (¢, ), for all g € SGg- and for all ¥, ¢ € S(T7)

Consequence: We can associate a Weyl C*-algebra W(37) to (S(S7),0') as well as an

SGg--representation ay:

ag (W()) = W(L(9)¥), VW(p) € W(S™), Vg € SGg-



Part II: The state

We can introduce a distinguished state A : W(37) — C unambiguously defined as

AW () =e 27, YIV(h) € W(ST)

where Vi), 9" € S(37)

u(, ) = [ 2RIk, 0, ) (k. 6, ) dRdS 6, ).
RxS?2

being 1 (k), ' (k) the Fourier-Plancherel transform

W= [ 50,0, )
(k) = [ dl S—(1,0, o).
4 V2

The state A enjoys the following (almost straightforward) properties:
e it is quasifree and pure,

e referring to its GNS triple (H,II, T) it is invariant under the left action of the SGg-
group.



Furthermore the state A enjoys the following (much less straightforward) remarkable
properties. Let us consider a timelike future directed vector field Y whose projection on

the horizon is Y, a generator of the algebra of SGq-. Then

e The unitary group Utf/ which implements QX (17) (t € R) leaving fixed the cyclic GNS

vector is strongly continuous with nonnegative self-adjoint generator
_ Y
HY = ;2
dt ’
t=0

e The restriction of HY to the 1-particle Hilbert space in the GNS representation of )\

has no zero modes iff Y vanishes on a zero-measure subset of &,

o if Y = J;, then )\ is the unique quasifree pure state on YW (&) which is invariant
under ayptg,) (¢ € R) and the unitary group implementing such representation
leaving fixed the cyclic GNS vector is strongly continuous with nonnegative

self-adjoint generator,

e Each folium of states on W(J7) contains at most one pure state which is invariant

under Qeyp(t,)-



Part III: Bulk to Boundary Interplay

Notice: each element ¢ € S(M) can be extended to a unique smooth solution of the same
equation on the whole M and, hence, I'¢ = ¢|q- € C®(I7).

Hypothesis: Suppose that each element ¢ € S(M)
e projects/can be restricted to &~ to an element I'p € S(I7),

e the projection/restriction preserves symplectic forms, i.e., for any ¢, p2 € S(M):
o(¢1,¢2) =7 o (Th1,Tg),

then it exists an isometric *-homomorphism ¢ : W(M) — W(S™) unambiguously

determined by

(Wu(¢)) =W(T¢) Vo e W(M).

In other words we see the bulk algebra a sub x-algebra of the boundary counterpart.



What’s next?!

The injection map between algebras allows to pull-back states!

Big Statement: The distinguished state A in the boundary identifies a bulk state Aj; as

Av(a) = A(i(a)). Va € W(M).
Furthermore \j; enjoys some interesting properties:

e it is invariant under the natural action of any bulk isometry Y on the algebra. The
one-parameter UtY group implementing such an action leaves fixed the cyclic vector

in the GNS representation of Ay,

e if Y is everywhere timelike and future-directed in M then the 1-parameter group UiY

has positive self-adjoint operator,

e the generator has no zero mode in the one-particle subspace if the projection of Y on

the horizon vanishes on a zero-measure subset of & .



Epilogue: Testing the (hypotheses of the) correspondence

The last big question: when do the hypotheses hold true?

One can prove the following statements:

Test 1: Consider an expanding Universe with a(7) = 1 and a Klein-Gordon field with

m? + €R > 0. Then, whenever every m? + ¢éR > 4—58R, then any ¢ € S(M) can be
projected to I'p € S(&) and the symplectic form is preserved.

N.B. In this case the state \); coincides with the Euclidean Bunch-Davies state.

Test 2: Suppose now that a(7) = 2 + O (&) with d(7) such that R = % + O (

T2

if M = (—00,0) xR, g = gprw and X = 8., then:

3=

). Then,

e whenever m? + R > 2, each ¢ € S(M) extends smoothly to I'¢ € S(37) and the

symplectic form is preserved!

The hypotheses hold true in the Friedmann-Robertson-Walker spacetimes we considered

at the beginning of the talk.



Conclusions

e Can we test our hypotheses for scalar fields on the other backgrounds we considered?
e Can we prove that the bulk state is Hadamard?

e Can we prove explicitly that the correspondence holds for non scalar-field without

claiming “it is a simple extension of the scalar case”? (dedicated to a good friend)

e Can we recast the construction for a scalar field interacting with a non constant

potential V' (¢)? This could provide useful insights on cosmological theories?®.

®See also: C. D., Klaus Fredenhagen & Nicola Pinamonti: Phys. Rev. D. 77 (2008) 104015



