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Motivation

Quantum fields on curved spacetimes

@ Quantum Field Theory on Curved Spacetimes (QFT on CST):
approximate solution to the problem of formulating a quantum theory of
both gravity and matter

@ Matter: quantum fields

@ Spacetime: arbitrary but fixed classical curved background,
non-dynamical in particular



Motivation

Curved spacetimes from quantum fields

@ Back-reaction of the quantum field on the (curvature of) spacetime

Guv(x) =87Gw(: Tuu(x):)

@ This can be formally derived by expanding around a vacuum solution,
keeping "one-loop” (A') terms of the quantum matter and "tree” (1)
terms of the quantum metric ...

@ ... and can thus only make sense for special states or as a model
equation.

@ It also seems necessary to quantise matter "on all spacetimes at once”.



Motivation

In this talk |

@ How can one sensibly define a r.h.s. for Gu.(x) = 87 Gw(: T, (x):)?
@ We will see that in the case of Dirac spinor fields

@ 2 modified version of the classical stress-energy tensor,

@ regularised by point-splitting and subtraction of the Hadamard
singularity

© and evaluated on Hadamard states gives a satisfactory result.



Motivation

In this talk Il

@ How do the solutions of G, (x) = 8mGw(: Tuw(x):) look like?
@ We will see that

@ normal ordering in CST is ambiguous. (There is no cosmological
constant problem!)

@ The regularisation freedom can be exploited to obtain solutions
which are stable and de Sitter at late times.

© All types of (free) quantum matter display the same behaviour.

@ Quantum effects are strong! The picture of strong classical effects
and small quantum perturbations seems incomplete.



Motivation

Outline of the talk

@ The quantisation of free Dirac fields on curved spacetimes
@ The microlocal spectrum and Hadamard states

© The expected stress-energy tensor

@ Stable cosmological solutions of G, (x) = 87 Gw(: Tuw(x):)

@ Conclusions & outlook



Quantised Dirac fields on CST

The quantisation of free Dirac fields on curved spacetimes



Quantised Dirac fields on CST

The classical Dirac field on curved spacetimes |

@ Spacetime: (M, g) is a fourdimensional, globally hyperbolic, oriented and
time oriented, smooth manifold M with Lorentzian metric g of signature
(—7 +7 +7 +)

@ ~-matrices: {7,}a—0..3 C M(4,C) constitute a complex irreducible
representation of C/(3,1), i.e.,

{Ya, Y} = YaVb + Y6Ya = 2Nabla.

@ We choose (i times the) Dirac representation and set 8 = —iyo.

@ There exist global vector frames e, which can be lifted to global spinor
frames Ea — ¥ M— C*



Quantised Dirac fields on CST

The classical Dirac field on curved spacetimes |l

@ Define a covariant derivative on spinors by lifting the Levi-Civita
connection.

@ Spin connection coefficients: o, = %I'?,C'ya’yc
@ Covariant derivative on spinor-tensors, e.g.,

A . A A A _C C _A c A
VaYbe = VB2 = OaVbg — TacYo8 + Ta8Vbc — NapYer =0

@ Spin curvature tensor: Cap = % RabcayY®



Quantised Dirac fields on CST

Section spaces and Dirac conjugation

@ Spaces of smooth sections (with compact support): C>(M,C*),
C>°(M,C*), Cs°(M,C*), C§°(M,C*)

@ Global pairing of C§°(M,C*) and C*°(M,C*) or C>*(M,C*) and
C5°(M,C*)
w'o) = [ dix/Tel v (et
]

@ Dirac conjugation
FoC™®(M,C*) — (M, C*), ¥'(x) =¢(x)"8
Foc®(M,C™) — ¢ (M,C*), ¥T(x) = 8y (x)*



Quantised Dirac fields on CST

The Dirac equations

Feynman slash notation y = v,

Dirac operators

DY) . (M, C") — C>*(M,C*), DV :C>®(M,C*")— C®(M,C*),
D=-Y+m, D'iV—i—m

Dirac equations for ¢ € C>°(M,C*), ¢’ € C*°(M,C*)
Dy=0, Dy =0 (1)

@ Solutions of (1) solve the spinorial Klein-Gordon equation [Lichnerowicz]

Py =0, P=-D'D=-DD' =V,V°— g —m’.



Quantised Dirac fields on CST

Algebraic Quantum Field Theory |

@ No preferred states in QFT on CST — algebraic approach makes it
possible to formulate QFT without having recourse to a particular state
or Hilbert space

@ One seeks to define a net of *-algebras {A(O)}ocm with

@ A(O) represents the physical observables localised in O,
Q 0OCO = AO) C AO),
Q [A(0), A(O")] =0if O and O’ are spacelike separated,

Q .



Quantised Dirac fields on CST

Algebraic Quantum Field Theory Il

@ Given a "-algebra A, a state w is a positive, normalised, linear functional
on A, i.e.,
w:A—C,

W(A"A) > 0VAE A, w(l)=1.

@ The relation to the Hilbert space formalism is provided by the
GNS-representation, s.t. w is represented as a "vacuum” vector and
elements of A as linear operators.

@ Conversely, any normalised Hilbert space vector constitutes a state on the
algebra of linear operators with the *-operation given by the Hermitian
adjoint.



Quantised Dirac fields on CST

The causal propagator of D

@ To quantise, we need (anti)commutation relations, usually given by the
causal propagator (commutator function) of the field theory.

@ Unique fundamental solutions of D [Dimock]
Q@ 5 :CG°(M,C*) — C*(M,C*) DS* = S*D = idceo(um,c)
@ supp (STF) C JE(supp f) VF € C°(M,C*)

© Causal propagator S = St — S~



Quantised Dirac fields on CST

The algebra of Dirac fields

@ Borchers-Uhlmann algebra of Dirac fields: F(M) is generated by the unit
1 and finite sums of products of symbols (), ¥'(g) with
f e G°(M,C*™), g € Gg°(M,C") such that

Q 71— (f) and g — ¢T(g) are C-linear,
Q v(f) = y'(Fh),
@ Duy(f)=(D'f)=0and D'y(g) = ¢T(Dg) =0,

Q {¥(g),v(f)} = —i(g S(f)) 1 and all other anticommutators
vanish.

@ Analogously, one can define F(O) for O C M starting from C§°(O,C*)
and C§°(O,C*).



Quantised Dirac fields on CST

The algebra of observables

@ Let supp f and supp g as well as supp i U supp g1 and supp f U supp
&> be spacelike separated:

{(g), v ()} =—i(gS(f))1=0, but, eg.,
[ (R)v(&r), v (B)(g)] = =0.

@ Possible algebras of observables

A(O) = even subalgebra of F(O)

@ But A(O) is both "too large” and "too small”, one needs to include
Wick polynomials and restrict to " gauge-invariant” elements.



Quantised Dirac fields on CST

Locality and general covariance

@ Locally covariant QFT [..., Dimock, Kay, Hollands & Wald, Verch,
Brunetti & Fredenhagen & Verch, Fewster, Sanders, ...]

@ The Dirac field 4 (") is locally covariant [Sanders]. Essentially, let
X : (M, g1) = (M2, g2)
be a map which
@ corresponds to an isometric embedding of (Mi, g1) into (M2, g2),

@ preserves space and time orientation as well as causal relations,

© and respects the spin structure,

then 3 an injective *-homomorphism a,, : F(M:) — F(M>) s.t. ¢ can be
understood as a collection of maps

Ym : GO (M, C*) — F(M), oy 0 thu, = 1hum, © X



Hadamard states

The microlocal spectrum and Hadamard states



Hadamard states

Quasifree states

@ Quasifree, gauge-invariant state w on F(M)

w (w180l (Bale) - v(en)

= Smn Z H sign(mm)w (wT(fiﬁ/’(gmn(i)))

TmESm i=1..m

@ Motivation: The Hilbert space obtained by a GNS construction out of a
quasifree state is unitarily equivalent to a Fock space.

° wh(f,g) =w (W(g)W'(f) w (f,8)=w ([ ()

@ Positivity implies: w™(f,fT) >0, w™(f,f7) >0



Hadamard states

Preferred states

@ Minkowski: isometry group (Poincaré group) & spectrum condition =
unique vacuum state

@ generic CST: trivial isometry group & microlocal spectrum condition
(#SC) = Hadamard states

@ Properties of Hadamard states:

@ same UV behaviour as the Minkowski vacuum [Radzikowski, Kéhler,
Kratzert, Hollands, Sahlmann & Verch]

o .

© well-suited for normal ordering, e.g., a definition of w(: T, (x):)
[Wald]



Hadamard states

Why does normal ordering work in Minkowski? |

@ For real scalar fields: : ¢%(x):= Xllny {o(x)o(y) — w(P(x)d(¥))}

0 = w(:¢’(x)::0%(y):) = 2w(g(x)o(y))?

@ = wa(x,y) = w(e(x)p(y)) is singular, but regular enough to have a
well-defined square!

@ This follows from the spectrum condition:

wax,y) = %eii()?fy)fiwz(xofyo) _ /d4k O(ko)o* (K2 — m?)e*0x—)
P

= /d4k 5t (k)e =) with supps® c v*



Hadamard states

Why does normal ordering work in Minkowski? Il

@ We can define

wi(x,y) = /d4k (6% % 61)(k)e ),

@ Well defined on f, g € C5°(M,R):
WA(F.g) = / d'k (5" %57 (K)F(K)E(K)

_ / d'k / d*q 6" (k — )57 (q)F (k)& (k)

@ The integral converges since there are no large (w.r.t. Euclidean norm) k,
q € suppd™ with k + g = 0.

@ We need a way to say if two distributions can be multiplied on CST!



Hadamard states

The wave front set |

@ Define the wave front set (" the microlocal spectrum”) WF(u) C R" x R”
of u e G°(R",R) as follows [Hormander]

@ for every x € R" where u is singular, choose a test function
f € G°(R",R) with f(x) # 0.

@ (x, k) € WF(u) iff fu(k) is not rapidely decreasing in the direction
of k # 0 for some f.

@ This definition is local and covariant under coordinate transformations. It
thus generalises to CST (in contrast to the Fourier transform)!

@ For ue G°(M,R), WF(u) € T*M\ {0}. For vector-valued
distributions, take the component-wise union.



Hadamard states

The wave front set Il

@ The pointwise product of two distributions u, v is well-defined if there are
no (x, k) € WF(u), (x,q) € WF(v) with k+ g =0.

° WF(("JQ(XMV)) = {(X7y7 kX7kY) | ke = _kyv kX||(X_y)7 k)% = 07 (kX)O > 0}
U{(x,x, k,—k) | k* =0, ko > 0}

= w3 is well-defined!

@ WF(6"(x)) ={0} x R"\ {0}

= (8™)? is not (necessarily) well-defined!



Hadamard states

The Hadamard condition

@ Hadamard states have to be specified by constraining the singularity
structure of w®(x,y). There are two ways to do this.

® Recall w'(x,y)=w (@()¥'(x)), w (xy)=w @ (x)¥())
@ A state w on F(M) fulfils the Hadamard condition iff

WF(w®) = {(x kv, —k) € (T"M) {0}, | (x, k) ~ (v k), ke £ 0}
@ — We can define normal ordering by subtracting the two point functions

of Hadamard states, since (w¥)? and w(y, x)w™ (x,y) are well-defined
distributions!



Hadamard states

The Hadamard form

@ The Hadamard condition is very powerful, but for calculation a more
explicit criterion for Hadamard states is needed.

@ The half squared geodesic distance o(x, y)

@ w¥(x,y) are said to be of Hadamard form iff 3 smooth U, V and W (the
Hadamard coefficients), s.t.

0y = 255 D (HE (x,y) + W(x.y)
HE o) = 28 vixoin (Z520) . Vi) = 3 ileo)o”

@ w fulfils the Hadamard condition iff w® are of Hadamard form. [Kratzert,
Hollands, Sahlmann & Verch]



Hadamard states

Hadamard normal ordering

@ But this is not local and covariant (because states are not)!

Possible: definition of : - : by subtraction of some Hadamard state

@ — Subtract only (appropriate derivatives of) the Hadamard singularity.

Ambiguities:

@ geometric ambiguities of : - : (scale \)

@ state ambiguities of w(: - :) as no preferred state exists

@ All Wickpolynomials (e.g. : Ty, :) have finite fluctuations due to the
Hadamard wave front set.



Hadamard states

Determining the Hadamard coefficients

@ Diw* =Dw*=0 = D.D)H, P,H smooth (H denotes either H™
or H)

@ We have also been able to show that (D; — D,)H and P<H are smooth
(but non-vanishing).

@ These data yield recursive differential equations for U, V and W.

@ Starting with lim U(x,y) = s, one can show that U and V depend only
x—y

on the local curvature and m, while W depends on the state w.



Hadamard states

Coinciding point limits of H

@ For the calculation of the stress energy tensor we will need coinciding
point limits of (derivatives) of the Hadamard distribution H.

@ Notation: [B(x,y)] = lim B(x, y), primed indices denote vector indices
x—y

at y, Tr denotes taking the trace over spinor indices, we switch from the
frame basis to a coordinate basis.

@ Several months of calculations ([0agyscon] = — & Rapysicor + 779 terms)
yield:

[PxH] = 6[V1]
Vi) = <m4 mR R OR _RuwRM™ RWMRWPT) oy G €

s T a8 T1152 280 720 720 48

. and many more



The stress-energy tensor

The expected stress-energy tensor



The stress-energy tensor

The classical stress-energy tensor

@ Action functional of Dirac fields

il = [ a'xTaltew) = [ d'x/Tel 30! (0u)+ 5 (D) o]
y A

@ Cassical stress-energy tensor of Dirac fields
1 65 1

T = ——22 =2
Vgl 08w 2

1
(1/1T7(u1/1;u) - IZ)T(H%W) - EL(w)g#V

@ Dirac equations =

VAT =0 g"Tuw=-myly



The stress-energy tensor

Definition of w(: Ty (x):)

@ One could enlarge A(M) to include Wick polynomials, but here we
employ a direct definition of w(: T (x):).

@ Point-splitting along a geodesic
. 1 Tt v t
T (3, ¥) = 5 (61009085 ¥ () = 67 ()70 (1))
@ Subtraction of the singularity, coninciding point limit
W Tun(x):) = Tr [T (6 9)) = T2 (%, )]
, o [ _ 1 1
= Tr {D;w (w (x,y)+ @D;H)} = Wﬂ [Du W(x, y)]

@ Canonical but unsatisfactory choice of Dﬁl,, D..

1 ’
DR = 2o (g:) v, — vy)) DEr = — DO D,



The stress-energy tensor

Wald's axioms |

@ (Al) Given wy and wy, such that wy (x,y) — w, (x,y) is smooth,

w1 T (3)?) = wal: Tun():) = Tr [ DR (wr —wy )]

@ (A2) w(: Tuv(x):) is locally covariant: Let
X : (M, g1) — (M2, g2),

Qi ! A(Ml) — .A(Mg)

as before. If two states w; and w> on A(Mi) and A(M.) are related by
W1 = W2 0 @y, then

w2 (i Thara (02) 1) = X (@1 Ty (x1)2)) -



The stress-energy tensor

Wald's axioms |l

® (A3) VHw(: Tuv(x):) =0

@ (A4) On Minkowski spacetime and in the Minkowski vacuum state,
wmink(: Tuw(x):) = 0. (drop this for cosmological applications)

@ (A5) w(: Tuw(x):) does not contain derivatives of the metric of order
higher than two.



The stress-energy tensor

Uniqueness of Wald's w(: T, (x):)

@ Any w(: T (x):) fulfilling the five axioms is unique up to a conserved

local curvature term (A(4): that vanishes in locally flat regions of M).
[Wald]

@ Requiring appropriate scaling and analyticity in m [Hollands & Wald]: the
only sensible choices are m*g,,,, (if we drop A(4)), m*G,.., and

.16 )
o = —— Rdjig
Vel 98w )

= guv <1R2 - 2IZIR) + 2R, — 2RRy,

2
1 )

Vel 98w )

1 , .
- Eguy(R;u/RH — DR) + R?HV — DRHV — 2Rp7RpM e

Juw =

Ror R dpg



The stress-energy tensor

Which D,,,?

@ Dj H does not satisfy the Dirac equations, thus D;%’ yields neither a
conserved nor a traceless w(: T, (x):).

@ Possible solution (scalar case: [Moretti]): Add multiples of L(¢)) to T..

@ This amounts to the choice
c . can C
D[LIJ = Duu - Egﬂu (D)/< + D}/) D}//

@ It turns out that one can not assure both conservation and vanishing
trace in the conformally invariant case!



The stress-energy tensor

The winner is ¢ = —

@ If we take c = — %, the resulting w(: T, (x):) fulfils the first four of
Wald's axioms (for a suitable choice of \)!

@ Furthermore, it exhibits the following trace (anomaly)

g"w(: Tuw(x):)

1/ 1 1 7
=-= (—R + Loro LR, Rm RW,,TR*“’PT)

™ 1152 480 720 5760
1 /mt m?R
- ﬁ (? + 48 ) + mTr [D W(X y)}

1 7 1,
i (Lo 11 (R - 1) - o0

1 m* m?R
- <?+ 8 >+mTr[D W(x,y)].



The stress-energy tensor

Sketch of the proof

@ Leaving c unspecified, one computes
8m°V*w(: Ty (x):) = (1 + 6¢) Tr[Vi(x, ¥)].
and  8m°g" w(: Tuw(x):) = 6(4c + 1) Tr[Va(x, y)] + mTr [D,W ™ (x,y)] -
This gives (A3) and the trace.

@ (A1) holds for Hadamard states w, since adding multiples of L(¢)) to T,.
amounts to adding multiples of Tr[V4] to w(: Tuu(x):).

@ (A2) holds since w(: T (x):) is constructed entirely out of w™ and H;
these are preserved by .



The stress-energy tensor

Comments

@ Scalar fields: Similar results are available. [Moretti]

@ Dirac fields: Trace anomaly has already been computed, though based on
a non-rigorous " heat-kernel-expansion” . [Christensen & Duff]

@ A — X = w(:Tuw(x):) changes by multiples of

4 2

_1
Tr[Dw V] = %guv -

1
6 Guv + 60 (hu = 3J)

6

@ Assuring (A5) therefore seems impossible for m = 0, but is possible for
the trace.

@ Different point of view: Defining both : T, (x): and : V¥ T, (x) : as
locally covariant quantum fields and using the renormalisation freedom
(via further requirements) to assure : V# T, (x) : = 0. [Hollands & Wald]



Cosmological solutions

Stable cosmological solutions of G, (x) = 87 Gw(: T, (x):)



Conclusions

Conclusions & outlook



Conclusions

Conclusions & Outlook

@ We have been able to define an (almost) sensible sourceterm for the
semiclassical Einstein equation.

@ In Robertson-Walker spacetimes one can [Dappiaggi, Fredenhagen,
Pinamonti]

@ re-express Guu(x) = 87 Gw(: T,uu(x):) as an equation for the traces

@ and obtain solutions, stable at late times, which offer a potential
description of "dark energy”.

© How do these solutions look like for interacting fields?

@ Maybe one can fulfil (A5) in the general case for special states?



Conclusions

Thank you for your attention!
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