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Motivation
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Quantum fields on curved spacetimes

Quantum Field Theory on Curved Spacetimes (QFT on CST):
approximate solution to the problem of formulating a quantum theory of
both gravity and matter

Matter: quantum fields

Spacetime: arbitrary but fixed classical curved background,
non-dynamical in particular
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Curved spacetimes from quantum fields

Back-reaction of the quantum field on the (curvature of) spacetime

Gµν(x) = 8πGω(:Tµν(x) :)

This can be formally derived by expanding around a vacuum solution,
keeping ”one-loop” (~1) terms of the quantum matter and ”tree” (~0)
terms of the quantum metric ...

... and can thus only make sense for special states or as a model
equation.

It also seems necessary to quantise matter ”on all spacetimes at once”.
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In this talk I

How can one sensibly define a r.h.s. for Gµν(x) = 8πGω(:Tµν(x) :)?

We will see that in the case of Dirac spinor fields

1 a modified version of the classical stress-energy tensor,

2 regularised by point-splitting and subtraction of the Hadamard
singularity

3 and evaluated on Hadamard states gives a satisfactory result.
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In this talk II

How do the solutions of Gµν(x) = 8πGω(:Tµν(x) :) look like?

We will see that

1 normal ordering in CST is ambiguous. (There is no cosmological
constant problem!)

2 The regularisation freedom can be exploited to obtain solutions
which are stable and de Sitter at late times.

3 All types of (free) quantum matter display the same behaviour.

4 Quantum effects are strong! The picture of strong classical effects
and small quantum perturbations seems incomplete.
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Outline of the talk

1 The quantisation of free Dirac fields on curved spacetimes

2 The microlocal spectrum and Hadamard states

3 The expected stress-energy tensor

4 Stable cosmological solutions of Gµν(x) = 8πGω(:Tµν(x) :)

5 Conclusions & outlook
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The quantisation of free Dirac fields on curved spacetimes
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The classical Dirac field on curved spacetimes I

Spacetime: (M, g) is a fourdimensional, globally hyperbolic, oriented and
time oriented, smooth manifold M with Lorentzian metric g of signature
(−,+,+,+).

γ-matrices: {γa}a=0..3 ⊂ M(4,C) constitute a complex irreducible
representation of Cl(3, 1), i.e.,

{γa, γb}
.
= γaγb + γbγa = 2ηabI4.

We choose (i times the) Dirac representation and set β = −iγ0.

There exist global vector frames ea which can be lifted to global spinor
frames EA → ψ : M → C4.
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The classical Dirac field on curved spacetimes II

Define a covariant derivative on spinors by lifting the Levi-Civita
connection.

Spin connection coefficients: σb = 1
4
Γa

bcγaγ
c

Covariant derivative on spinor-tensors, e.g.,

∇aγ
A
bB

.
= γA

bB;a = ∂aγ
A
bB − σA

aCγ
C
bB + σC

aBγ
A
bC − Γc

abγ
A
cB = 0

Spin curvature tensor: Cab = 1
4
Rabcdγ

cγd
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Section spaces and Dirac conjugation

Spaces of smooth sections (with compact support): C∞(M,C4),
C∞(M,C4∗), C∞0 (M,C4), C∞0 (M,C4∗)

Global pairing of C∞0 (M,C4) and C∞(M,C4∗) or C∞(M,C4) and
C∞0 (M,C4∗)

〈ψ′ψ〉 .=
Z
M

d4x
p
|g |ψ′(x)ψ(x)

Dirac conjugation

† : C∞(M,C4) → C∞(M,C4∗), ψ†(x)
.
= ψ(x)∗β

† : C∞(M,C4∗) → C∞(M,C4), ψ
′†(x)

.
= βψ

′
(x)∗
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The Dirac equations

Feynman slash notation 6v .
= v aγa

Dirac operators

D(′) : C∞(M,C4) → C∞(M,C4), D(′) : C∞(M,C4∗) → C∞(M,C4∗),

D
.
= −6∇+ m, D ′ .= 6∇+ m

Dirac equations for ψ ∈ C∞(M,C4), ψ′ ∈ C∞(M,C4∗)

Dψ = 0, D ′ψ′ = 0 (1)

Solutions of (1) solve the spinorial Klein-Gordon equation [Lichnerowicz]

Pψ(′) = 0, P
.
= −D ′D = −DD ′ = ∇a∇a − R

4
−m2.

Thomas Hack Backreaction of Dirac fields on curved backgrounds



Motivation Quantised Dirac fields on CST Hadamard states The stress-energy tensor Cosmological solutions Conclusions

Algebraic Quantum Field Theory I

No preferred states in QFT on CST → algebraic approach makes it
possible to formulate QFT without having recourse to a particular state
or Hilbert space

One seeks to define a net of ∗-algebras {A(O)}O⊂M with

1 A(O) represents the physical observables localised in O,

2 O ⊂ O′ ⇒ A(O) ⊂ A(O′),

3 [A(O),A(O′)] = 0 if O and O′ are spacelike separated,

4 ...
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Algebraic Quantum Field Theory II

Given a ∗-algebra A, a state ω is a positive, normalised, linear functional
on A, i.e.,

ω : A → C,
ω(A∗A) ≥ 0 ∀A ∈ A, ω(1) = 1.

The relation to the Hilbert space formalism is provided by the
GNS-representation, s.t. ω is represented as a ”vacuum” vector and
elements of A as linear operators.

Conversely, any normalised Hilbert space vector constitutes a state on the
algebra of linear operators with the ∗-operation given by the Hermitian
adjoint.
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The causal propagator of D

To quantise, we need (anti)commutation relations, usually given by the
causal propagator (commutator function) of the field theory.

Unique fundamental solutions of D [Dimock]

1 S± : C∞0 (M,C4) → C∞(M,C4) DS± = S±D = idC∞0 (M,C4)

2 supp (S±f ) ⊂ J±(supp f ) ∀f ∈ C∞0 (M,C4)

3 Causal propagator S
.
= S+ − S−
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The algebra of Dirac fields

Borchers-Uhlmann algebra of Dirac fields: F(M) is generated by the unit

1 and finite sums of products of symbols ψ(f ), ψ†(g) with

f ∈ C∞0 (M,C4∗), g ∈ C∞0 (M,C4) such that

1 f 7→ ψ(f ) and g 7→ ψ†(g) are C-linear,

2 ψ(f )∗ = ψ†(f †),

3 Dψ(f )
.
= ψ(D ′f ) = 0 and D ′ψ†(g)

.
= ψ†(Dg) = 0,

4 {ψ(g), ψ†(f )} = −i 〈g S(f )〉 1 and all other anticommutators
vanish.

Analogously, one can define F(O) for O ⊂ M starting from C∞0 (O,C4)
and C∞0 (O,C4∗).
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The algebra of observables

Let supp f and supp g as well as supp f1 ∪ supp g1 and supp f2 ∪ supp
g2 be spacelike separated:

{ψ(g), ψ†(f )} = −i 〈g S(f )〉 1 = 0, but, e.g.,

[ψ†(f1)ψ(g1), ψ
†(f2)ψ(g2)] = · · · = 0.

Possible algebras of observables

A(O)
.
= even subalgebra of F(O)

But A(O) is both ”too large” and ”too small”, one needs to include
Wick polynomials and restrict to ”gauge-invariant” elements.
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Locality and general covariance

Locally covariant QFT [..., Dimock, Kay, Hollands & Wald, Verch,
Brunetti & Fredenhagen & Verch, Fewster, Sanders, ...]

The Dirac field ψ (ψ†) is locally covariant [Sanders]. Essentially, let

χ : (M1, g1) → (M2, g2)

be a map which

1 corresponds to an isometric embedding of (M1, g1) into (M2, g2),

2 preserves space and time orientation as well as causal relations,

3 and respects the spin structure,

then ∃ an injective ∗-homomorphism αχ : F(M1) → F(M2) s.t. ψ can be
understood as a collection of maps

ψM : C∞0 (M,C4∗) → F(M), αχ ◦ ψM1 = ψM2 ◦ χ∗.
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The microlocal spectrum and Hadamard states
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Quasifree states

Quasifree, gauge-invariant state ω on F(M)

ω
“
ψ†(f1) · · ·ψ†(fm)ψ(g1) · · ·ψ(gn)

”
= δmn

X
πm∈Sm

Y
i=1..m

sign(πm)ω
“
ψ†(fi )ψ(gπm(i))

”

Motivation: The Hilbert space obtained by a GNS construction out of a
quasifree state is unitarily equivalent to a Fock space.

ω+(f , g)
.
= ω

`
ψ(g)ψ†(f )

´
ω−(f , g)

.
= ω

`
ψ†(f )ψ(g)

´
Positivity implies: ω+(f , f †) ≥ 0, ω−(f , f †) ≥ 0
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Preferred states

Minkowski: isometry group (Poincaré group) & spectrum condition ⇒
unique vacuum state

generic CST: trivial isometry group & microlocal spectrum condition
(µSC) ⇒ Hadamard states

¯

Properties of Hadamard states:

1 same UV behaviour as the Minkowski vacuum [Radzikowski, Köhler,
Kratzert, Hollands, Sahlmann & Verch]

2 ...

3 well-suited for normal ordering, e.g., a definition of ω(:Tµν(x) :)
[Wald]
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Why does normal ordering work in Minkowski? I

For real scalar fields: :φ2(x) :
.
= lim

x→y
{φ(x)φ(y)− ω(φ(x)φ(y))}

⇒ ω(:φ2(x) : :φ2(y) :) = 2ω(φ(x)φ(y))2

⇒ ω2(x , y)
.
= ω(φ(x)φ(y)) is singular, but regular enough to have a

well-defined square!

This follows from the spectrum condition:

ω2(x , y) =

Z
d~k

2ω~k

e i~k(~x−~y)−iω~k
(xo−yo ) =

Z
d4k Θ(k0)δ

4(k2 −m2)e−ik(x−y)

=

Z
d4k δ+(k)e−ik(x−y) with suppδ+ ⊂ V +
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Why does normal ordering work in Minkowski? II

We can define

ω2
2(x , y) =

Z
d4k (δ+ ? δ+)(k)e−ik(x−y).

Well defined on f , g ∈ C∞0 (M,R):

ω2
2(f , g) =

Z
d4k (δ+ ? δ+)(k)f̂ (k)ĝ(k)

=

Z
d4k

Z
d4q δ+(k − q)δ+(q)f̂ (k)ĝ(k)

The integral converges since there are no large (w.r.t. Euclidean norm) k,
q ∈ suppδ+ with k + q = 0.

We need a way to say if two distributions can be multiplied on CST!
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The wave front set I

Define the wave front set (”the microlocal spectrum”) WF (u) ⊂ Rn × Rn

of u ∈ C∞0 (Rn,R)′ as follows [Hörmander]

1 for every x ∈ Rn where u is singular, choose a test function
f ∈ C∞0 (Rn,R) with f (x) 6= 0.

2 (x , k) ∈ WF (u) iff bfu(k) is not rapidely decreasing in the direction
of k 6= 0 for some f .

This definition is local and covariant under coordinate transformations. It
thus generalises to CST (in contrast to the Fourier transform)!

For u ∈ C∞0 (M,R), WF (u) ∈ T ∗M \ {0}. For vector-valued
distributions, take the component-wise union.
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The wave front set II

The pointwise product of two distributions u, v is well-defined if there are
no (x , k) ∈ WF (u), (x , q) ∈ WF (v) with k + q = 0.

WF (ω2(x , y)) = {(x , y , kx , ky ) | kx = −ky , kx ||(x − y), k2
x = 0, (kx)0 > 0}

∪ {(x , x , k,−k) | k2 = 0, k0 > 0}

⇒ ω2
2 is well-defined!

WF (δn(x)) = {0} × Rn \ {0}

⇒ (δn)2 is not (necessarily) well-defined!
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The Hadamard condition

Hadamard states have to be specified by constraining the singularity
structure of ω±(x , y). There are two ways to do this.

Recall ω+(x , y) = ω
`
ψ(y)ψ†(x)

´
, ω−(x , y) = ω

`
ψ†(x)ψ(y)

´
A state ω on F(M) fulfils the Hadamard condition iff

WF (ω±) =
n

(x , kx , y ,−ky ) ∈ (T ∗M)
�2 \ {0}, | (x , kx) ∼ (y , ky ), kx

/
. 0

o

→ We can define normal ordering by subtracting the two point functions
of Hadamard states, since (ω±)2 and ω+(y , x)ω−(x , y) are well-defined
distributions!
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The Hadamard form

The Hadamard condition is very powerful, but for calculation a more
explicit criterion for Hadamard states is needed.

The half squared geodesic distance σ(x , y)

ω±(x , y) are said to be of Hadamard form iff ∃ smooth U, V and W (the
Hadamard coefficients), s.t.

ω±(x , y) = ± 1

8π2
D ′

y

`
H±(x , y) + W (x , y)

´
,

H±(x , y)
.
=

U(x , y)

σ(x , y)
+ V (x , y) ln

„
σ(x , y)

λ2

«
, V (x , y) =

X
n

Vn(x , y)σn

ω fulfils the Hadamard condition iff ω± are of Hadamard form. [Kratzert,
Hollands, Sahlmann & Verch]
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Hadamard normal ordering

Possible: definition of : · : by subtraction of some Hadamard state

But this is not local and covariant (because states are not)!

→ Subtract only (appropriate derivatives of) the Hadamard singularity.

Ambiguities:

1 geometric ambiguities of : · : (scale λ)

2 state ambiguities of ω(: · :) as no preferred state exists

All Wickpolynomials (e.g. :Tµν :) have finite fluctuations due to the
Hadamard wave front set.
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Determining the Hadamard coefficients

D ′
xω
± = Dyω

± = 0 ⇒ D ′
xD

′
yH, PyH smooth (H denotes either H+

or H−)

We have also been able to show that (D ′
x − Dy )H and PxH are smooth

(but non-vanishing).

These data yield recursive differential equations for U, V and W .

Starting with lim
x→y

U(x , y) = I4, one can show that U and V depend only

on the local curvature and m, while W depends on the state ω.
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Coinciding point limits of H

For the calculation of the stress energy tensor we will need coinciding
point limits of (derivatives) of the Hadamard distribution H.

Notation: [B(x , y)]
.
= lim

x→y
B(x , y), primed indices denote vector indices

at y , Tr denotes taking the trace over spinor indices, we switch from the
frame basis to a coordinate basis.

Several months of calculations ([σαβγδεφλ] = − 1
6
Rαβγδ;εφλ + 779 terms)

yield:

[PxH] = 6[V1]

[V1] =

„
m4

8
+

m2R

48
+

R2

1152
−

�R

480
−

RµνRµν

720
+

RµνρτRµνρτ

720

«
I4 +

CµνCµν

48

... and many more
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The expected stress-energy tensor
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The classical stress-energy tensor

Action functional of Dirac fields

S [ψ] =

Z
M

d4x
p
|g |L(ψ) =

Z
M4

d4x
p
|g |

»
1

2
ψ† (Dψ) +

1

2

“
D ′ψ†

”
ψ

–

Cassical stress-energy tensor of Dirac fields

Tµν
.
=

1p
|g |

δS

δgµν
=

1

2

“
ψ†γ(µψ;ν) − ψ†;(µγν)ψ

”
− 1

2
L(ψ)gµν

Dirac equations ⇒

∇µTµν = 0 gµνTµν = −mψ†ψ
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Definition of ω(:Tµν(x) :)

One could enlarge A(M) to include Wick polynomials, but here we
employ a direct definition of ω(:Tµν(x) :).

Point-splitting along a geodesic

Tµν(x , y)
.
=

1

2

“
ψ†(x)γ(µgν′

ν)ψ(y);ν′ − ψ†(x);(µγν)ψ(y)
”

Subtraction of the singularity, coninciding point limit

ω(:Tµν(x) :)
.
= Tr

h
ω(Tµν(x , y))− T sing

µν (x , y)
i

.
= Tr

»
D0

µν

„
ω−(x , y) +

1

8π2
D ′

yH

«–
.
=

1

8π2
Tr [DµνW (x , y)]

Canonical but unsatisfactory choice of D0
µν , Dµν

D0,can
µν

.
=

1

2
γ(µ

“
gν′

ν)∇ν′ −∇ν)

”
Dcan

µν
.
= −D0,can

µν D ′
y
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Wald’s axioms I

(A1) Given ω1 and ω2, such that ω−1 (x , y)− ω−2 (x , y) is smooth,

ω1(:Tµν(x) :)− ω2(:Tµν(x) :) = Tr
h
D0,can

µν

`
ω−1 − ω−2

´i
.

(A2) ω(:Tµν(x) :) is locally covariant: Let

χ : (M1, g1) 7→ (M2, g2),

αχ : A(M1) → A(M2)

as before. If two states ω1 and ω2 on A(M1) and A(M2) are related by
ω1 = ω2 ◦ αχ, then

ω2(:Tµ2ν2(x2) :) = χ∗ (ω1(:Tµ1ν1(x1) :)) .
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Wald’s axioms II

(A3) ∇µω(:Tµν(x) :) = 0

(A4) On Minkowski spacetime and in the Minkowski vacuum state,
ωMink(:Tµν(x) :) = 0. (drop this for cosmological applications)

(A5) ω(:Tµν(x) :) does not contain derivatives of the metric of order
higher than two.
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Uniqueness of Wald’s ω(:Tµν(x) :)

Any ω(:Tµν(x) :) fulfilling the five axioms is unique up to a conserved
local curvature term (A(4): that vanishes in locally flat regions of M).
[Wald]

Requiring appropriate scaling and analyticity in m [Hollands & Wald]: the
only sensible choices are m4gµν (if we drop A(4)), m2Gµν , and

Iµν
.
=

1p
|g |

δ

δgµν

Z
M

R2dµg

= gµν

„
1

2
R2 − 2�R

«
+ 2R;µν − 2RRµν

Jµν
.
=

1p
|g |

δ

δgµν

Z
M

RρτRρτdµg

=
1

2
gµν(RµνRµν −�R) + R;µν −�Rµν − 2RρτRρ τ

µ ν .
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Which Dµν?

D ′
yH does not satisfy the Dirac equations, thus Dcan

µν yields neither a
conserved nor a traceless ω(:Tµν(x) :).

Possible solution (scalar case: [Moretti]): Add multiples of L(ψ) to Tµν .

This amounts to the choice

Dc
µν

.
= Dcan

µν −
c

2
gµν

`
D ′

x + Dy

´
D ′

y .

It turns out that one can not assure both conservation and vanishing
trace in the conformally invariant case!
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The winner is c = −1
6 .

If we take c = − 1
6
, the resulting ω(:Tµν(x) :) fulfils the first four of

Wald’s axioms (for a suitable choice of λ)!

Furthermore, it exhibits the following trace (anomaly)

gµνω(:Tµν(x) :)

= −
1

π2

„
1

1152
R2 +

1

480
�R −

1

720
RµνRµν −

7

5760
RµνρτRµνρτ

«
−

1

π2

„
m4

8
+

m2R

48

«
+ mTr

ˆ
D′yW (x , y)

˜
=

1

2880π2

„
7

2
CµνρτCµνρτ + 11

„
RµνRµν −

1

3
R2

«
− 6�R

«
−

1

π2

„
m4

8
+

m2R

48

«
+ mTr

ˆ
D′yW (x , y)

˜
.
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Sketch of the proof

Leaving c unspecified, one computes

8π2∇µω(:Tµν(x) :) = (1 + 6c)Tr [V1(x , y)];ν

and 8π2gµνω(:Tµν(x) :) = 6(4c + 1)Tr [V1(x , y)] + mTr
ˆ
D ′

yW
−(x , y)

˜
.

This gives (A3) and the trace.

(A1) holds for Hadamard states ω, since adding multiples of L(ψ) to Tµν

amounts to adding multiples of Tr [V1] to ω(:Tµν(x) :).

(A2) holds since ω(:Tµν(x) :) is constructed entirely out of ω− and H;
these are preserved by χ.
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Comments

Scalar fields: Similar results are available. [Moretti]

Dirac fields: Trace anomaly has already been computed, though based on
a non-rigorous ”heat-kernel-expansion”. [Christensen & Duff]

λ→ λ′ ⇒ ω(:Tµν(x) :) changes by multiples of

Tr [D
− 1

6
µν V ] =

m4

2
gµν −

m2

6
Gµν +

1

60
(Iµν − 3Jµν)

Assuring (A5) therefore seems impossible for m = 0, but is possible for
the trace.

Different point of view: Defining both :Tµν(x) : and : ∇µTµν(x) : as
locally covariant quantum fields and using the renormalisation freedom
(via further requirements) to assure : ∇µTµν(x) : ≡ 0. [Hollands & Wald]
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Stable cosmological solutions of Gµν(x) = 8πGω(:Tµν(x) :)
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Conclusions & outlook
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Conclusions & Outlook

We have been able to define an (almost) sensible sourceterm for the
semiclassical Einstein equation.

In Robertson-Walker spacetimes one can [Dappiaggi, Fredenhagen,

Pinamonti]

1 re-express Gµν(x) = 8πGω(:Tµν(x) :) as an equation for the traces

2 and obtain solutions, stable at late times, which offer a potential
description of ”dark energy”.

3 How do these solutions look like for interacting fields?

Maybe one can fulfil (A5) in the general case for special states?
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Thank you for your attention!
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