Semiclassical Einstein equations: a bridge between
quantum field theory and cosmology

Nicola Pinamonti

Il Institut fiir Theoretische Physik
Universitat Hamburg

Gottingen, 30 June 2009



Plan of the talk

@ Motivations
@ Regularization and Backreaction
e Semiclassical Einstein equation

e Simple solutions

o Existence of states with good UV properties
e Special geometry under investigation

o Interplay between different field theories (bulk, boundaries)
o Pullback of some states

e Their microlocal spectral properties
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Motivations

Models of the Universe: Geometry

In first approximation: homogeneous and isotropic.

The universe is modelled by a spacetime M = (/ x S, g)

e [ is the interval of the “cosmological time”
e S is a 3d manifold: the “space”, it has an high symmetry.

The metric g is of Friedmann Robertson Walker type

dr?

g = —dt? + a%(t) 12 + r?dS?(6,¢)| .

Knowing a(t) is like knowing the “story” of the universe.
Recent observations

e K~ 0 = Conformally Flat.
o a(t) ~ AeM, H is the Hubble parameter (de Sitter Universe)
(very small but not zero).



Motivations

Models of the Universe: Matter

It takes the simple form T,? = diag(—p, P, P, P)

Like a classical fluid (apart the equation of state).

Einstein's equations become FRW equations H = g

3 .
3H2 = 87p — a—’; 3H + 3H? = —4x (p + 3P)

Eventually we shall use
*R:87TT, VaTab:O

are equivalent up to an initial condition.



Motivations

Cosmological scenario: Observation

o If we use Radiation, Dust and cosmological constant to
model the present day observations:

o Radiation is less important. pg ~ a(t)™*
o We look for a mixture of py ~ a(t)~3 and pp ~ C

We have a problem

in modeling CMB and Supernovae red-shift observation:

Total Energy density is:
~ 74% Cosmological constant, ~ 26% Dust.

Known matter: only ~ 4%.

What is the role of quantum physics 7



Motivations

Towards quantum gravity?

@ We would like to have a quantum theory of gravity and matter
No satisfactory description.

@ But we can understand how that theory should look like
analyzing some particular regimes [Hawking].

e Quantum Fields on fixed curved spacetimes
(Hawking Radiation, Particle Creation)
good for the description of the metric fluctuations.
e Backreaction in a semiclassical fashion

Gab = 87T< Tab>-

good for the description of “evolution” in cosmological models.

@ It should work: when fluctuations of (T,p) are negligible.
@ Analogy in atomic physics: quantum mechanical electron with
external classical field.



Backreaction

Semiclassical approximation

@ In G =87 (T) we need to compute T in some class of states.

But: in QM T, tends to be singular.
: Tab(X) = ab( )_WO(Tab(X))

@ We need a renormalization prescription for T, on CST.

@ Wald axioms = meaningful semiclas approx. [Wald 77, 78]

(1.) It must agree with formal results for T,

(2.) : Tap : in Minkowski is “normal ordering”.

(3.) Conservation: V?(T,,) = 0.

(4.) Causallty (Tap) at p depends only on J~(p).

(5.) Tap depends on derivatives of the metric up to the second order (or third).

@ Generally covariant quantum field theory.
[Brunetti Fredenhagen Verch 2003] [Hollands Wald 2003]

@ The fifth, is the most problematic.



Backreaction

QFT: The scalar case

Pp=0, P=-0+E(R+m?
o Algebra of Fields: Borchers Uhlmann algebra
0 — A0 EB C5o(0)¥sm
Mod out /: the ideal containing the eq. of motion and the commutation relation
Pf=0, [f, h] = iA(f, h)
NB: we can quantize simultaneously on every globally

hyperbolic spacetime [Brunetti Frendehagen Verch 2003]
@ We extend it to more singular objects like (x — y):

0 — FO0)=PEO)s" ..

. but we have to restrict the class of states
(positive linear functionals)



Backreaction

Hadamard states and uSC

In M vacuum wy is chosen selecting positive frequency

Our choice in CST is: Quasifree states that satisfy the uSC
[Kay Wald 1991] [Radzikowski 1995] [Brunetti Fredenhagen K&hler 1996]

WF(w) = {((x ko). (7)) € (T"MP\ 0| () ~ (v, k). o 20}

It is equivalent to the Hadamard condition

U(x,y)
Ue(Xay)

w(x,y) = + V(x,y)log (UE()){\’y)> + W(x,y)

@ Physically: The fluctuations of the fields are always finite on
Hadamard states.

@ “States” that look like the vacuum in Minkowksi.



Backreaction

Quantum Anomalies of the Stress tensor for scalar field

On the regularized state
(0(x)o(y))w = w(x,y) = H(x,y).

T,p built on it has anomalies. [Wald, Hollands Wald, Moretti]
87%(0Pd)w = 6lul,  87%((Vad)(Po))w = 2V,[w]
Conservation equations for T, are satisfied quantum mechanically
Va(T)w =0

but (un)-fortunately the trace is different from the classical one.

(M= + (-3 (5-¢) 0 n?) (@




Backreaction

Remaining freedom

.. or a look in the literature (for example [Fulling]) gives (£ = 1/6)
L ijkl i R m*
2[V1]:% <C,'jk/CJ —{—RURJ—?—FDR —I—T.

In the trace OR. Wald’s fifth axiom does not hold!

@ Other reg. methods give different stress-energy tensors.

o Difference: A conserved t,; build out of the metric, m and &.
@ It must behave as (T,p) under “scale” transformations.

@ Some possibilities arises from the variation of

5
ty = (ggab/\/g (c R+ D RabR"b)

@ The trace t,° is proportional to LJR
@ We use this freedom to cancel the OR term from (T).



Backreaction

Some Remarks:

e Wald's fifth axiom partially holds for (T.,) = (Tap) — tap.

@ General principle of local covariance: When regularization
freedom is fixed in a region, is fixed in every spacetime.
[Brunetti Fredenhagen Verch 2003].

@ The remaining freedom is (¢?)/, = (¢?), + Am? + B R.
@ But we can not cancel [vi] from (T), completely.
e Similarities with f(R) gravity, but t,, alone does not guaranty

stable solutions.

With k = 0 and £ = 1/6, the equation —R = 87 (T) becomes

6 (H+2H?) = —87er2<¢2>w+g <—310 (FH2 -+ ) + T)



Solutions

Massive model

Important: The quantum states enter in the equation via (¢?)
Physical input: We would like to use “vacuum states”

Impossible: Adiabatic states, have similar properties
[Parker, Parker Fulling, Liiders Roberts, Junker Schrohe, Olbermann]

@ Minimize the particle creation rate. [Parker]

@ Minimal smeared energy in the sense of Fewster. [Olbermann]

The wy of a quasifree (vacuum like) state looks like

_ ik(a—s) Xk (1) Xk(72)
wz(Xl,XQ) C/dke 3(7'1) a(Tz)

Xk(7)" + (m*a(7)? + k*)xk(7) = 0

where 7 is the conformal time: ds? = a2 (—d72 + dx?)




Solutions

Adiabatic states

@ The two point function wy can be found in an approximated
way (WKB for xx(7)), as a sequence of wp,.

@ We expand it in powers of 1/m?

($%)(m) = Am® + BR + o( R>

m?2

° TP21e regime m? >> R is what we need. If m = 1GeV

82



Solutions

We have three parameters A, B, m.
H(H? — H2) = —H* + 2H2H> + M
where Hc(B, m) and M(A, m) are two constants

180 15
H2 = Tﬂ ~1440m° B, M= Cm' — 2405°m*A

At most two fixed stable points (de Sitter phases)

H2 = (Hfi\/Hg‘JrM).

We want to have Minkowski H_ = 0, = A = (3272)71.
Freedom in m and B to “Fine tune” H..

The full solution

H+ H, |Y/H

4t _ 2/H
Ce e H—H,




Solutions

Clearly H =0 and H = H_ are stable solutions.

H/H-

e (m=0) a length scale is introduced (proportional to G).
Two fixed points instead of one.

@ Quantum effects are hardly negligible.
[Starobinsky 80, Vilenkin 85]

@ (m#0) H; can be “fine tuned” to model the present
expansion of the universe.



Solutions

Classical or Quantum model?

o (T,”) = T,"(classic) + A,”

o A, = diag(—p,P,P,P), H := 0;loga(t) = a/a
p:EHﬂ p— S Cpp
4 3 4

e it is not a perfect fluid (due to trace anomaly):

4 H
P=—(1+-—
( T3 H2> r
it is not a simple mixture of dust, radiation and dark energy




Solutions

Form of the initial singularity

Where is the singularity tp in the Penrose diagram? \

ds? = 22 (—dT2 + dxz).

@ Classical solution
Radiation dominated:
T=10+A(t — t0)1/2 — 70
for t — tg
Horizon problem.

@ Quantum Correction

p=1/a(t)?
T =10+ log(t — ty) — —o0
for t — tg

Singularity is light like.



Solutions

What have we done?

We have tried to solve the present coupled system of equations:

. 00 = 2
F(H, H) — Cm2/ kZXka(T) _ k dk,

0 a(7)? a(1)2\/ k% + a(1)2m?
k(1) + (K? + a(7)?m?)xi(1) = 0

@ We have found approximate solutions (m # 0).

@ To improve the result: we need to characterize
unambiguously the states...

@ .. by fixing suitable initial conditions. (At which time?)

@ The choice must lead to Hadamard states.



Asymptotic states: Hadamard property

Fields on fixed background: Hadamard states on FRW

- Do Hadamard states really exist on cosmological models?
- How to define them only employing “initial” conditions?

@ Although the procedure works for
a(t) ~ e, 7 — —o0.

@ Let us choose spacetimes that “looks like”
de Sitter (only for convenience)

He L
~ Hr’

a(t)~e t— —00or T — —00

@ Conformal null infinity 3 corresponds to
the cosmological horizon.




Asymptotic states: Hadamard property

QFT in the spacetime

e S(M) formed by real solutions ¢f = Ef, f € C§°
Por =0, P=—-0+¢&R+m?,

generated by compactly supported initial data on Cauchy surf.
@ The symplectic structure (S(M), o).

om(or, on) = /dz (O ndr — GV ndn) = E(f, h)

>

@ The Weyl operators associated to (S(M), oum)
generate the C*—algebra of local observables W(M).



Asymptotic states: Hadamard property

Quantization on the Horizon

3~ topologically equivalent to R x S?, coordinates (£, 6, ).

The symplectic space of real wavefunctions (S(37),0):

S(37) = {1/} € CORx S?) | e L%, au e Llldell ke L‘X’},

oY’ 0
o) = [ (05 -vGr). v es@)
RxS?

It forms symplectic structure, with data on the null surface, we can
employ Weyl quantization to obtain a C* algebra W(37)



Asymptotic states: Hadamard property

Preferred state on the null surface (Horizon)

@ O, restricted on the Horizon H~19,.

@ Positive frequencies w.r.t. Jy.

—~ eikf

R

defines a pure gaussian state

u(, ) = / 2kO(K)D(k, 6, )i (k. 0. ) dk dS?(0, ),

RxS2



Asymptotic states: Hadamard property

Projection on the horizon and pull back of the states

7:S(M) = CF(T), (P) = QPly-

The restriction ~y preserves the symplectic form

-y generates x—homomorphism (embedding)

1 W(M) - W(S7)




Asymptotic states: Hadamard property

Pullback of states

Any state w : W(37) — C, can be pulled back to Wy with +*(w).

@ The preferred state
Am(a) == A(u(a)). Vae W(M)

@ In the de Sitter spacetime, Ay is the Bunch-Davies state.

@ That state is the one considered in cosmology as the “ground
state” for the analyses of perturbations.

@ If m~0and £ ~ 0 we have on ¥

~ [ ekx=y) 3 ~e B
Mley) ~ [ EIPRAS, P(K) s+



Asymptotic states: Hadamard property

Hadamard property for these states

The integral kernel of Ay has the form

_ ik(a—sx) Xk(T1) Xk(72)
An(x1, x2) C/dke e

with

Xk(T) ~ forT — —o0

Theorem

Am is a distribution that satisfies the 1 SC

WF(Ay) =T =

= {((e k. (v k) € (T*MPAO | (x, k) ~ (v, k). kO

hence it is Hadamard




Asymptotic states: Hadamard property

Conclusion and open questions

e If a(7) ~ e for T — —oo we can similarly obtain a state.

e We do not need any information about the spacetime (a(7))
to define those states.

@ The initial conditions for our coupled system:

(%) = 2
F(H, H/) _ Cm2/ k2 Xka(T) _ k dk,

0 a(7)? a(1)2\/k? + a(1)2m?

Xk(7)" + (K? + a(r)?m*)xi(7) = 0

are

Cr €

a(r) ~e™", Xk(T)Nm,

fort — —00




Conclusion

Summary
Quantum anomalies have an interesting backreaction effect
Semiclassical solutions of Einstein's equation can be found
Preferred states can be defined in cosmological models
They have interesting properties:

e "Positive frequency” w.r.t. the conformal time

e Good singular behavior

e They can be used as “initial condition” for the semiclassical

problem

®© 6 6 o

@ It could be a companion tool in the falsification of the several
proposed cosmological models

Open Questions
@ What happens considering more realistic models? Different
fields?
@ Origin of R? terms in the action? Quantum gravity?
@ Relation with theory of cosmological fluctuations.
e What happens quantizing a(7) ?



Conclusion

Analysis of the “modes”

¢ € S(M) can be decomposed in modes (k € R3, k = |k|,)
6(r, %) = /d3k [ox(7. 2B (k) + o (r, F)B(K) |
R3
with respect to the functions
1 eik-)?
d)k(Ta )?) = 7N 3 Xk(T) s
a(t) (2n)3
Xk(7), is solution of the differential equation

Xk + (Vo(k, 7) + V(7))xk = 0,

Vo(k, 7) := k>+ (;T>2 [mz +2H? (g - é)] . V(r) = 0(1/73).

With the normalization Xk'xk — XkX, = i-



Conclusion

Perturbative solutions in the general case

v+ (Vo(k, 7) 4+ V(7))xk = 0. Normalization Xi’xk — XkXx = i-
@ V perturbation potential over the de Sitter solution pg
@ Then the general solutions

xk(7) = pk(7)
+o00 .
Z/ dtl/ dtp - / dtnSi(7, t1)Sk(t1, 1) - - -

Sk(tn—1, ta) V(t1) V(t2) - - - V(tn)pi(tn),

Absolute convergence

if |Rev| < 1/2 and V = O(773) or
if |Rev| < 3/2 and V = O(77°)

With: V=\/?i— (B+12),  alr) =5 700



Conclusion

Sketch of the proof. D

Having

M(f,Pg) = Am(Pf,g) =0,  Am(f,g) —m(g,f)=E(f,g),

then the inclusion D descends from:
Proposition 6.1 Strohmaier Verch Wollenberg (2002).



Conclusion

Sketch of the proof. C

@ The state can be seen as a “composition” of distribution
@ The restriction of one entry of £ on 3~ is meaningful

WF(E)y- =0 = E:=Eq €D/(3 x M)

o WF'(T)n WF (E ® E) = () we can multiply them.

J— X~

o Consider the distribution K € D'(3~ x S~ x M x M)
K=(T&l)- (E@E),
K is the kernel of the following map

K:CR(S™ xS7) — D(M x M)



Conclusion

@ We would like to give sense to the following expression, and to
control its wave front set

m(f,g) ~ "KL @ 1)(f© g)"

e x(¢) € Cg°(R) such that x(0) =1 and

Y4
Xn(4,0, ) = x <n> . VneN
Hence we can define the following sequence
An = K(xn(@)xn(¢)) € D'(M x M).

We have that

WF(\,) CT =
= {((Xa kX)?()/a_ky)) € T*M2\0 | (X, kx) ~ (Yv ky)vkxbo}a



Conclusion

An tends to Ay in the Hérmander topology Df(M x M):
@ In the topology of D'(M x M)

An — A\m

sup sup [k|V\a(- @) <0, N =1,2,3,...
n kevVv

¢ € Cg°(M x M), The closed cone VN T = ).
Hence WF(A\p) C T

Proof: ... long and tedious computations.



Conclusion

Form of the spacetime models we are considering

o If a(t) = e/t we have de Sitter spacetime. (or a(T) = — 7).

@ Let's assume

1 -2 da(r) 1 -3
a(r) = HT—l—O(T ), 4 _H7'2+O(T ),
d?a(t) 2 _
dr? :_HT3+O(T 4)'

@ For 7 — —oo the space time “looks like” de Sitter.
(Positive cosmological constant), exponential acceleration in the
proper time t.

e Cosmological horizon (7 — —0o0).
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