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@ Language of category: Quantization is a functor.

[Brunetti Fredenhagen Verch, Hollands Wald, Dimock]
Generally covariant quantum field theory

@ Nice outcome in the case of perturbative quantization.
@ Compare quantum fields on different spacetimes.

@ This language was used in tackling:

Local equilibrium:
[Buchholz, Ojima, Roos, Schlemmer, Verch ...]
Quantum gravity:
[Brunetti, Fredenhagen ...]

Minimal Energy:
[Fewster ...]



Motivations

Generally covariant quantum theory in a nutshell

[Brunetti Fredenhagen Verch]

1) To every M globally hyperbolic, associate a *-algebra A(M).

2) To every isometric embedding x : M — N associate an
injective x-homomorphism

ay  A(M) — A(N)
3) The composition law is preserved: M— M' — ., M"
Qxox! = Qix © Ay

This defines a Functor between two categories.
4) Causality. Spatially separated targets commute.

5) Time slice axiom. If two manifolds contain the same Cauchy
surface, their algebras are isomorphic.



® M —, N a state wy on A(N) can be pulled back:
WM = WN Oy
@ In this picture: geometric transformation are:

isometric embeddings.

@ Example: It is not possible to transplant states from
Minkowski M into flat Friedmann Roberson Walker (FRW).

@ It is difficult to consider larger set of geometric
transformations: fields are coupled to gravity.

o ldea: consider theories with larger symmetry:

Locally conformal invariant theories

@ The allowed geometric transformations could be used to relate
cosmological spacetime with static ones.



Motivations

Some questions.

@ Is it possible to enlarge the framework in order to encompass
also conformal transformations?

@ Do we have examples of this construction?

@ Is it possible to extend the picture to encompass every
local field?



Motivations

Conformal Embeddings

Definition
conformal embedding ¢y : M — M’
(i) diffeomorphism between M and (M) and
(i) (V«g)ab = Q2 g b [ (M)
conformal factor Q € C*>(¢)(M)) and positive.

@ Extras: ¢ : M — M’ preserves orientation and time
orientation. (M) C M’ an open globally hyperbolic subset.

@ Benefit: 1) preserves the causal structures of the spacetime.

o If : M — M with ¢(p) = p and Q(p) = A, we call it
rigid dilation



Motivations

Remarks

o Comparision with ordinary CFT:

e Conformal group:
Coordinate transformations.
Q is related to the change of
coordinates. (In M* it is
50(2, 4) finite dimensional) P

e In v, Q is independent on
the change of coordinates.
(Larger freedom, dim: o0)

@ It is possible to relate FRW with
some static spacetimes.



Motivations

Conformal transformations on smooth functions

1 : M — N The weighted action on test functions

v GR(M) — G(N),
PN s Q7 (Foy™)

A € R is the weight of the map.

@ It can be extended to smooth functions only if:
s Co(M) = (M)

e It is invertible only on 1(M).



Motivations

The relevant categories

CLoc: Objects: M, 4d oriented and time oriented glob. hyp.
Morphisms: conformal embeddings ¢ : M — N

(i) ¥(M): open globally hyperbolic subset of N
(i) 4 preserves orientation and time orientation

Alg: Objects: the *-algebras built A(M),
Morphisms: x—homomorphisms between them.

Test*: Objects: C§°(M).
Morphisms: weighted transformations wiA) M — N,
(with a fixed \).

@ The category Alg is defined in the same way as on [BFV].



Motivations

Quantization as a Functor

Locally conformal covariant quantum theory:
A : CLoc — Alg.

A((M)) = AM),  A(Y) =

such that

AM) =22 A(M)

and the following composition property holds:

Qup O Q= Qyoyy/ 5 Oy = La(my -



Quantization

Klein Gordon equation and fundamental solutions

Free scalar field:
1

Py = -0
g g+6

Rg, Pgp = 0.

Transformation rules under ¢ : M — M/,

Lemma

On Cg°(M):

Pg/ o ¢£1) = ¢£3) (e] Pg o

v

Ay r advanced/retarded fundamental solution.

Alygo P =y ¥ 0 Agg

A\




Quantization

Local algebra of fields

A(M) : x—algebra generated by I and fields ¢(f), f € C§°(M).
(i) p(aafi + axfr) = a1p(f) + axp(fa), where ag, an € C;
i) o(f) = SO(f)
(|||) o(Pgf) =
v) o(f)e(f; ) e(R)p(h) = iA(f, R)L,

A : Cloc — Alg the functor ¢ : M — M’, A(v)) = v defined as

ay(p(h) - o) = @ (W (R)) . (D (F))
o, ¢ are the fields that generate A(M) and A(M’).




Quantization

Fields as natural transformations

A field ®* is a natural transformation between two functors:

D**: CLoc — Test* ™, A : Cloc — Alg

such that the following diagram commutes

DAAM) —2 A(M)

wi“*”l l%

A

D
DA MM M A(M)
\ is the weight of the field ®*.

@ is a natural transformation between D3(M) and A(M), and

ap(om)(F) = on(@(f))




Wick monomials

Other fields

Are there other fields that are natural transformations? \

@ We have to enlarge the algebra of observables.

e Coinciding point limits of product of fields needs to be
considered.

@ We have to restrict the class of states, asking for some
regularity.

@ The class of states we are choosing has to be compatible with
conformal embeddings.



Wick monomials

The microlocal spectral condition

wy € D'(M?) satisfies the microlocal spectral condition (2SC) if
WF(w2) = {(x1, %2, k1, ko) € T*M?\ {0} | (x1, k1) ~ (x2, ko), k1 >0},

(x1, k1) ~ (x2, k2) if a null geodesics [0, a] — M such that v(0) = x; and v(a) = x»
and k1 = g(¥(0)) k2 = —g(¥(a)) ki >0 if future oriented

Lemma
Y M — N, if wy € D'(M?) satisfies nSC then

=il -1
wy(f,g) == ws (wi3) f, % g)

is in D'((M)?) and it satisfies uSC in 1(M).




Wick monomials

The Hadamard parametrix: Radzikowski theorem

wy satisfies uSC, Comm and KG <= is of Hadamard form:

wr=H+ W H:U+V|og(/‘j§>

H depends on local geometry and on p. We fix u on Cloc.

Lemma
H and H' be the Hadamard parametrix on O C M and O' C 4(O)

H(x,y)

m — H(x,y) = A(x,y)

A(x, y) is a smooth symmetric non vanishing function on O’ 2.

o 1 R(X) /
A2 = Ty <s22(x) R (X)> ’




Wick monomials

Proof: Hadamard Coefficients

o is the square of the geodesic distance, taken with sign.

Transport equations for U and V = V,,0™:
2VUVo+ (Lo —-4)U =0
2VVVo + (0o —2)V +0U - BU = 0(0)

PV =0
U can be expanded in Taylor series [de Witt Brehme, Fulling].
1
U(x,y) = 1+ 5 Ru(x)a"(x, )" (x,y) + O(0?).

12

Because of the conformal coupling V/(x, x) =0
After a long and tedious computation:

Uy)  Ulxy) 1 (R o »
Qx)o(x,Y)Ay) o'(xy) — (12m)? <Q2(x) R )>+O( (x,¥))




Wick monomials

Extended local algebra of fields and Wick monomials

Fix 1 then normal ordering with respect to H:

Son(x1) o p(xn) = i”5f(x1)5.n..5f(x,,) exp (;H(f ® f)+ icp(f))

0
generate the extended *-algebra W(M),

if smeared with t in F = @, F(n)

FO(M) = {t(") € £"(M), t symm. ,WF(¢) NV U V_ = (Z)} ,
The product is introduced w.r.t. a star product defined using H

W(tl)W(tg) = W(tl * t2)

(ts* £)T7726) = C(n, m, K)S(£™, HER My,
[Hollands Wald, Brunetti Diitsch Fredenhagen]



Wick monomials

W(M) satisfies the principle of local covariance, and also the one
of conformal local covariance.

@ H is defined on every element of ClLoc
@ 1) is mapped to ®”w£3) acting on elements of F("(M)

@ the composition is well defined.

But local fields are not locally conformally covariant.
We would like to check if the following local fields:
O"(F) = W(Ff(x1)d(x1,...,Xn))

are natural transformations.



Wick monomials

Regularization freedom

@ In the Hadamard regularization there are ambiguities
(A smooth function can be added to H. p in H can be changed)

@ The regularizaion freedom is only in Cj(x): [Hollands Wald]

real polynomials of the metric.

@ Scale homogeneously under rigid dilation:
G — NG

@ The fields scale almost homogeneously
(up to terms proportional to the log(\)).



Wick monomials

Wick monomials and conformal covariance

Regularization freedom in (?(x):
pa(x) = " 1 (x) + aR(x)

@ « does not depend upon p in H.

”mx:y Hu(X7)/) - H,u’(X7Y) =0
2

@ - scales homogeneously under rigid dilation. But under ¢

¢ (090) = AN - (g ) [ (R-DPRYF dng

e a = —1/(127)% = conformally covariant field.

There is a choice of C; that makes ¥ a locally conformal
covariant field with weight k.




Wick monomials

Sketch of the proof

Consider B(x,y) = m(R(X) + R(y)) then
o(xa) - o(xk) tHiB=
k
ikdf(xl)é. of(xe) P <2(H +B)(f & f)+ is@("))

f=0

It holds

: 1 Y
J@XW(HJF B)(x,y) = (H + B')(x,y) =0

and since the other elements transform covariantly we have

ay(: o vs ()= & e @) =0.



Wick monomials

Remarks

@ Wick polynomials are problematic,
M@ s (WA 0% g WP N

W2 is the square of the Weyl tensor Wb
@ In d-dimensions: Vy(x, x) does not vanish.

Uq

Hq = d/2 1

+leog 2,
1

Logarithmic inhomogeneities under scaling
o Fields with derivatives: show logarithmic inhomogeneity too.

T,o is NOT locally conformal covariant
@ But there are (trivial) exceptions:

V2 Tap(x), T(x) —2Vi(x, x)



Simple application

Application: Local thermal state in flat FRW

M = I x R? flat FRW, " M
M
ds? = —dt? + a(t)? dx?,
v M—M, 9, — a(t)d;
® wg, pure KMS state in M w.r.t. Killing time.
@ Pull back the state w = wg, o ay.
@ Some fields
1 1 1
2 v v v
= T./) = —/——T, A
<90 > a(t)2 1250 ) < w > a(t)4 w (BO) + n

T," shows an anomaly in the trace [Wald]
Rigid re-scaling T — AT 4+ A*A’ log()).
Cannot be saved by the choice of ren. const.



Simple application

o A, = diag(—p,P,P,P), H := 0;loga(t) = a/a
p:£H4, p— S Sy
4 3 4

@ it is not a perfect fluid (due to trace anomaly):

4 H
P=— =
<1+3H2> P

It is not a simple mixture of dust, radiation and dark energy
= non trivial backreaction [Dappiaggi Fredenhagen NP].

@ Some transport equations have sources [Buchholz|

(¢Op) = —6[ V1] (VapOp) = =2V, [Vi]



Simple application

Local Thermostatics

The transplanted states satisfy the following laws, with § = aﬁog
Oth law: |B|(x) is fixed on a surface at constant t.
1st law: Conservation (7,” = Qeue” + P5,")

vV (TH) =0

2nd law: S* = —Q(3)B*, then the entropy production

4 v 1 4
VMSH = §<T'u — Zg'u T>V(”ﬂy) = 0

Satisfied if 5 = a(t)Fy 0/0t.
3rd law: 8 — oo implies minimal entropy.

- A is a classical object.
- The microscopic interpretation is inherited from the one of wpg,.



Simple application

Summary

@ The concept of generally covariant quantum field theories
works also for conformal covariance.

@ In four dimensions (and only in four) the Wick powers are
locally covariant fields.

@ The anomalies have non trivial effects. We have transplanted
KMS states to curved spacetime.

Open Questions

@ What happens if one applies conformal embeddings to non
conformal covariant theories?

@ Could it be used to define a notion of local temperature in
curved spacetime?
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