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Motivation

Quantum fields on curved spacetimes

@ Quantum Field Theory on Curved Spacetimes (QFT on CST):
approximate solution to the problem of formulating a quantum theory of
both gravity and matter

@ Matter: quantum fields

@ Spacetime: arbitrary but fixed classical curved background,
non-dynamical in particular



Motivation

Curved spacetimes from quantum fields

@ Back-reaction of the quantum field on the (curvature of) spacetime

Guv(x) =81Gw(: Tuv(x) 1)

@ This can be formally derived by expanding around a vacuum solution,
keeping "one-loop” (h') terms of the quantum matter and "tree” (1)
terms of the quantum metric ...

@ ... and can thus only make sense for special states or as a model
equation.

@ It also seems necessary to quantise matter "on all spacetimes at once”.



Motivation

In this talk

@ How can one sensibly define a r.h.s. for G, (x) = 87 Gw(: Tuu(x) :)?
@ We will see that in the case of Dirac spinor fields

@ a modified version of the classical stress-energy tensor,

@ regularised by point-splitting and subtraction of the Hadamard
singularity

© and evaluated on Hadamard states gives a satisfactory result.



Motivation

Outline of the talk

@ Classical free Dirac fields on curved spacetimes

@ Quantisation in the framework of AQFT

© Hadamard states

@ The expected stress-energy tensor

@ Conclusions
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Classical free Dirac fields on curved spacetimes



Classical Dirac fields on CST

The Dirac field on Minkowski spacetime

@ Global Poincaré invariance

@ Dirac spinor field
¥ (R n) — C*,

. . 1 1 .
transforming covariantly under the D(2'® @ D(®2) representation of

SL(2,C) ~ Spin®(3,1) - LI = S0°(3,1)

@ Dirac equation: determined by transformation properties and irreducibility
of the representation



Classical Dirac fields on CST

The Dirac field on curved spacetimes

@ Spacetime: (M, g) is a fourdimensional, Hausdorff, globally hyperbolic,
smooth manifold M with smooth Lorentzian metric g of signature
(_7 +a +7 +)

@ We have only local Lorentz invariance, we thus can only

@ describe the Dirac field ¢ as a section of a C*-bundle (— Dirac
bundles),

@ assure a globally consistent local double-covering Spin®(3,1) — £L
to define sensible transformation properties of ¢ (— spin structure)

© and take the generally covariant generalisation of the Minkowskian
Dirac equation (— spin connection, ~y-matrices).



Classical Dirac fields on CST

The ~-matrices

@ The matrices {7a}a=0..3 C M(4,C) constitute a complex irreducible
representation m¢ of Cl(3,1), i.e.

{Vas Y6} = Y276 + VY2 = 2026 1.

@ In the following: choose an arbitrary but fixed ¢

@ Unique Dirac conjugation matrix 8 € SL(4,C):

B =8 A=—bub
iBn’y, > 0 for n future pointing & timelike



Classical Dirac fields on CST

The spin group

@ Spin®(3,1) C CI(3,1) and can thus be (reducibly) represented on C* via
|-

@ The double covering A : Spin°(3,1) —» LZL can be specified as

$7%.S7H = WwA°.(S).



Classical Dirac fields on CST

Spin structures

@ In the following: Let (M, g) be oriented and time-oriented.

@ The Lorentz frame bundle LM(LLm, Rc, M) is the collection of all
orthogonal frames {e,}.—0..3, g(es, &) = nap of M.

@ A spin structure on (M, g) is a pair (SM, p), where
SM(Spin°(3,1), s, Rs, M) is the bundle of spin frames and
p:SM — LM s.t.

poms=miop and poRs(S)= R.(A(S))op.

@ On globally hyperbolic, fourdimensional (M, g) spin structures always
exist. [Geroch]



Classical Dirac fields on CST

Dirac fields |

@ Dirac bundle: DM = SM X, C*

@ Dual Dirac bundle: D*M, dual w.r.t. (an extension of) the Hermitian
inner product on C*

@ Spaces of smooth sections (with compact support): (M, DM),
&(M, D*M), D(M, DM), D(M, D* M)

@ Classical Dirac spinor field: ¢ € E(M, DM) (column vector)

@ Classical Dirac cospinor field: @' € £(M, D*M) (row vector)



Classical Dirac fields on CST
Dirac fields Il

@ Global pairing of D(M, DM) and E(M, D*M) or E(M, DM) and
D(M, D* M)

W'y = / s (x) ¥ (x) ((x))

M

@ Dirac conjugation
T &(M,DM) — E(M,D*M), '(x) =y(x)"8
P &M, D" M) — (M, DM), %'t (x) = 571 (x)*



Classical Dirac fields on CST

Spinor-tensors

@ Mixed tensor products of TM, T*M, DM and D*M vyield trivial bundles!

Sections of these bundles can be expressed via global frames

E={En}a1.4, {E®}s-r.4, EP(Ea) =03,
e= {92}3:0.437 {eb}b:0“3, g(eb, ea) = 55, e=po E.

Example: E(M, T*"M @ DM @ D*M) > v =~ e ® Ea ® E®

Switching from e, = e}'0,, e’ = e2d” to O, d” via el e’



Classical Dirac fields on CST

The spin connection

@ Connection on SM: pullback of Levi-Civita connection on LM via p

@ Covariant derivative on spinor-tensors, e.g.:

véanéB = VB’VI?B = ’YﬁB;a =0

@ Spin curvature tensor Cyp



Classical Dirac fields on CST

The Dirac equations

Feynman slash notation y = v,

Dirac operators

DY) . (M, DM) — £(M,DM), DY) : &(M,D*M) — E(M,D*M),
D=-Y+m, D'iV—i—m

Dirac equations for ¢ € £(M,DM), ¢’ € E(M, D*M)

Dy =0, D'v'=0 (1)
@ Solutions of (1) solve the spinorial Klein-Gordon equation [Lichnerowicz]

Py’ =0, P=-D'D=-DD' =V,V° - g —m’.



Quantisation in the framework of AQFT



Quantisation

The fundamental solutions of D and D’

@ Unique fundamental solutions of D and D’ [Dimock]

Q@ S*:D(M,DM)— E(M,DM), SF:D(M,D*M)— E(M,D*M)
DS* = S*D id‘D(M,DM), D’ 5i SiD/ "d‘D(M,D*M)

Q supp (ST u) C J=(supp u) Yu € D(M, DM),
supp(SEv) C JE(supp v) Vv € D(M, D*M)

©Q ST =D'E*, SF = DEF*, where ET and EF are the fundamental
solutions of —P.

@ Causal propagators
S=Sst—-s, S.=S'-5-



Quantisation

Doubling the fields

@ Doubling the fields turns out to be convenient for defining the field
algebra. [Kohler, Fewster & Verch, ...]

e D(M) = D(M,DM) & D(M,D*M), §$=5&S., D=D&D’'
@ Conjugation I : D(M) — D(M), u&v—vieuf
@ Positive definite sesquilinear product on D(M)/ker S > [fi] = [u; & vi]

(A). [6)) = =i {u] S(u2)) +i (S.(w) v} )

@ Hilbert space H = ﬁ(M)/kerg



Quantisation

The field algebra

@ F(M) = CAR(H,T) [Araki, Fewster & Verch]: Unique C*-algebra
generated by 1 and {B(f) : f € H} subject to

@ 1 — B(f) is C-linear

@ B(rf) = B(f)*

© {B(f)", B()} = (i, £)1 (CAR)
@ implicit: B(Df) =0 (EOM)

@ Equivalently: F(M) = Fo(M) (Borchers-Uhlmann algebra) [Kdhler,

Sanders]
Fo(M) =P D ((DM ® D*M)x") /(ideal generated by EOM & CAR)
n=0



Quantisation
Back to single fields

@ Dirac (co)spinor quantum fields
v(v) =BO&v), ¢ () =Bus0)
o y(v)" =vi(vh)
@ {¢(v), v (u)} = —i(vS(u)) 1 and all other anticommutators vanish.

o DY(v) = (D'v) =0, D'v!(u) = v!(Du) =0



Quantisation

The algebra of observables

@ Let supp u and supp v as well as supp w1 U supp vi and supp u2 U supp
v» be spacelike separated:

{#(v). 9" ()} = =i (vS(u))1 =0 buteg.
[ () (v), ' () p(w)] = - = 0.

@ Possible algebra of observables

A(M) = even subalgebra of F(M)

@ But A(M) is both "too large” and "too small”, one needs to include
Wick polynomials and restrict to " gauge-invariant” elements.



Quantisation

Locality and general covariance

@ Locally covariant QFT [..., Dimock, Kay, Hollands & Wald, Verch,
Brunetti & Fredenhagen & Verch, Fewster, Sanders, ...]
@ The Dirac field B (¢, 1) is locally covariant [Sanders]. Essentially, let
X : (M1, g1, SMy, p1) — (M2, g2, SMa, p2)
be a map which
@ corresponds to an isometric embedding of (Mi, g1) into (Ma, &),

@ preserves space and time orientation as well as causal relations
© and respects the spin structure,
then 3 an injective, unit-preserving *-homomorphism

ay : F(My) — F(M:) s.t. B can be understood as a collection of
continuous maps

Bu : D(M) — F(M), ay o Bu, = Bu, o X
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Hadamard states



Hadamard states
Quasifree states

@ Quasifree, gauge-invariant state w on A(M)

Q@ w: A(M)— C linear
Q w(A"A) >0 VAec AM), w(l)=1

Q w (@ (u) I (um)vo(v1) - 1b(va))
=0mn XTI sign(mm)w (&' () (van(i))

TmESm i=1..m

A W (u,v) =w (WP (Y)  w (uv) =w (@ (u)e(v))



Hadamard states

Preferred states

@ Minkowski: isometry group (Poincaré group) & spectrum condition =
unique vacuum state

@ CST: trivial isometry group & microlocal spectrum condition (uSC) =
Hadamard states

@ Properties of Hadamard states:

@ same UV behaviour as the Minkowski vacuum [Radzikowski, Koéhler,
Kratzert, Hollands, Sahlmann & Verch]

@ physically equivalent, i.e. quasiequivalent [Verch, Hollands]

o .

@ well-suited for a definition of w(: T, :) [Wald]



Hadamard states

Bitensors

@ Bitensor: (distributional) section of an exterior tensor product bundle, e.g
wt € D'(D*M K DM)

@ Primed index notation: w¥(x,y) = wi /(x,y) EA(X) ® Egi (y).
@ Synge's bracket notation: [F(x,y)AB/] = F(x,x).8, Fec&D*MX DM)
@ Smooth bitensors on a geodesically convex normal neighbourhood

© ] squared geodesic distance o(x, y)
@ vector parallel transport g(x, y)",

@ spinor parallel transport I(x, y)"g,



Hadamard states

The Hadamard form

@ w*(x,y) are of the Hadamard form < 3 smooth bitensors U, V and W,
s.t.
1

wh(x,y) = i@D} (H*(x,y) + W(x,y)),

=Y evi(3)

V=) Vi", W=> Wo"

@ The definition needs to be refined to avoid convergence problems of V
and W, obtain a well-defined distribution and rule out spacelike
singularities. [Kay & Wald, Kéhler, Verch]



Hadamard states

The microlocal spectrum condition

@ wh(x,y) fulfil the uSC <

WF(u)i) = {(X7 ks, y, _kY) € (T*M)g2 \ {0}7 | (X7 kX) ~ (}/7 kY)z K & 0}

@ w*(x,y) fulfil the uSC iff they are of Hadamard form. [Kratzert,
Hollands, Sahlmann & Verch]



Hadamard states

Determining the Hadamard coefficients

® Diw* =Dw* =0 = D.D,H, P,H smooth (H denotes either H™
or HT)

@ We have furthermore been able to prove that

(D, — D,))H and P,H are smooth (but non-vanishing).

@ This yields recursive differential equations for U, V and W. Starting with
[U] =1, one can show:

@ U = ul*, where u is the Hadamard coefficient of the scalar
Hadamard form.

@ V is not proportional to the scalar Hadamard coefficient v.

@ U and V depend only on the local curvature and m, while W
depends on the state w.



Hadamard states

Coincidence point limits of H

The Hadamard bidistributions H fulfil

<m4 m?R R? OR  RuwRMY  RuuprRMVPT > G @
Mli=(—+t—+FH—-—— — 4 1+ ,
8 48 1152 480 720 720 48
[PHI = 6[Val,  [(PxH)ip] = 8[Vaul,  [(PxH).,v] = —8[Viul + 6[Vale,
[PyH] = 6[‘/1]7 [(PyH);u] = 8[Vl;u] - 2[V1];u, [(PyH);u/] = *8[\/1;#] + 8[\/1];;“
Tr[D, Dy H] = —Tr[PxH],  Tr[(DyDyH),p] = = Tr[(PxH); ] + VAl
Tr[(D; Dy H).,\ /] = = Tr[(PiH), 0] — Valip,

Tr[(PyH — PxH), 117 v = 2Tr[Va -

@ Proof: seven months of calculations, to give you a flavor note that

1
[0ap~yseer] = —ERQ[M,;;WA + 779 terms.
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The expected stress-energy tensor

The classical stress-energy tensor

@ Action functional of Dirac fields

il = [ a'xTalew) = [ d'xTel 30! (0u)+ 5 (D) o]

@ Cassical stress-energy tensor of Dirac fields
1 65 1

T = ——22 =2
Vgl 08w 2

1
(1/1T7(u1/1;u) - IZ)T(H%W) - EL(w)g#V

@ Dirac equations =

VAT =0 g"Tuw=-myly



The expected stress-energy tensor

Why are Hadamard states good for w(: T, :)?

@ Guu(x) =8mGw(: Tuu(x) :) can only make sense if w(: Ty, (x) :) is finite
and : T, (x) : has finite fluctuations!

@ Possible definition of w(: Tuwu(x) :): Augment A(M) with Wick products
normal ordered w.r.t. DyH and indentify : T,,,(x) : as an element of this
enlarged algebra.

@ This yields smooth expectation values and finite fluctuations of : T, (x) :
on all Hadamard states.



The expected stress-energy tensor

Definition of w(: T (x) :)

@ Here we are only interested in w(: T, (x) :): employ a straightforward
definition without enlarging A(M)

@ Point-splitting along a geodesic

Tuu(xoy) = 5 (4108 1) = 01 ()

@ Subtraction of the singularity, coninciding point limit

W Tun(x) 2) = Tr [l T (%, ) = T (x,y)]

. _ 1 1
= Tr [Dgl, <w (x,y)+ ﬁD;H)} = QTr [D W(x, y)]

@ Canonical but unsatisfactory choice of Dﬁl,, D..

1 ’
DR = 2, (g:) v, — vy)) DEr = — DY D),



The expected stress-energy tensor

Wald's axioms |

@ (Al) Given wy and wy, such that wy (x,y) — w, (x,y) is smooth,

w1 Tuw(x) 1) —wa(: Tuw(x):) = Tr [Dgf‘a" (wl_ —w;)} .

@ (A2) w(: Tuw(x):) is locally covariant: Let
X : (M17g175M17p1) = (Mz’g27SM27pl)7

Qi ! A(Ml) — .A(Mg)

as before. If two states w; and w> on A(Mi) and A(M.) are related by
W1 = W2 0 @y, then

w2 Thiaro (x2) 1) = Xx (@1(0 Than (x1) 2)) -



The expected stress-energy tensor

Wald's axioms |l

@ (A3) VFw(: Tw(x):)=0

@ (A4) On Minkowski spacetime and in the Minkowski vacuum state,
WMink(: T,U,V(X) :) = 0.

@ (A5) w(: Tuwu(x) :) does not contain derivatives of the metric of order
higher than two.



The expected stress-energy tensor

Uniqueness of Wald's w(: Tp.(x) :)

@ Any w(: Tu(x) :) fulfilling the five axioms is unique up to a conserved
local curvature term that vanishes in locally flat regions of M. [Wald]

@ Requiring appropriate scaling and analyticity in m [Hollands & Wald]: the
only sensible choices are m? Gy and
= ié 0 R*dpg
Vel v )
=g (%Aﬁ - 2DR) + 2R, — 2RR,,
1 0

Vel 98w )

= ~8u(RuwR" —OR) + Ry — ORu — 2R, R%,,.

Juw =

Ry R d g

N =



The expected stress-energy tensor

Which D,,,?

@ Dj H does not satisfy the Dirac equations, thus D;% yields neither a
conserved nor a traceless w(: T, (x) :).

@ Possible solution: Add multiples of L(¢)) to Tp..

@ This amounts to the choice
c . can C
D[LIJ = Duu - Egﬂu (D)/< + D}/) D}//

@ It turns out that one can not assure both conservation and vanishing
trace in the conformally invariant case!



The expected stress-energy tensor

The winner is ¢ = —

Let Am = 2exp(% — 2v)m~2 for m # 0 and A, arbitrary for m = 0, where
denotes the Euler-Mascheroni constant, fix A = A, in the definition of H and
let w(: Tas(x) :) be defined as discussed with D,,,, = D;,,/® defined as above.
Then w(: Tap(x) :) fulfills the first four of Wald's axioms. Furthermore, it
exhibits the following trace anomaly

g"w(: Tuw(x) ) =

1 1 ., 1 1 7
— | ==R*— —=0OR — =—RuR*™ — —— Ry, R*"*"" ).
e (1152 480 720 " 5760 “** )



The expected stress-energy tensor

Sketch of the proof

@ Leaving c unspecified, one computes
81V w(: T (x) 1) = (1 +6¢) Tr[Va(x, y)lw

and  87°g" w(: Ty (x) :) = 6(4c+1) Tr[Va(x, )]+ mTr [DyW™ (x,y)] -
This gives (A3) and the trace anomaly.

@ (A1) holds for Hadamard states w, since adding multiples of L(¢) to T,
amounts to adding multiples of Tr[V1] to w(: Tuu(x) :).

@ (A2) holds since w(: Tuv(x) :) is constructed entirely out of w™ and H;
these are preserved by .

@ (A4) follows by straightforward computation.



The expected stress-energy tensor

Comments

@ Scalar fields: Similar results are available. [Moretti]

@ Dirac fields: Trace anomaly has already been computed, though based on
a non-rigorous " heat-kernel-expansion” . [Christensen & Duff]

@ A=) = w( Tuw(x):) changes by multiples of

4 2

_1
Tr[Dw V] = %guv -

1
6 Guv + 60 (hu = 3J0)

6

@ Assuring (A5) therefore seems impossible for m = 0, but is possible for
the trace.

@ Different point of view: Defining both : T, (x) : and : V¥* T, (x) : as
locally covariant quantum fields and using the renormalisation freedom
(via further requirements) to assure : V# T, (x) : = 0. [Hollands & Wald]



Conclusions

Conclusions & Outlook



Conclusions

Conclusions & Outlook

@ We have been able to define an (almost) sensible sourceterm for the
semiclassical Einstein equation.

@ In Robertson-Walker spacetimes one can [Dappiaggi, Fredenhagen,
Pinamonti]

@ re-express Guu(x) = 87 Gw(: Tuu(x) :) as an equation for the traces

@ and obtain solutions, stable at late times, which offer a potential
description of "dark energy”.

© How do these solutions look like for interacting fields?

@ Maybe one can fulfil (A5) in the general case for special states?



Conclusions

Thank you for your attention!
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