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Quantum fields on curved spacetimes

Quantum Field Theory on Curved Spacetimes (QFT on CST):
approximate solution to the problem of formulating a quantum theory of
both gravity and matter

Matter: quantum fields

Spacetime: arbitrary but fixed classical curved background,
non-dynamical in particular
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Curved spacetimes from quantum fields

Back-reaction of the quantum field on the (curvature of) spacetime

Gµν(x) = 8πGω(: Tµν(x) :)

This can be formally derived by expanding around a vacuum solution,
keeping ”one-loop” (~1) terms of the quantum matter and ”tree” (~0)
terms of the quantum metric ...

... and can thus only make sense for special states or as a model
equation.

It also seems necessary to quantise matter ”on all spacetimes at once”.

Thomas Hack Stress-energy tensor of Dirac fields on curved backgrounds



Motivation Classical Dirac fields on CST Quantisation Hadamard states The expected stress-energy tensor Conclusions

In this talk

How can one sensibly define a r.h.s. for Gµν(x) = 8πGω(: Tµν(x) :)?

We will see that in the case of Dirac spinor fields

1 a modified version of the classical stress-energy tensor,

2 regularised by point-splitting and subtraction of the Hadamard
singularity

3 and evaluated on Hadamard states gives a satisfactory result.
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Outline of the talk

1 Classical free Dirac fields on curved spacetimes

2 Quantisation in the framework of AQFT

3 Hadamard states

4 The expected stress-energy tensor

5 Conclusions
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Classical free Dirac fields on curved spacetimes
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The Dirac field on Minkowski spacetime

Global Poincaré invariance

Dirac spinor field
ψ : (R4, η) → C4,

transforming covariantly under the D( 1
2
,0) ⊕ D(0, 1

2
) representation of

SL(2,C) ' Spin0(3, 1) � L↑+ = SO0(3, 1)

Dirac equation: determined by transformation properties and irreducibility
of the representation
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The Dirac field on curved spacetimes

Spacetime: (M, g) is a fourdimensional, Hausdorff, globally hyperbolic,
smooth manifold M with smooth Lorentzian metric g of signature
(−,+,+,+).

We have only local Lorentz invariance, we thus can only

1 describe the Dirac field ψ as a section of a C4-bundle (→ Dirac
bundles),

2 assure a globally consistent local double-covering Spin0(3, 1) � L↑+
to define sensible transformation properties of ψ (→ spin structure)

3 and take the generally covariant generalisation of the Minkowskian
Dirac equation (→ spin connection, γ-matrices).
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The γ-matrices

The matrices {γa}a=0..3 ⊂ M(4,C) constitute a complex irreducible
representation πCl of Cl(3, 1), i.e.

{γa, γb}
.
= γaγb + γbγa = 2ηab1.

In the following: choose an arbitrary but fixed πCl

Unique Dirac conjugation matrix β ∈ SL(4,C):

β∗ = β γ∗a = −βγaβ
−1

iβnaγa > 0 for n future pointing & timelike
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The spin group

Spin0(3, 1) ⊂ Cl(3, 1) and can thus be (reducibly) represented on C4 via
πCl .

The double covering Λ : Spin0(3, 1) � L↑+ can be specified as

SγaS
−1 = γbΛ

b
a(S).
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Spin structures

In the following: Let (M, g) be oriented and time-oriented.

The Lorentz frame bundle LM(L↑+, πL,RL,M) is the collection of all
orthogonal frames {ea}a=0..3, g(ea, eb) = ηab of M.

A spin structure on (M, g) is a pair (SM, ρ), where
SM(Spin0(3, 1), πS ,RS ,M) is the bundle of spin frames and
ρ : SM → LM s.t.

ρ ◦ πS = πL ◦ ρ and ρ ◦ RS(S) = RL(Λ(S)) ◦ ρ.

On globally hyperbolic, fourdimensional (M, g) spin structures always
exist. [Geroch]
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Dirac fields I

Dirac bundle: DM
.
= SM ×πCl C4

Dual Dirac bundle: D∗M, dual w.r.t. (an extension of) the Hermitian
inner product on C4

Spaces of smooth sections (with compact support): E(M,DM),
E(M,D∗M), D(M,DM), D(M,D∗M)

Classical Dirac spinor field: ψ ∈ E(M,DM) (column vector)

Classical Dirac cospinor field: ψ′ ∈ E(M,D∗M) (row vector)
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Dirac fields II

Global pairing of D(M,DM) and E(M,D∗M) or E(M,DM) and
D(M,D∗M)

〈ψ′ψ〉 .=
Z
M

dµg (x)ψ′(x) (ψ(x))

Dirac conjugation

† : E(M,DM) → E(M,D∗M), ψ†(x)
.
= ψ(x)∗β

† : E(M,D∗M) → E(M,DM), ψ
′†(x)

.
= β−1ψ

′
(x)∗
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Spinor-tensors

Mixed tensor products of TM, T ∗M, DM and D∗M yield trivial bundles!

Sections of these bundles can be expressed via global frames

E
.
= {EA}A=1..4, {EB}B=1..4, EB(EA) = δB

A ,

e
.
= {ea}a=0..3, {eb}b=0..3, g(eb, ea) = δb

a , e = ρ ◦ E .

Example: E(M,T ∗M ⊗ DM ⊗ D∗M) 3 γ .
= γA

aB ea ⊗ EA ⊗ EB

Switching from ea = eµ
a ∂µ, eb = eb

νdν to ∂µ, dν via eµ
a , eb

ν
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The spin connection

Connection on SM: pullback of Levi-Civita connection on LM via ρ

Covariant derivative on spinor-tensors, e.g.:

∇eaγ
A
bB

.
= ∇aγ

A
bB

.
= γA

bB;a = 0

Spin curvature tensor Cab
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The Dirac equations

Feynman slash notation 6v .
= v aγa

Dirac operators

D(′) : E(M,DM) → E(M,DM), D(′) : E(M,D∗M) → E(M,D∗M),

D
.
= −6∇+ m, D ′ .= 6∇+ m

Dirac equations for ψ ∈ E(M,DM), ψ′ ∈ E(M,D∗M)

Dψ = 0, D ′ψ′ = 0 (1)

Solutions of (1) solve the spinorial Klein-Gordon equation [Lichnerowicz]

Pψ(′) = 0, P
.
= −D ′D = −DD ′ = ∇a∇a − R

4
−m2.
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Quantisation in the framework of AQFT

Thomas Hack Stress-energy tensor of Dirac fields on curved backgrounds



Motivation Classical Dirac fields on CST Quantisation Hadamard states The expected stress-energy tensor Conclusions

The fundamental solutions of D and D ′

Unique fundamental solutions of D and D ′ [Dimock]

1 S± : D(M,DM) → E(M,DM), S±∗ : D(M,D∗M) → E(M,D∗M)
DS± = S±D = idD(M,DM), D ′S±∗ = S±∗ D ′ = idD(M,D∗M)

2 supp (S±u) ⊂ J±(supp u) ∀u ∈ D(M,DM),
supp(S±∗ v) ⊂ J±(supp v) ∀v ∈ D(M,D∗M)

3 S± = D ′E±, S±∗ = DE±∗ , where E± and E±∗ are the fundamental
solutions of −P.

4 Causal propagators

S
.
= S+ − S−, S∗

.
= S+

∗ − S−∗
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Doubling the fields

Doubling the fields turns out to be convenient for defining the field
algebra. [Köhler, Fewster & Verch, ...]

eD(M)
.
= D(M,DM)⊕D(M,D∗M), eS .

= S ⊕ S∗, eD .
= D ⊕ D ′

Conjugation Γ : eD(M) → eD(M), u ⊕ v 7→ v† ⊕ u†

Positive definite sesquilinear product on eD(M)/ker eS 3 [fi ]
.
= [ui ⊕ vi ]

([f1], [f2])
.
= −i

D
u†1 S(u2)

E
+ i

D
S∗(v1) v†2

E

Hilbert space H .
= eD(M)/ker eS
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The field algebra

F(M)
.
= CAR(H, Γ) [Araki, Fewster & Verch]: Unique C∗-algebra

generated by 1 and {B(f ) : f ∈ H} subject to

1 f 7→ B(f ) is C-linear

2 B(Γf ) = B(f )∗

3 {B(f1)
∗,B(f2)} = (f1, f2)1 (CAR)

4 implicit: B(eDf ) = 0 (EOM)

Equivalently: F(M) = F0(M) (Borchers-Uhlmann algebra) [Köhler,
Sanders]

F0(M)
.
=

∞M
n=0

D
“
(DM ⊕ D∗M)�n

”
/(ideal generated by EOM & CAR)
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Back to single fields

Dirac (co)spinor quantum fields

ψ(v)
.
= B(0⊕ v), ψ†(u)

.
= B(u ⊕ 0)

ψ(v)∗ = ψ†(v†)

{ψ(v), ψ†(u)} = −i 〈v S(u)〉 1 and all other anticommutators vanish.

Dψ(v)
.
= ψ(D ′v) = 0, D ′ψ†(u)

.
= ψ†(Du) = 0
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The algebra of observables

Let supp u and supp v as well as supp u1 ∪ supp v1 and supp u2 ∪ supp
v2 be spacelike separated:

{ψ(v), ψ†(u)} = −i 〈v S(u)〉 1 = 0 but e.g.

[ψ†(u1)ψ(v1), ψ
†(u2)ψ(v2)] = · · · = 0.

Possible algebra of observables

A(M)
.
= even subalgebra of F(M)

But A(M) is both ”too large” and ”too small”, one needs to include
Wick polynomials and restrict to ”gauge-invariant” elements.
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Locality and general covariance

Locally covariant QFT [..., Dimock, Kay, Hollands & Wald, Verch,
Brunetti & Fredenhagen & Verch, Fewster, Sanders, ...]

The Dirac field B (ψ, ψ†) is locally covariant [Sanders]. Essentially, let

χ : (M1, g1,SM1, ρ1) 7→ (M2, g2,SM2, ρ2)

be a map which

1 corresponds to an isometric embedding of (M1, g1) into (M2, g2),

2 preserves space and time orientation as well as causal relations

3 and respects the spin structure,

then ∃ an injective, unit-preserving ∗-homomorphism
αχ : F(M1) → F(M2) s.t. B can be understood as a collection of
continuous maps

BM : eD(M) 7→ F(M), αχ ◦ BM1 = BM2 ◦ χ∗.
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Hadamard states
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Quasifree states

Quasifree, gauge-invariant state ω on A(M)

1 ω : A(M) → C linear

2 ω(A∗A) ≥ 0 ∀A ∈ A(M), ω(1) = 1

3 ω
`
ψ†(u1) · · ·ψ†(um)ψ(v1) · · ·ψ(vn)

´
= δmn

P
πm∈Sm

Q
i=1..m

sign(πm)ω
`
ψ†(ui )ψ(vπm(i))

´
ω+(u, v)

.
= ω

`
ψ(v)ψ†(u)

´
ω−(u, v)

.
= ω

`
ψ†(u)ψ(v)

´
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Preferred states

Minkowski: isometry group (Poincaré group) & spectrum condition ⇒
unique vacuum state

CST: trivial isometry group & microlocal spectrum condition (µSC) ⇒
Hadamard states

¯

Properties of Hadamard states:

1 same UV behaviour as the Minkowski vacuum [Radzikowski, Köhler,
Kratzert, Hollands, Sahlmann & Verch]

2 physically equivalent, i.e. quasiequivalent [Verch, Hollands]

3 ...

4 well-suited for a definition of ω(: Tµν :) [Wald]
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Bitensors

Bitensor: (distributional) section of an exterior tensor product bundle, e.g
ω± ∈ D′(D∗M � DM)

Primed index notation: ω±(x , y) = ω± B′

A (x , y) EA(x)⊗ EB′(y).

Synge’s bracket notation: [F (x , y) B′
A ]

.
= F (x , x) B

A , F ∈ E(D∗M � DM)

Smooth bitensors on a geodesically convex normal neighbourhood

1 1
2

squared geodesic distance σ(x , y)

2 vector parallel transport g(x , y)µ
ν′

3 spinor parallel transport I (x , y)A
B′
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The Hadamard form

ω±(x , y) are of the Hadamard form ⇔ ∃ smooth bitensors U, V and W ,
s.t.

ω±(x , y) = ± 1

8π2
D ′

y

`
H±(x , y) + W (x , y)

´
,

H± .
=

U

σ
+ V ln

“ σ

λ2

”
,

V =
X

n

Vnσ
n, W =

X
n

Wnσ
n

The definition needs to be refined to avoid convergence problems of V
and W , obtain a well-defined distribution and rule out spacelike
singularities. [Kay & Wald, Köhler, Verch]
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The microlocal spectrum condition

ω±(x , y) fulfil the µSC ⇔

WF (ω±) =
n

(x , kx , y ,−ky ) ∈ (T ∗M)
�2 \ {0}, | (x , kx) ∼ (y , ky ), kx

/
. 0

o

ω±(x , y) fulfil the µSC iff they are of Hadamard form. [Kratzert,
Hollands, Sahlmann & Verch]
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Determining the Hadamard coefficients

D ′
xω

± = Dyω
± = 0 ⇒ D ′

xD
′
yH, PyH smooth (H denotes either H+

or H−)

We have furthermore been able to prove that

Proposition

(D ′
x − Dy )H and PxH are smooth (but non-vanishing).

This yields recursive differential equations for U, V and W . Starting with

[U] = 1, one can show:

1 U = uI ∗, where u is the Hadamard coefficient of the scalar
Hadamard form.

2 V is not proportional to the scalar Hadamard coefficient v .

3 U and V depend only on the local curvature and m, while W
depends on the state ω.
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Coincidence point limits of H

Proposition

The Hadamard bidistributions H fulfil

[V1] =

 
m4

8
+

m2R

48
+

R2

1152
−

�R

480
−

RµνRµν

720
+

Rµνρτ Rµνρτ

720

!
1 +

CµνCµν

48
,

[PxH] = 6[V1], [(PxH);µ] = 8[V1;µ], [(PxH);µ′ ] = −8[V1;µ] + 6[V1];µ,

[Py H] = 6[V1], [(Py H);µ] = 8[V1;µ]− 2[V1];µ, [(Py H);µ′ ] = −8[V1;µ] + 8[V1];µ,

Tr [D′
xD′

y H] = −Tr [PxH], Tr [(D′
xD′

y H);µ] = −Tr [(PxH);µ] + [V1];µ,

Tr [(D′
xD′

y H);µ′ ] = −Tr [(PxH);µ′ ]− [V1];µ,

Tr [(Py H − PxH);ν′ ]γ
ν

γµ = 2Tr [V1];µ.

Proof: seven months of calculations, to give you a flavor note that

[σαβγδεφλ] = −1

6
Rαβγδ;εφλ + 779 terms.
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The expected stress-energy tensor

Thomas Hack Stress-energy tensor of Dirac fields on curved backgrounds



Motivation Classical Dirac fields on CST Quantisation Hadamard states The expected stress-energy tensor Conclusions

The classical stress-energy tensor

Action functional of Dirac fields

S [ψ] =

Z
M4

d4x
p
|g |L(ψ) =

Z
M4

d4x
p
|g |

»
1

2
ψ† (Dψ) +

1

2

“
D ′ψ†

”
ψ

–

Cassical stress-energy tensor of Dirac fields

Tµν
.
=

1p
|g |

δS

δgµν
=

1

2

“
ψ†γ(µψ;ν) − ψ†;(µγν)ψ

”
− 1

2
L(ψ)gµν

Dirac equations ⇒

∇µTµν = 0 gµνTµν = −mψ†ψ
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Why are Hadamard states good for ω(: Tµν :)?

Gµν(x) = 8πGω(: Tµν(x) :) can only make sense if ω(: Tµν(x) :) is finite
and : Tµν(x) : has finite fluctuations!

Possible definition of ω(: Tµν(x) :): Augment A(M) with Wick products
normal ordered w.r.t. D ′

yH and indentify : Tµν(x) : as an element of this
enlarged algebra.

This yields smooth expectation values and finite fluctuations of : Tµν(x) :
on all Hadamard states.
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Definition of ω(: Tµν(x) :)

Here we are only interested in ω(: Tµν(x) :): employ a straightforward
definition without enlarging A(M)

Point-splitting along a geodesic

Tµν(x , y)
.
=

1

2

“
ψ†(x)γ(µgν′

ν)ψ(y);ν′ − ψ†(x);(µγν)ψ(y)
”

Subtraction of the singularity, coninciding point limit

ω(: Tµν(x) :)
.
= Tr

h
ω(Tµν(x , y))− T sing

µν (x , y)
i

.
= Tr

»
D0

µν

„
ω−(x , y) +

1

8π2
D ′

yH

«–
.
=

1

8π2
Tr [DµνW (x , y)]

Canonical but unsatisfactory choice of D0
µν , Dµν

D0,can
µν

.
=

1

2
γ(µ

“
gν′

ν)∇ν′ −∇ν)

”
Dcan

µν
.
= −D0,can

µν D ′
y
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Wald’s axioms I

(A1) Given ω1 and ω2, such that ω−1 (x , y)− ω−2 (x , y) is smooth,

ω1(: Tµν(x) :)− ω2(: Tµν(x) :) = Tr
h
D0,can

µν

`
ω−1 − ω−2

´i
.

(A2) ω(: Tµν(x) :) is locally covariant: Let

χ : (M1, g1,SM1, ρ1) 7→ (M2, g2,SM2, ρ1),

αχ : A(M1) → A(M2)

as before. If two states ω1 and ω2 on A(M1) and A(M2) are related by
ω1 = ω2 ◦ αχ, then

ω2(: Tµ2ν2(x2) :) = χ∗ (ω1(: Tµ1ν1(x1) :)) .
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Wald’s axioms II

(A3) ∇µω(: Tµν(x) :) = 0

(A4) On Minkowski spacetime and in the Minkowski vacuum state,
ωMink(: Tµν(x) :) = 0.

(A5) ω(: Tµν(x) :) does not contain derivatives of the metric of order
higher than two.
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Uniqueness of Wald’s ω(: Tµν(x) :)

Any ω(: Tµν(x) :) fulfilling the five axioms is unique up to a conserved
local curvature term that vanishes in locally flat regions of M. [Wald]

Requiring appropriate scaling and analyticity in m [Hollands & Wald]: the
only sensible choices are m2Gµν and

Iµν
.
=

1p
|g |

δ

δgµν

Z
M

R2dµg

= gµν

„
1

2
R2 − 2�R

«
+ 2R;µν − 2RRµν

Jµν
.
=

1p
|g |

δ

δgµν

Z
M

RρτRρτdµg

=
1

2
gµν(RµνRµν −�R) + R;µν −�Rµν − 2RρτRρ τ

µ ν .

Thomas Hack Stress-energy tensor of Dirac fields on curved backgrounds



Motivation Classical Dirac fields on CST Quantisation Hadamard states The expected stress-energy tensor Conclusions

Which Dµν?

D ′
yH does not satisfy the Dirac equations, thus Dcan

µν yields neither a
conserved nor a traceless ω(: Tµν(x) :).

Possible solution: Add multiples of L(ψ) to Tµν .

This amounts to the choice

Dc
µν

.
= Dcan

µν −
c

2
gµν

`
D ′

x + Dy

´
D ′

y .

It turns out that one can not assure both conservation and vanishing
trace in the conformally invariant case!
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The winner is c = −1
6 .

Theorem

Let λm
.
= 2 exp( 7

2
− 2γ)m−2 for m 6= 0 and λm arbitrary for m = 0, where γ

denotes the Euler-Mascheroni constant, fix λ = λm in the definition of H and
let ω(: Tab(x) :) be defined as discussed with Dµν = D

−1/6
µν defined as above.

Then ω(: Tab(x) :) fulfills the first four of Wald’s axioms. Furthermore, it
exhibits the following trace anomaly

gµνω(: Tµν(x) :) =

1

π2

„
1

1152
R2 − 1

480
�R − 1

720
RµνRµν − 7

5760
RµνρτRµνρτ

«
.
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Sketch of the proof

Leaving c unspecified, one computes

8π2∇µω(: Tµν(x) :) = (1 + 6c)Tr [V1(x , y)];ν

and 8π2gµνω(: Tµν(x) :) = 6(4c +1)Tr [V1(x , y)]+mTr
ˆ
D ′

yW
−(x , y)

˜
.

This gives (A3) and the trace anomaly.

(A1) holds for Hadamard states ω, since adding multiples of L(ψ) to Tµν

amounts to adding multiples of Tr [V1] to ω(: Tµν(x) :).

(A2) holds since ω(: Tµν(x) :) is constructed entirely out of ω− and H;
these are preserved by χ.

(A4) follows by straightforward computation.
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Comments

Scalar fields: Similar results are available. [Moretti]

Dirac fields: Trace anomaly has already been computed, though based on
a non-rigorous ”heat-kernel-expansion”. [Christensen & Duff]

λ→ λ′ ⇒ ω(: Tµν(x) :) changes by multiples of

Tr [D
− 1

6
µν V ] =

m4

2
gµν −

m2

6
Gµν +

1

60
(Iµν − 3Jµν)

Assuring (A5) therefore seems impossible for m = 0, but is possible for
the trace.

Different point of view: Defining both : Tµν(x) : and : ∇µTµν(x) : as
locally covariant quantum fields and using the renormalisation freedom
(via further requirements) to assure : ∇µTµν(x) : ≡ 0. [Hollands & Wald]
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Conclusions & Outlook
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Conclusions & Outlook

We have been able to define an (almost) sensible sourceterm for the
semiclassical Einstein equation.

In Robertson-Walker spacetimes one can [Dappiaggi, Fredenhagen,

Pinamonti]

1 re-express Gµν(x) = 8πGω(: Tµν(x) :) as an equation for the traces

2 and obtain solutions, stable at late times, which offer a potential
description of ”dark energy”.

3 How do these solutions look like for interacting fields?

Maybe one can fulfil (A5) in the general case for special states?
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Thank you for your attention!
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