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Why QFT on CST?

A quantum theory of both matter and gravity is not available yet.

Partial solution: Quantum Field Theory on Curved Spacetimes (QFT on
CST)

This arises presumably as (some) semiclassical limit of (some) full
quantum theory of gravity and matter ...

... and hopefully offers glimpses into features of the full theory (e.g.
black Hole thermodynamics, cosmology).
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Why Dirac fields?

Most of the work in rigorous QFT on CST has considered scalar fields,
since ...

... the simplest model was believed to already unravel the most difficult
conceptual issues

... and it is in the nature of mathematical physicists to fear indices.

We now understand why!

Alas, the standard model contains only one (unobserved) scalar field,
therefore higher spins need to be considered.
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Why should you listen to this talk?

QFT on CST is in principle formulated on an arbitrary but given
background.

The back-reaction of the quantum field on the spacetime can be
described by

Gµν = 8πGω(: Tµν :) (1).

This can be formally derived by expanding around a vacuum solution,
keeping ”one-loop” (~1) terms of the quantum matter and ”tree” (~0)
terms of the quantum metric ...

... and can thus only make sense for special states or as a model
equation.

Taking it as starting point, which : Tµν : and which ω should one use to
obtain a meaningful r.h.s. for (1) (in the case of Dirac fields)?
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The Dirac field on Minkowski spacetime

We have global Poincaré invariance.

The Dirac field is a map R3,1 → C4 which transforms under the D( 1
2
, 1
2
)

representation of SL(2,C) ' Spin0(3, 1), the double cover of
L↑+ = SO0(3, 1), once a Poincaré transformation is employed.

Transformation properties determine unambiguously the dynamics, i.e.
the Dirac equation.
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The Dirac field on curved spacetimes

In this talk: A spacetime (M, g) is a fourdimensional, Hausdorff, globally
hyperbolic, smooth manifold M with smooth Lorentzian metric g of
signature (−,+,+,+).

We have only local Lorentz invariance, we thus can only hope to

1 describe the Dirac field ψ as a section of a C4-bundle (→ Dirac
bundles),

2 assure a globally consistent local double-covering Spin0(3, 1) � L↑+
to define sensible transformation properties of ψ (→ spin structure)

3 and take the generally covariant generalisation of the Minkowskian
Dirac equation (→ spin connection, γ-matrices).

Thomas Hack Stress-energy tensor of Dirac fields on curved backgrounds



Motivation Classical Dirac fields Quantisation Hadamard states The expected stress-energy tensor Conclusions

Gamma matrices

The Dirac algebra Cl(3, 1) is the Clifford algebra of R3,1 generated by 1
and the ONB ba of R3,1 subject to

babb + bbba = 2ηab1.

Different complex irreducible representations π(′) : Cl(3, 1)→ M(4,C) of

Cl(3, 1) are equivalent by π
′
(c) = Kπ(c)K−1, K ∈ GL(4,C). (Pauli)

Dirac and charge conjugation matrices βπ, Cπ:

β∗π = βπ, iβππ(n) > 0 for n future pointing & timelike,

π(ba)
∗ = −βππ(ba)β

−1
π , βπ unique up to R+,

CπCπ = 1, π(ba) = Cππ(ba)C−1
π , Cπ unique up to U(1)

Requiring that the relations of βπ and Cπ are preserved in a change of
representation determines K up to a sign.

In the following we choose an arbitrary but fixed π and define γa
.
= π(ba).
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The spin group

One defines

Pin(3, 1)
.
=

n
c ∈ Cl(3, 1) | c = u1 · · · uk , k ∈ N, ui ∈ R3,1, u2

i = ±1
o
,

Spin(3, 1)
.
= Pin(3, 1) ∩ Cl0(3, 1),

Spin0(3, 1)
.
= connected component of Spin(3, 1) 3 1.

One can show

1 Λ : Pin(3, 1)→ L = O(3, 1) defined as

SbaS
−1 = bbΛ

b
a(S)

is a double covering homomorphism and restricts to a double
covering homomorphism Spin0(3, 1) � L↑+.

2 dΛ : spin0(3, 1)→ l↑+, the derivative of Λ at the identity fulfills

(dΛ)−1(λa
b) =

1

4
λabbabb.
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Spin structures I

In the following: Let (M, g) be oriented and time-oriented.

The Lorentz frame bundle LM(L↑+, πL,RL,M) is a principle L↑+-bundle
over M, which can be thought of the collection of all orthogonal frames
{ea}a=0..3, g(ea, eb) = ηab at every point in M.

A spin structure on (M, g) is a pair (SM, ρ), where
SM(Spin0(3, 1), πS ,M,RS) is a principle Spin0(3, 1)-bundle over M and ρ
is a diffeomorphism SM → LM s.t.

ρ ◦ πS = πL ◦ ρ and ρ ◦ RS(S) = RL(Λ(S)) ◦ ρ.

Two spin structures (SM1, ρ1), (SM2, ρ2) are called equivalent if there
exists a base point preserving isomorphism τ : SM1 → SM2 s.t.
ρ2 ◦ τ = ρ1.
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Spin structures II

Existence & uniqueness (up to equivalence) of spin structures:

1 A spin structure exists iff the second Stiefel-Whitney class
w2(M) ∈ Ȟ2(M,Z2) is trivial. (Borel, Hirzebruch)

2 A spin structure exists iff the first fundamental group of LM splits as

π1(LM) ' π1(M)× π1(L↑+) ' π1(M)× Z2. (Geroch)

3 For non-compact M: A spin structure exists iff M is parallelisable,
i.e. LM can be globally trivialised. (Geroch)

4 ⇒ On fourdimensional, globally hyperbolic spacetimes (M, g) spin
structures always exist! (Geroch)

5 A spin structure is unique up to equivalence iff π1(M) is trivial.
(Milnor)
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Dirac fields I

The Dirac bundle DM is the associated vector bundle DM
.
= SM ×π C4.

The dual Dirac bundle D∗M can be defined straightforwardly employing
the hermitian inner product on C4.

We define the spaces of smooth sections Γ(M,DM), Γ(M,D∗M) and
smooth sections with compact support D(M,DM), D(M,D∗M).

Dirac spinor fields ψ are elements of Γ(M,DM) understood as column
vectors.

Dirac cospinor fields ψ′ are elements of Γ(M,D∗M) understood as row
vectors.
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Dirac fields II

We define a global pairing of D(M,DM) and Γ(M,D∗M) or Γ(M,DM)
and D(M,D∗M) as

〈ψ′ψ〉 .=
Z
M

dµg (x)ψ′(x)ψ(x).

We define maps

† : Γ(M,DM)→ Γ(M,D∗M), † : Γ(M,D∗M)→ Γ(M,DM),
c : Γ(M,DM)→ Γ(M,DM), c : Γ(M,D∗M)→ Γ(M,D∗M)

as

ψ†(x)
.
= ψ∗†(x)βπ, ψ

′†(x)
.
= β−1

π ψ
′∗(x),

ψc(x)
.
= C−1

π ψ(x), ψ
′c(x)

.
= ψ′c(x)Cπ.
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Spinor-tensors

Spinor-tensors are sections on mixed (inner) tensor products of TM,
T ∗M, DM and D∗M. On fourdimensional, globally hyperbolic (M, g)
these bundles are all trivial!

We can choose thus global orthogonal frames

E
.
= {EA}A=1..4, {EB}B=1..4, EBEA = δB

A ,

EA ∈ Γ(M,DM), EB ∈ Γ(M,D∗M), E ∈ Γ(M,SM),

e
.
= {ea}a=0..3, {eb}b=0..3, g(eb, ea) = δa

b,

ea ∈ Γ(M,TM), eb ∈ Γ(M,T ∗M), e ∈ Γ(M, LM), e = ρ ◦ E

and express spinor-tensors in mixed tensor products of these frames.

Example: The section of γ-matrices γ
.
= γA

aB ea ⊗ EA ⊗ EB .

One can switch from the frame basis ea, eb to a coordinate basis ∂µ, dν

via contraction with the coefficients eµ
a , ea

ν of the frame basis, e.g.
γA

µB
.
= ea

µγ
A
aB .
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The spin connection

Let G denote the l↑+-valued connection form of the Levi-Civita connection
on (M, g). One can then define the connection form Σ of the spin
connection as

Σ
.
= (dΛ)−1 ◦ ρ∗(Γ).

The connection coefficients are

Γa
bc

.
= Ga

c ◦ e∗(eb), σA
aB

.
= ΣA

B ◦ E∗(ea) =
1

4
Γa

bc(γaγ
c)A

B .

Equivalently: Γa
bc = g(ea,∇ebec) and σA

aB = EA∇ebEB .

We can thus define covariant derivatives on spinor-tensors.

Example:

∇eaγ
A
bB

.
= ∇aγ

A
bB

.
= γA

bB;a = ∂aγ
A
bB + σA

aCγ
C
bB − σC

aBγ
A
bC − Γc

abγ
A
cB = 0
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Curvature tensors

The Riemann- and Ricci tensor as well as the Ricci scalar are defined via
their components as

va;cb − va;bc
.
= R λ

a bcvλ, Rab
.
= R d

a bd , R
.
= Ra

a,

where va are the components of an arbitrary covector.

The curvature tensor C of the spin connection is defined as

VA;cb − VA;bc
.
= C B

A bcVB ,

where VA are the components of an arbitrary cospinor.

It follows that

CA
Bab =

1

4
Rabcdγ

cA
Cγ

dC
B .
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The Dirac equations

In the following Feynman slash notation 6v .
= v aγa = vaγ

a is employed and
spinor indices are suppressed in most cases.

We define the Dirac operators

D : Γ(M,DM)→ Γ(M,DM), D : Γ(M,D∗M)→ Γ(M,D∗M),

D ′ : Γ(M,DM)→ Γ(M,DM), D ′ : Γ(M,D∗M)→ Γ(M,D∗M)

as D
.
= −6∇+ m and D ′ .= 6∇+ m.

ψ ∈ Γ(M,DM), ψ′ ∈ Γ(M,D∗M) are said to satisfy the Dirac equations if

Dψ = −γa∇aψ + mψ = 0 and D ′ψ′ = ∇aψ
′γa + mψ = 0.

It follows:

1 † and c preserve the Dirac equations.
2 Solutions of the Dirac equation are also solutions of the spinorial

Klein-Gordon equation with the spinorial Klein-Gordon operator

P
.
= −D ′D = −DD ′ = ∇a∇a−R

4
−m2 .

= �−R

4
−m2. (Lichnerowicz)
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Algebraic Quantum Field Theory

One seeks to define an increasing net of C∗-algebras {A(O)}O⊂M s.t.

1 A(O) represents the physical observables localised in O,
2 A(M)

.
=

S
O⊂M A(O) represents all physical observables in M,

3 O ⊂ O′ ⇒ A(O) ⊂ A(O′),
4 [A(O),A(O′)] = 0 if O and O′ are spacelike separated
5 and other properties I would like to skip.

A state ω is a positive, normed linear functional on A(M), i.e.

ω(A∗A) ≥ 0 ∀A ∈ A(M), ω(1) = 1.

The relation to the Hilbert space formalism is provided by the
GNS-representation, s.t. ω is represented as a ”vacuum” vector and
elements of A(M) as bounded linear operators.

To construct A(O) we follow Dimock whose starting point are
”equal-time” canonical anticommutation relations (CAR) on an arbitrary
Cauchy surface.
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The fundamental solutions of D and D ′

Dimock showed that there exist fundamental solutions of D and D ′, i.e.

1 there exist unique maps S± : D(M,DM)→ Γ(M,DM),
S±∗ : D(M,D∗M)→ Γ(M,D∗M) which fulfil

DS± = S±D = idD(M,DM), D ′S±∗ = S±∗ D ′ = idD(M,D∗M),

supp(S±u) ⊂ J±(supp u) ∀u ∈ D(M,DM),

supp(S±∗ v) ⊂ J±(supp v) ∀v ∈ D(M,D∗M).

2 They can be specified as S± = D ′E± and S±∗ = DE±∗ , where E±

and E±∗ are the fundamental solutions of −P, which exist and are
unique since P has metric principal symbol gµν∂µ∂ν .

3 The causal propagators S
.
= S+ − S− and S∗

.
= S+

∗ − S−∗ map
compactly supported sections into solutions of the Dirac equations.
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Dirac fields on a Cauchy surface

Let Σ be an arbitrary smooth Cauchy surface of M and %̃ : M → Σ the
restriction map.

One can define the Dirac bundles on the Cauchy surface as pullback
bundles DΣ

.
= %∗(DM), D∗Σ

.
= %∗(D∗M) and introduce the function

spaces Γ(Σ,DΣ), Γ(Σ,D∗Σ), D(Σ,DΣ), D(Σ,D∗Σ) as well as the dual
pairing of suitable sections 〈 · · 〉 in obvious notation.

%̃ induces restriction maps % : Γ(M,DM)→ Γ(Σ,DΣ) and
%∗ : Γ(M,D∗M)→ Γ(Σ,D∗Σ).

There are positive definite sesquilinear products on D(Σ,DΣ) and
D(Σ,D∗Σ), namely (u1, u2)

.
= i〈u†1 6nu2〉 and (v1, v2)

.
= −i〈v1 6nv†2 〉, where

n is the forward pointing unit normal of Σ.

We can thus define two Hilbert spaces by completion w.r.t. (·, ·),
HΣ

.
= D(Σ,DΣ) and H∗Σ

.
= D(Σ,D∗Σ) and these are dual to each other.
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The CAR algebra of fields

We call a representation of the CAR over Σ a choice of Hilbert space H
and two continuous linear maps

χ : H∗Σ → BL(H), andχ∗ : HΣ → BL(H),

s.t. ∀u ∈ HΣ, v ∈ H∗Σ :

χ∗(u) = [χ((u, ·))]∗ and {χ(v), χ∗(u)} = 〈vu〉,

where all other anticommutators are set to vanish.

For f ∈ D(M,DM), g ∈ D(M,D∗M) we define

ψ(g)
.
= −χ[%∗S∗(g 6n)] and ψ†(f )

.
= ψ(f †).

The local field algebra F(O) is defined as the C∗ -algebra generated by
ψ†(f ), ψ(g), where one employs all test sections f and g supported in O.
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The algebra of observables

It follows that ψ(g) and ψ†(f ) fulfil the distributional Dirac equations

Dψ(g)
.
= ψ(D ′g) = 0 and D ′ψ†(f )

.
= ψ†(Df ) = 0 ...

... and the CAR {ψ(g), ψ†(f )} = 〈h(Sf )〉.

F(O) is thus not an algebra of observables!

But we can define A(O) as the subset of F(O) generated by an even
number of ψ†(f ) and ψ(g).

Local commutativity follows for spacelike separated O and O′:

[AO,A
′
O] = 0, ∀AO ∈ A(O) and A′O ∈ A(O′).
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Uniqueness of A(O)

The construction of A(O) depends on

1 a choice of spin structure (S , ρ) out of equivalent ones,
2 an irreducible complex representation π of Cl(3, 1)
3 and a representation of the CAR over some Σ, i.e. a triple

(Σ, χ, χ∗).

How unique are the A(O)? Answers can be formulated in a categorical
framework.

Dimock: Different choices of (S , ρ) and (Σ, χ, χ∗) give rise to functorially
equivalent A(O).

Sanders: A(O) can be constructed without (Σ, χ, χ∗) and different
choices of (S , ρ) and π give rise to functorially equivalent A(O). ψ†(f ),
ψ(g) can be constructed as locally covariant fields in the sense of
Brunetti, Fredenhagen and Verch.
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Preferred states

Minkowski: The isometry group (Poincaré group) and a spectrum
condition fix a unique vacuum state.

CST: The isometry group is in general trivial but a generalised spectrum
condition can be formulated, the microlocal spectrum condition (µSC).
This fixes only a class of states, the Hadamard states.

It turns out that they have the same UV behaviour as the Minkowski
vacuum (Radzikowski) and are furthermore quasiequivalent, which
basically means that the density matrix states on their GNS-Hilbert
spaces are equivalent (Verch).

We will see that Hadamard states are well-suited for a definition of
ω(: Tµν :)!
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Quasifree states

”Preselection” of states for free fields: A state ω on A(M) is called
quasifree if

ω
“
ψ†(f1) · · ·ψ†(fm)ψ(g1) · · ·ψ(gn)

”
= δmn

X
πm∈Sm

Y
i=1..m

sign(πm)ω
“
ψ†(fi )ψ(gπm(i))

”
.

Motivation: The GNS-Hilbert spaces of quasifree states are unitarily
equivalent to Fock spaces.

We restrict to quasifree states and analyse

ω+(f , g)
.
= ω

“
ψ(g)ψ†(f )

”
and ω−(f , g)

.
= ω

“
ψ†(f )ψ(g)

”
.
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Wavefront sets

Wavefront sets (WF) specify singular ”points” and singular ”directions”
of a distribution u′ (e.g. u′ ∈ D′(M,DM)).

WF are subsets of T ∗M \ {0}, i.e. transform covariantly.

The pointwise product of two distributions u′1 and u′2 is in general not
well-defined, but only if

WF (u′1)⊕WF (u′2)
.
= {(x , k1 + k2) | (x , k1) ∈WF(u′1), (x , k2) ∈WF(u′1)}

does not contain an element of the form (x , 0).

WF(pu′) ⊂WF(u′) and WF(fu′) ⊂WF(u′) for any partial differential
operator p and any smooth function f .

If (� + f )u′ is smooth than for any (x , k) ∈WF(u′) k is null and WF(u′)
contains the full null geodesic specified by the initial data (x , k)
(propagation of singularities).
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Bitensors

Let VM (WN) be a vector bundle over M (N) with typical fibre V (W ).
The outer tensor product VM � WN is then a vector bundle over M × N
with typical fibre V ⊗W .

A bitensor is a section of an outer tensor product bundle. Example:
ω−(x , y) is a (distributional) section of D∗M � DM.

Primed indices denote components ”at y”, unprimed indices components
”at x”. Example: ω−(x , y) = ω− B′

A (x , y) EA(x)⊗ EB′(y).

We will use Synge’s bracket notation [ ] to denote the coinciding point

limit of a smooth bitensor, e.g. [B(x , y) B′
A ]

.
= B(x , x) B

A .

σ(x , y), g(x , y)µ
ν′ and I (x , y)A

B′ denote one half of the squared geodesic
distance, the parallel transport of vectors and the one of spinors w.r.t. the
geodesic connecting y to x . They are smooth on a geodesically convex
neighbourhood. We define σµ

.
= σ;µ.
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The Hadamard form

We say that ω±(x , y) are of the Hadamard form if there exist smooth
bispinors U±, V± and W±, s.t.

ω±(x , y) = ∓ 1

8π2
D ′

y

`
H±(x , y) + W±(x , y)

´
, where

H± .
=

U±

σ
+ V± ln

“ σ

λ2

”
,

V± =
X

n

V±
n σ

n, W± =
X

n

W±
n σ

n

and λ denotes an arbitrary scale.

The definition needs to be refined to avoid convergence problems of V±

and W±, obtain a well-defined distribution and rule out spacelike
singularities. (Kay & Wald, Köhler)
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The microlocal spectrum condition

We say that ω±(x , y) fulfil the µSC if

WF (ω±) =
n

(x , kx , y , ky ) ∈ (T ∗M)
�2 \ {0}, | (x , kx) ∼ (y , ky ), kx . (/)0

o
,

where ∼ implies that it exists a null geodesic connecting x to y s.t. kx

(ky ) is its cotangent vector at x (y) and kx . 0 (kx . 0) denotes a
future-directed (past-directed) covector.

Hollands, Köhler, Kratzert, Sahlmann, Verch: ω±(x , y) fulfil the µSC iff
they are of Hadamard form.

For states invariant under charge conjugation the conditions on ω±(x , y)
are related, in general they are not.

In the following we will assume that ω±(x , y) fulfil the µSC.
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Determining the Hadamard coefficients

Since D ′
xω

−(x , y) = Dyω
−(x , y) = 0 we know that D ′

xD
′
yH

− and PyH
−

are smooth (but non-vanishing!) and similar statements hold for H+.

One can furthermore show

Proposition 1

(D ′
x − Dy )H

− and PxH
− are smooth.

Employing these facts and the initial condition [U±] = 1, one can show

1 U− = uI−1 and U+ = uI , where u is the Hadamard coefficient of
the scalar Hadamard form.

2 V±
n can be determined recursively out of U±. V± is not

proportional to the scalar Hadamard coefficient v .
3 U± and V± depend only on the local curvature and m, while W±

depends on the state ω.

Calculations are greatly simplified if V + and V− are ”symmetric” and
thus related, however there seems to be no proof yet. (work in progress)
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Coincidence point limits of H−

For the analysis of ω(: Tµν :) we will need some conincidence point limits
of derivatives of H−

Proposition 2

The Hadamard bidistribution H− fulfills

[V−1 ] =

 
m4

8
+

m2R

48
+

R2

1152
−

�R

480
−

RµνRµν

720
+

Rµνρτ Rµνρτ

720

!
1 +

CµνCµν

48

[PxH−] = 6[V−1 ], [(PxH−);µ] = 8[V1;µ], [(PxH−);µ′ ] = −8[V1;µ] + 6[V−1 ];µ,

[Py H−] = 6[V−1 ], [(Py H−);µ] = 8[V1;µ]− 2[V−1 ];µ, [(Py H−);µ′ ] = −8[V1;µ] + 8[V−1 ];µ,

Tr [D′xD′y H−] = −Tr [PxH−], Tr [(D′xD′y H−);µ] = −Tr [(PxH−);µ] + [V−1 ];µ,

Tr [(D′xD′y H−);µ′ ] = −Tr [(PxH);µ′ ]− [V−1 ];µ,

Tr [(Py H− − PxH−);ν′ ]γ
ν

γµ = 2Tr [V−1 ];µ.

Proof: seven months of calculations, to give you a flavor note that

[σαβγδεφλ] = −1

6
Rαβγδ;εφλ + 779 terms.
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The classical stress-energy tensor

The Dirac equations for the classical ψ and its Dirac adjoint ψ† can be
realised as the minimum of the action functional

S [ψ] =

Z
M4

d4x
p
|g |L(ψ) =

Z
M4

d4x
p
|g |

»
1

2
ψ† (Dψ) +

1

2

“
D ′ψ†

”
ψ

–

and the classical stress-energy tensor of Dirac fields is thus

Tµν
.
=

1p
|g |

δ
p
|g |L(ψ)

δgµν
=

1

2

“
ψ†γ(µψ;ν) − ψ†;(µγν)ψ

”
− 1

2
L(ψ)gµν ,

where ( ) denotes symmetrisation and of course the Lagrangian vanishes
on shell.

Employing the Dirac equations, one can straightforwardly calculate

∇µTµν = 0 and gµνTµν = −mψ†ψ,

s.t. in particular the trace of Tµν vanishes in the massless, i.e.
conformally invariant, case.
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Why are Hadamard states good for ω(: Tµν :)?

Let us recall Gµν(x) = 8πGω(: Tµν(x) :). This can only make sense if
ω(: Tµν :) is finite and has finite fluctuations!

One can in principle define Wick products like : ψ†ψ(x) : via normal
ordering, i.e. subtraction of ∓D ′

yH
± and define : Tµν(x) : as a linear

combination of Wick products.

This would yield finite expectation values of : Tµν(x) : on all Hadamard
states ω, since e.g.

ω(: ψ†ψ(x) :) = Tr [ω−(x , y) + D ′
yH

−(x , y)] = − 1

8π2
Tr [W−(x , y)].

It also yields finite fluctuations since a computation of these involves
terms quartic in the field and thus terms like ω+(x , y)ω−(y , x) appear.
But these are well-defined if ω±(x , y) fulfil the µSC!
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Definition of ω(: Tµν :)

A satisfactory definition of Wick products is highly involved.

We thus take an approach, which is equivalent but more straightforward:
Subtract −D ′

yH
− from ω−, take appropriate derivatives and then the

coinciding point limit, s.t.

ω(: Tµν :)
.
=

1

8π2
Tr

ˆ
DµνW−(x , y)

˜
,

for some differential operator Dµν .

Looking at the classical expression for Tµν , the canonical choice is

Dcan
µν

.
=

1

2
γ(µ

“
∇ν) − gν′

ν)∇ν′

”
D ′

y .

But this choice turns out to be unsatisfactory!
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Wald’s axioms I

To fix a ”good” Dµν , we need to think about what we require from
ω(: Tµν :). Wald has suggested five axioms.

(A1) Given ω1 and ω2, such that ω−1 (x , y)− ω−2 (x , y) is smooth,

ω1(: Tµν(x) :)−ω2(: Tµν(x) :) = Tr

»
1

2
γ(µ

“
∇ν) − gν′

ν)∇ν′

” `
ω−1 − ω

−
2

´–
.

(← The divergent part of Tµν is proportional to 1.)

(A2) ω(: Tµν(x) :) is local: Given two spacetimes (M, g) and (M ′, g ′)
and two globally hyperbolic isometric neighbourhoods x ∈ O ⊂ M and
x ′ ∈ O′ ⊂ M ′, we can identify A(O) and A′(O′) by means of the
isometry. If two states ω and ω′ on A(M) and A′(M ′) coincide on F(O),
then ω(: Tµν(x) :) = ω′(: Tµν(x ′) :).

(' The only non-local dependence of ω(: Tµν(x) :) is due to the state.)
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Wald’s axioms II

(A3) ∇µω(: Tµν(x) :) = 0

(← Gµν is conserved.)

(A4) On Minkowski spacetime and in the Minkowski vacuum state
ωMink(: Tµν(x) :) = 0.

(' ω(: Tµν(x) :) is an extension of Minkowskian normal ordering.)

(A5) ω(: Tµν(x) :) does not contain derivatives of the metric of order
higher than two.

(' Solutions of Gµν(x) = 8πGω(: Tµν(x) :) should be stable.)
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Uniqueness of Wald’s ω(: Tµν(x) :)

Wald: Any ω(: Tµν(x) :) fulfilling the five axioms is unique up to a
conserved local curvature term that vanishes in locally flat regions of M.

Occam’s razor: The only sensible choices are m2Gµν and

Iµν
.
=

1p
|g |

δ

δgµν

Z
M

R2dµg

= gµν

„
1

2
R2 − 2�R

«
+ 2R;µν − 2RRµν

Jµν
.
=

1p
|g |

δ

δgµν

Z
M

RρτRρτdµg

=
1

2
gµν(RµνRµν −�R) + R;µν −�Rµν − 2RρτRρ τ

µ ν .
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Which Dµν?

We regularise with D ′
yH

±, which is not a solution of the Dirac equations.
ω(: Tµν(x) :) defined with Dcan

µν is thus neither conserved nor traceless in
the conformally invariant case!

Possible solution: Add multiples of the Lagrangian to Tµν . L(ψ) vanishes
on shell classically but maybe not on the quantum side, s.t. a potential
”classical limit” is unchanged.

This amounts to the choice

Dc
µν

.
= Dcan

µν −
c

2
gµν

`
D ′

x + Dy

´
D ′

y .

I turns out that one can not assure both conservation and vanishing trace
in the conformally invariant case!
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The answer to all problems is c = −1
6 .

Theorem

Let λm
.
= 2 exp( 7

2
− 2γ)m−2 for m 6= 0 and λm arbitrary for m = 0, where γ

denotes the Euler-Mascheroni constant, fix λ = λm in the definition of H− and
let ω(: Tab(x) :) be defined as discussed with Dµν = D

−1/6
µν defined as above.

Then ω(: Tab(x) :) fulfills the first four of Wald’s axioms. Furthermore, it
exhibits the following trace anomaly

gµνω(: Tµν(x) :) =

1

π2

„
1

1152
R2 − 1

480
�R − 1

720
RµνRµν − 7

5760
RµνρτRµνρτ

«
.
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Sketch of the proof

Leaving c unspecified, one computes

8π2∇µω(: Tµν(x) :) = (1 + 6c)Tr [V1(x , y)];ν

and 8π2gµνω(: Tµν(x) :) = 6(4c +1)Tr [V1(x , y)]+mTr
ˆ
D ′

yW
−(x , y)

˜
.

This gives (A3) and the trace anomaly.

(A1) holds for a Hadamard state ω, since adding multiples of L(ψ) to
Tµν amounts to adding multiples of Tr [V 1], i.e. state independent terms,
to ω(: Tµν(x) :).

(A2) holds since ω(: Tµν(x) :) is constructed entirely out of ω− and H−

in a local manner.

(A4) follows by straightforward computation.
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The aftermath

Moretti has obtained similar results along the same line for the scalar case.

Christensen and Duff have obtained similar results for the Dirac field and
higher spins, but with a ”heat-kernel-expansion”, which is not
well-defined on general CST.

We have been able to fix λ for m > 0. Changing λ amounts to a
”redefinition” of W− by multiples of V−, s.t. ω(: Tµν(x) :) changes by
multiples of

Tr [Dc
µνV ] =

m4

2
gµν −

m2

6
Gµν +

1

60
(Iµν − 3Jµν)

This shows that it is sensible to restrict the renormalisation freedom to
Gµν , Iµν and Jµν and that assuring (A5) seems impossible for m = 0.

One can of course still add multiples of Gµν , Iµν and Jµν to ω(: Tµν(x) :)
and understand this in the more general framework of locally covariant
QFT, where Wick polynomials are already defined only up to local
curvature terms. This approach has been pursued by Hollands and Wald.
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Looking out for conclusions

We have been able to define a sensible sourceterm for the semiclassical
Einstein equation.

In Robertson-Walker spacetimes one can re-express
Gµν(x) = 8πGω(: Tµν(x) :) as an equation for the traces and a
conservation equation, as done by Dappiaggi, Fredenhagen and
Pinamonti. In this case (A5) can be fulfilled even for m = 0 and stable
solutions can be obtained, which offer a potential description of ”dark
energy”. Maybe one can fulfil (A5) in the general case for special states?

What changes for interacting fields?
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Thank you for your attention
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