
Motivations Cosmological spacetimes QFT in the spacetime Hadamard property Conclusion

Quantum states on inflationary cosmological
models and their Hadamard property.

Nicola Pinamonti

II Institute für Theoretische Physik
Hamburg Universität

Leipzig, 21 November 2008



Motivations Cosmological spacetimes QFT in the spacetime Hadamard property Conclusion

Summary

Cosmological Scenario /
Geometry of the spacetimes under consideration

Interplay of the field theory in the bulk and on the horizon.

Pullback of some states.

Their microlocal spectral properties.
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Models of the Universe

The universe is described as a curved spacetime (M, g)

In first approximation: M is I × S

I is the interval of the “cosmological time”
S is a 3d manifold: the “space”, it has an high symmetry.
homogeneous and isotropic.

The metric g is of Freedmann Robertson Walker type

g = −dt2 + a2(t)

[
dr 2

1− κr 2
+ r 2dS2(θ, ϕ)

]
.

recent observation seems to say that

κ = 0 .
a(t) = eHt , H is the Hubble parameter
(very small but not zero).
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Going back in time: Inflationary scenario

We assume a phase of rapid expansion at
the beginning.

Then just after the big bang:

a(t) = eH0t , H0 >> H

More precisely: with κ = 0, conformally
related with Minkowski.

τ(t) =

∫ t

t0

1

a(t ′)
dt ′

gFRW = a2(τ)
[
−dτ2 + dr 2 + r 2dS2(θ, ϕ)

]
.

It is with an interval I ′ ⊂ R and τ → −∞
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Form of the spacetime models we are considering

If a(t) = eHt we have de Sitter spacetime. (or a(τ) = − 1
Hτ ).

In order to have an inflationary scenario let’s assume

a(τ) = − 1

H τ
+ O

(
τ−2

)
,

da(τ)

dτ
=

1

H τ2
+ O

(
τ−3

)
,

d2a(τ)

dτ2
= − 2

H τ3
+ O

(
τ−4

)
.

For τ → −∞ the space time “looks like” de Sitter.
(Positive cosmological constant), exponential acceleration in the

proper time t.
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Horizon

Cosmological horizon (τ → −∞).

U = tan−1(τ−r) , V = tan−1(τ+r),

Conformall null infinity =− correspond to
the horizon (region c in the figure)

Metric on the horizon is degenerate:

g |=− = H−2
(
dS2(θ, ϕ)

)
,

c

!
!

!
! !

U V

b

a

Conformal Killing vector ∂τ tangent to =−

L∂τ g = −2∂τ (ln a) g ,
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Metric fluctuations

Remark

Homogeneity and Isotropy are over idealization.

Fluctuations about those spacetimes needs to be taken into
account.

They should be responsible for the formation of the structures
we see in the sky (galaxies).

They should be responsible for the anisotropies in the CMB
too.

It is believed that they are of quantum origin.
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A prototype of these fluctuations

After some linearization we end up with [Bardeen, Mukhanov
Feldman Brandenberger]

PΦ = 0, P = −� + ξR + m2

It looks like a free quantum field theory on a curved background!

They are “born” on the quantum ground states and soon
after this they “become” classical.

Problem 1:

What is a ground state for a QFT in a curved spacetime? How can
it be chosen?

Problem 2:

Is it possible to assume that the fluctuations become classical?
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Problem 1

Problem 1:

What is a ground state for a QFT in a curved spacetime? How can
it be chosen?

There is a preferred time direction, ∂t .

But the spacetime is not static, (∂t is not timelike Killing)

Conformal equivalence with a patch of Minkowksi spacetime.

But the theory is not conformally invariant (If ξ 6= 1/6 and
m 6= 0). We cannot directly take the Minkowski “vacuum”.

In the equation of motion

− ∂2

∂τ2

Φ

a(τ)
+4 Φ

a(τ)
+ V (τ)

Φ

a(τ)
= 0,

the “potential” V (τ) vanishes for τ → −∞.
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Problem 2

Problem 2:

Is it possible to assume that the fluctuations become classical?

Minimal Requirement: the variance of the perturbations
needs to be bounded.

This is guaranteed by the Hadamard property, or better by
the microlocal spectral condition.

Unfortunately is not so easy to verify this property in a
general spacetime, (at least if the spacetime is not static...)
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QFT in the spacetime

Real solutions of

PΦ = 0 , P = −� + ξR + m2 ,

generated by compactly supported initial data on Cauchy surf.

The symplectic structure (S(M), σM).

σM(Φ1,Φ2) =

∫
Σ

dΣ (Φ2∇nΦ1 − Φ1∇nΦ2) , ∀Φ1,Φ2 ∈ S(M)

The Weyl operators associated to (S(M), σM)

W (φ1)W (φ2) = e iσM(φ1,φ2)W (φ1+φ2), W †(φ) = W (−φ).

They generate the C ∗−algebra of local observables.
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Analyses of the classical solutions

Φ ∈ S(M) can be decomposed in modes (k ∈ R3, k = |k|,)

Φ(τ,~x) =

∫
R3

d3k
[
φk(τ,~x)Φ̃(k) + φk(τ,~x)Φ̃(k)

]
,

with respect to the functions

φk(τ,~x) =
1

a(τ)

e ik·~x

(2π)
3
2

χk(τ) ,

χk(τ), is solution of the differential equation

d2

dτ2
χk + (V0(k, τ) + V (τ))χk = 0,

V0(k, τ) := k2+

(
1

Hτ

)2 [
m2 + 2H2

(
ξ − 1

6

)]
, V (τ) = O(1/τ3).
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With the normalization

dχk(τ)

dτ
χk(τ)− χk(τ)

dχk(τ)

dτ
= i . ∀τ ∈ (−∞, 0)

In the case of de Sitter spacetime, V (τ) = 0, and

χk(τ) =

√
−πτ
2

e
iπν

2 H
(2)
ν (−kτ),

with

ν =

√
9

4
−
(

m2

H2
+ 12ξ

)
,

where H
(2)
ν is the Hankel function of second kind.
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Perturbative solutions in the general case

V perturbation potential over the de Sitter solution χk.

The retarded fundamental solutions Sk

Then the general solutions ρk.

ρk(τ) = χk(τ)

+(−1)n
+∞∑
n=1

∫ τ

−∞
dt1

∫ t1

−∞
dt2 · · ·

∫ tn−1

−∞
dtnSk(τ, t1)Sk(t1, t2) · · ·

Sk(tn−1, tn)V (t1)V (t2) · · ·V (tn)χk(tn),

Convergence

if |Reν| < 1/2 and V = O(τ−3) or
if |Reν| < 3/2 and V = O(τ−5)
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Projection of the quantum theory on the Horizon

=− topologically equivalent to R× S2, coordinates (`, θ, ϕ).

The symplectic space of real wavefunctions (S(=−), σ):

S(=−) =
{
ψ ∈ C∞(R× S2) | ψ ∈ L∞, ∂`ψ ∈ L1, ψ̂ ∈ L1, kψ̂ ∈ L∞

}
,

σ(ψ,ψ′) =

∫
R×S2

(
ψ
∂ψ′

∂`
− ψ′∂ψ

∂`

)
. ∀ψ,ψ′ ∈ S(=−)

A symplectic structure, with data on the null surfaces

W=−(ψ) = W ∗
=−(−ψ), W=−(ψ)W=−(ψ′) = e

i
2
σ(ψ,ψ′)W=−(ψ+ψ′).
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Preferred state on the Horizon

∂τ restricted on the Horizon Hα∂`.

Positive frequencies w.r. to ∂`.
ψ̂(k, θ, ϕ) =

∫
R

e ik`
√

2π
ψ(`, θ, ϕ)d`.

µ(ψ,ψ′) = Re

∫
R×S2

2kΘ(k)ψ̂(k , θ, ϕ)ψ̂′(k , θ, ϕ) dk dS2(θ, ϕ),

It defines a pure gaussian state

λ(W (ψ)) = e
µ(ψ,ψ)

2 ,
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Projection on the horizon and pull back of the states

γ : S(M)→ C∞(=−), γ(Φ) = Φ|=−

Theorem

Φ can be restricted on =−, it becomes γΦ ∈ S(=−), preserving
the symplectic form

σ(γΦ, γΦ′) = H−2σM(Φ,Φ′). ∀Φ,Φ′ ∈ S(M)

Theorem

ı :W(M)→W(=−) generated by

ı (WM(Φ)) = W
(
−H−1γ(Φ)

)
,∀Φ ∈ S(M),

is an injective ∗−homomorphism: An embedding of algebras.



Motivations Cosmological spacetimes QFT in the spacetime Hadamard property Conclusion

Pullback of states

Given any state ω :W(=−)→ C, it can be pulled back to the
algebra WM with ı∗(ω).

In particular the preferred state

λM(a) := λ(ı(a)). ∀a ∈ W(M)

In the de Sitter spacetime, λM is the Bunch-Davies state

That state is the state considered by cosmologist as the
“ground states” for the analyses of perturbation.

If ν ∼ 3/2 we have on Στ

λM(x , y) ∼
∫

e ik(x−y)P(k)dk3 , P(k) ∼ α

|k|∼3
+

β

|k|∼1
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Hadamard property and Microlocal spectral condition

A two point function of a state is Hadamard if

ω(x , y) =
U(x , y)

σε(x , y)
+ V (x , y) lnσε(x , y) + W (x , y)

Radzikowski has given another equivalent characterization using
the microlocal analyses

WF (ω) =
{

((x , kx), (y ,−ky )) ∈ (T ∗M)2 \ 0 | (x , kx) ∼ (y , ky ), kx . 0
}
,
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Hadamard property for these states

Now we tackle the second problem, namely if it is Hadamard.

λM(f , g) = lim
ε→0+

− 1

π

∫
R2×S2

ψf (`, θ, ϕ)ψg (`′, θ, ϕ)

(`− `′ − iε)2
d`d`′dS2(θ, ϕ),

where ψf = γEf

Theorem

λM is a distribution that satisfy the µSC

WF (λM) = Γ =

=
{

((x , kx), (y ,−ky )) ∈ (T ∗M)2 \ 0 | (x , kx) ∼ (y , ky ), kx . 0
}
,

hence it is Hadamard
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Sketch of the proof. ⊃

Having

λM(f ,Pg) = λM(Pf , g) = 0, λM(f , g)− λM(g , f ) = E (f , g),

then the inclusion ⊃ descends from the Proposition 6.1 Strohmaier
Verch Wollenberg (2002).
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Sketch of the proof. ⊂

The state can be seen as a “composition” of distribution

λM(f , g) = 〈T (Ef )�=− , (Eg)�=−〉.

The restriction of one entry of E on =− is meaningful

WF (E )=− = ∅ =⇒ Ẽ := E�=− ∈ D′(=− ×M)

WF ′(T ) ∩WF
(

Ẽ ⊗ Ẽ
)
=−×=−

= ∅ we can multiply them.

Consider the distribution K ∈ D′(=− ×=− ×M ×M)

K = (T ⊗ I ) ·
(

Ẽ ⊗ Ẽ
)
,

K is the kernel of the following map

K : C∞0 (=− ×=−)→ D′(M ×M)
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We would like to make sense to the following expression, and
to control its wave front set

λM(f , g) ∼ “K(1⊗ 1)(f ⊗ g)”

χ(`) ∈ C∞0 (R) such that χ(0) = 1 and

χn(`, θ, ϕ) = χ

(
`

n

)
. ∀n ∈ N

Hence we can define the following sequence

λn = K(χn(`)χn(`′)) ∈ D′(M ×M).

We have that

WF (λn) ⊂ Γ =

=
{

((x , kx), (y ,−ky )) ∈ T ∗M2 \ 0 | (x , kx) ∼ (y , ky ), kx . 0
}
,
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Theorem

λn tends to λM in the Hörmander topology D′Γ(M ×M):

1 In the topology of D′(M ×M)

λn → λM

2

sup
n

sup
k∈V
|k|N |λ̂n(· φ)| <∞, N = 1, 2, 3, . . .

φ ∈ C∞0 (M ×M), The closed cone V ∩ Γ = ∅.
Hence WF (λM) ⊂ Γ
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Conclusion and open questions

Summary:
There is a way of defining a preferred state in some
cosmological models.

It has interesting properties:

“Positive frequency” w.r. to the conformal time
It has a good singular behavior.

Open Questions:
Stability of these states, in particular how the power spectrum
changes in time.

The role of regulaziation needs to be addressed in the analyses
of the power spactrum.

How to deal with interacting theories?
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