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Summary

e Cosmological Scenario /
Geometry of the spacetimes under consideration

@ Interplay of the field theory in the bulk and on the horizon.
@ Pullback of some states.

@ Their microlocal spectral properties.
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Motivations

Models of the Universe

The universe is described as a curved spacetime (M, g)

In first approximation: Mis | x S
e [ is the interval of the “cosmological time”
e S is a 3d manifold: the “space”, it has an high symmetry.
o homogeneous and isotropic.

The metric g is of Freedmann Robertson Walker type

d 2
L+ 2ds(0,¢)] .

= —dt® + 2°(t
g +a(t) |7

recent observation seems to say that
e k=0.
o a(t) = eM, H is the Hubble parameter
(very small but not zero).



Motivations

Going back in time: Inflationary scenario

@ We assume a phase of rapid expansion at
the beginning.

@ Then just after the big bang:
a(t)=et,  Hy>>H

@ More precisely: with x = 0, conformally
related with Minkowski.

tq .
T(t):/to a(t’)dt

8FRW = 32(7') [—dT2 + dr? + rzdSz(G, QO)] .

It is with an interval I’ CR and 7 — —c0




Cosmological spacetimes

Form of the spacetime models we are considering

o If a(t) = e!* we have de Sitter spacetime. (or a(7) = —7-).
@ In order to have an inflationary scenario let's assume
B 1 5 da(r) 1 _3
a(r) = W—FO(T ), . —H7_2+O(7' ),
d23(’7') 2 4
dr2 __HT3+O(T )

@ For 7 — —o0 the space time “looks like” de Sitter.
(Positive cosmological constant), exponential acceleration in the
proper time t.



Cosmological spacetimes

Horizon

e Cosmological horizon (7 — —o0).
U=tant(r—r), V =tan"Y(14r),

e Conformall null infinity &~ correspond to
the horizon (region c in the figure)

@ Metric on the horizon is degenerate: ¢

gls- = H2 (dS*(0,¢)) .,

e Conformal Killing vector 9; tangent to &

Lo, g =—20;(Ina)g,

7.



Cosmological spacetimes

Metric fluctuations

Homogeneity and Isotropy are over idealization. \

@ Fluctuations about those spacetimes needs to be taken into
account.

@ They should be responsible for the formation of the structures
we see in the sky (galaxies).

@ They should be responsible for the anisotropies in the CMB
too.

@ It is believed that they are of quantum origin.



Cosmological spacetimes

A prototype of these fluctuations

After some linearization we end up with [Bardeen, Mukhanov
Feldman Brandenberger]|

P® =0, P=—-0+¢R+m?
It looks like a free quantum field theory on a curved background!

@ They are “born” on the quantum ground states and soon
after this they “become” classical.

Problem 1:

What is a ground state for a QFT in a curved spacetime? How can
it be chosen?

Problem 2:

Is it possible to assume that the fluctuations become classical?




Cosmological spacetimes

Problem 1

Problem 1:

What is a ground state for a QFT in a curved spacetime? How can
it be chosen?

There is a preferred time direction, 0.

But the spacetime is not static, (9; is not timelike Killing)
Conformal equivalence with a patch of Minkowksi spacetime.
But the theory is not conformally invariant (If £ # 1/6 and
m # 0). We cannot directly take the Minkowski “vacuum”.

@ In the equation of motion
> o ® ®
A SN ARV ~0
oo Cam TV =0
the "potential” V/(7) vanishes for 7 — —oc.



Cosmological spacetimes

Problem 2

Problem 2:
Is it possible to assume that the fluctuations become classical?

@ Minimal Requirement: the variance of the perturbations
needs to be bounded.

@ This is guaranteed by the Hadamard property, or better by
the microlocal spectral condition.

o Unfortunately is not so easy to verify this property in a
general spacetime, (at least if the spacetime is not static...)



QFT in the spacetime

QFT in the spacetime

@ Real solutions of
POb=0, P=-0O+E(R+m?,

generated by compactly supported initial data on Cauchy surf.
@ The symplectic structure (S(M), o).

UM((Dl,d)Q) = /dZ (¢2V,,¢1 — (Dlvnq)Z)a Vq)l,q)z < S(M)
pu

@ The Weyl operators associated to (S(M), opn)

W(p1)W(2) = M9 W (g1+¢p), Wi(¢) = W(-¢).

@ They generate the C*—algebra of local observables.



QFT in the spacetime

Analyses of the classical solutions

® € S(M) can be decomposed in modes (k € R3, k = |k|,)

o(r.%) = [ % [on(r,2)80) + anlr. )B(K) ]
R3

with respect to the functions

ik-X
d(r, %) = a(l)(;) () .

Xk(7), is solution of the differential equation

d2
ﬁXk + (V()(k7 T) + V(T))Xk =0,

Vo(k,7) == k%(,ﬁ)z [mz + 2H? (g - é)] . V(1) =0(1/7).



QFT in the spacetime

@ With the normalization

dX;T(T)Xk(T) —Xk(T)dX;T(T) =i. V1€ (—00,0)

In the case of de Sitter spacetime, V(7) =0, and

9 2
u_\/4 (Z2 +12§>

@ where H,S2) is the Hankel function of second kind.

xk(7) =

with




QFT in the spacetime

Perturbative solutions in the general case

@ V perturbation potential over the de Sitter solution .
@ The retarded fundamental solutions Sy

@ Then the general solutions py.

Pe(T) = xk(7)

too o t th-1
+(—1)HZ/ dtl/ dtz"-/ dt,,Sk(T, tl)Sk(tl,tg)”-
—1/— —00 -0

Sk(tn—1, ta) V(t1) V(t2) - - - V(tn)xk(tn),

Convergence

if |[Rev| < 1/2 and V = O(773) or
if |Rev| < 3/2 and V = O(7~%)




QFT in the spacetime

Projection of the quantum theory on the Horizon

3~ topologically equivalent to R x S?, coordinates (£, 6, ¢).

The symplectic space of real wavefunctions (S(37),0):

s7)={ve C®R=8Y) |p el apell fellkhel™},
N _ awl /8¢ / o—
o= [ (05 -vGr). v es@)

RxS?

A symplectic structure, with data on the null surfaces

Wo- () = Wi (=),  Wa (0)Wa (1) = e27¥ ) Wy (1),



QFT in the spacetime

Preferred state on the Horizon

@ O, restricted on the Horizon H%0,.

o Positive frequencies w.r. to Jp.

Ukb0) = 2= G(L,0, ).

u(ib ) = Re / 2kO(K) D (k. 0. )07 (k. 6. 0) dk dS?(6. ),

RxS?

It defines a pure gaussian state

AW(@)) =57,



QFT in the spacetime

Projection on the horizon and pull back of the states

® can be restricted on 3, it becomes v® € S(37), preserving
the symplectic form

o(y®, 7)) = H 2oy (0, d). Vb, ¢ € S(M)

1: W(M) — W(S™) generated by

L(Win(®)) = W (—H15(9)) ¥ € S(M),

is an injective x—homomorphism: An embedding of algebras.




QFT in the spacetime

Pullback of states

Given any state w : W(37) — C, it can be pulled back to the
algebra Wy with +*(w).

@ In particular the preferred state
Am(a) .= A(x(a)). Vae W(M)

@ In the de Sitter spacetime, Ay is the Bunch-Davies state

@ That state is the state considered by cosmologist as the
“ground states” for the analyses of perturbation.

o If v~ 3/2 we have on X,

. (0]
Am(x,y) ~ / M p(k)dk3,  P(k) ~ Wt |k|ﬁ~1



Hadamard property

Hadamard property and Microlocal spectral condition

A two point function of a state is Hadamard if

9 = 2 V) nae,y) + Wiey)

Radzikowski has given another equivalent characterization using
the microlocal analyses

WF(w) = {((x, ko). (. =) € (T*MY\ O | (x, k) ~ (1, k). 0}



Hadamard property

Hadamard property for these states

Now we tackle the second problem, namely if it is Hadamard.

(4,0 7,0

m(f,g) = lim —= / Vel 0, 0)0e(0.0:9) 4 as(v, ),
((— 0 —ic)?

R2XS2

where ¥ = vEf

Theorem

Awm is a distribution that satisfy the pSC

WF(Am) =T =

= {((e k) (. —hy)) € (T*MP\O | (x, k) ~ (v, ) kO

hence it is Hadamard




Hadamard property

Sketch of the proof. D

Having

AM(fa Pg) = )‘I\/I(Pf7g) =0, AM(fvg) - )‘l\/l(ga f) = E(f,g),

then the inclusion D descends from the Proposition 6.1 Strohmaier
Verch Wollenberg (2002).



Hadamard property

Sketch of the proof. C

@ The state can be seen as a “composition” of distribution
@ The restriction of one entry of £ on 3~ is meaningful

WF(E)y- =0 = E:=Eq €D/(3 x M)

o WF'(T)n WF (E ® E) = () we can multiply them.

J— X~

o Consider the distribution K € D'(3~ x S~ x M x M)
K=(T&l)- (E@E),
K is the kernel of the following map

K:CR(S™ xS7) — D(M x M)



Hadamard property

@ We would like to make sense to the following expression, and
to control its wave front set

m(f,g) ~ "KL @ 1)(f© g)"

e x(¢) € Cg°(R) such that x(0) =1 and

Y4
Xn(4,0, ) = x <n> . VneN
Hence we can define the following sequence
An = K(xn(@)xn(¢)) € D'(M x M).

We have that

WF(\,) CT =
= {((Xa kX)?()/a_ky)) € T*M2\0 | (X, kx) ~ (Yv ky)vkxbo}a



Hadamard property

An tends to Ay in the Hormander topology D (M x M):
@ In the topology of D'(M x M)

An — A\M

supsup]k\N\)\n/(-\qﬁ)\ < 00, N=123...
n keV

¢ € C°(M x M), The closed cone VN T = 0.
Hence WF(Aym) C T




Conclusion

Conclusion and open questions

Summary:
@ There is a way of defining a preferred state in some
cosmological models.

@ It has interesting properties:
o “Positive frequency” w.r. to the conformal time
e It has a good singular behavior.

Open Questions:
@ Stability of these states, in particular how the power spectrum
changes in time.
@ The role of regulaziation needs to be addressed in the analyses
of the power spactrum.

@ How to deal with interacting theories?
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