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Plan of the Talk

I Introduction (Classical cosmological scenario)

I Semiclassical Einstein’s equation

I Stress-Energy Tensor regularization

I Solution with scalar conformal fields as sources

I Solution with massive fields as sources
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Cosmological scenario: geometry and matter
I Physical input: Universe is homogeneous and isotropic.

Then FRW metric:

ds2 = −dt2 + a(t)2

(
dr2

1 + κr2
+ r2dΣ2

)
.

κ = 0 flat, κ = ±1 open or closed.
I recent observation: a(t) ' CeHt , and κ ' 0.
I Take a classical fluid for matter: Ta

b = (−ρ,P,P,P)
I Einstein’s equations become FRW equations H = ȧa−1

3H2 = 8πρ− 3κ

a2
, 3Ḣ + 3H2 = −4π (ρ+ 3P)

I Eventually we shall use

−R = 8πT , ∇aTab = 0

it is equivalent up to an initial condition.
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Cosmological scenario: observation

I If we use Radiation, Dust and cosmological constant to
model the present day observations:

I Radiation is less important. ρR ∼ a(t)−4

I We look for a mixture of ρM ∼ a(t)−3 and ρΛ ∼ C

We have a problem

in modeling CMB and Supernovae red-shift observation:

Total Energy density is:
∼ 75% Cosmological constant, ∼ 25% Dust.

Known matter: only ∼ 4%.

I Let’s try to see the role of quantum effects.
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Gravity: semiclassical approximation

I We would like to have a quantum theory of gravity.

I Too difficult.

I At least we would like to have a theory of backreaction.

I We try semiclassically.

Gab = 8π〈Tab〉.

I It should work: when fluctuation of 〈Tab〉 are negligible.

I As in atomic physics: quantum mechanical electron with
external classical field.

Nicola Pinamonti

Solution of the semiclassical Einstein equations with possible interpretation in cosmology7



Motivations Semiclassical approximation Fields, Tensors Solutions Summary

Wald Axioms
In QM Tab are singular objects 〈Tab〉 → ∞.

We need a renormalisation prescription for Tab on CST.

Wald axioms =⇒ meaningful semiclassical approx.
[Wald 77] [Wald 78]

(1.) It must agree with formal results for Tab

(For scalar: (Φ,TabΨ), can be found formally if (Φ,Ψ) = 0).

(2.) Regularization of Tab in Minkowski coincide with “normal
ordering”.

(3.) Conservation: ∇a〈Tab〉 = 0.

(4.) Causality: 〈Tab〉 at p depends only on J−(p).

(5.) Tab depends on derivatives of the metric up to the second
order (or third).

Nicola Pinamonti

Solution of the semiclassical Einstein equations with possible interpretation in cosmology8



Motivations Semiclassical approximation Fields, Tensors Solutions Summary

Matter: Scalar free field theory
I Equation of motion: We will consider ξ = 1/6.

P := −� + ξR + m2 , Pφ = 0 .

I Stress-Energy Tensor:

Tab := ∂aφ∂bφ−
1

6
gab

(
∂cφ∂

cφ+ m2φ2
)
− ξ∇(a∂b)φ

2

+ξ

(
Rab −

R

6
gab

)
φ2 +

(
ξ − 1

6

)
gab�φ

2.

I Conservation equations, and trace.

∇aT
a
b = 0 , T = −3

(
1

6
− ξ
)

�φ2 −m2φ2 .

I It differs by the usual one by terms of the form:
gab (φPφ+ Pφφ) [Moretti 2003].

Nicola Pinamonti

Solution of the semiclassical Einstein equations with possible interpretation in cosmology9



Motivations Semiclassical approximation Fields, Tensors Solutions Summary

Quantum field theory

I States in QFT are described by n−point functions.

I Quasi free states ω described by the two-points function

ω2(x , y) = 〈φ(x)φ(y)〉

thought as distribution in D′(M ×M).

I Tab arises as an operation on ω2 and a coinciding point limit.

I It is not well defined...

I Quasifree states that possess Hadamard property:
[Radzikowski 1995] [Brunetti Fredenhagen Köhler 1996]

I Physically: The fluctuations of the field are always finite on
Hadamard states.
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Hadamard Two-points function

ω2 =
1

8π2

(
u

σε
+ v log σε + w

)
.

I σ is half of the square of the geodesic distance ,
I u v w are smooth functions,
I u depends only upon the geometry via gab

I v depends upon gab, ξ and m2

I w characterizes the state.

The singular Structure H = 1
8π2

(
u
σ + v log σ

)
is fixed and does not

depend on the state.

Some notations:

v =
∑∞

n=0 vnσ
n [v ](x) = v(x , x)

Later we will use [v1]
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Regularization of the two-points function
Regularization with point splitting: Minimal requirement.

〈φ(x)φ(y)〉ω := ω2(x , y)−H(x , y)

It reduces to normal ordering for flat spacetime.
Tab build on it. [Hollands Wald, Brunetti Fredenhagen Verch, Moretti]

8π2〈φPφ〉ω = 6[v1], 8π2〈(∇aφ)(Pφ)〉ω = 2∇a[v1]

Conservation equation for Tab are satisfied quantum mechanically

∇a〈T a
b〉ω = 0

but (un)-fortunately the trace is different from the classical one.

〈T 〉ω :=
2[v1]

8π2
+

(
−3

(
1

6
− ξ
)

�−m2

)
[w ]

8π2
.
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Some (long) computations.......

... or a look in the literature (for example [Fulling]) gives

2[v1] =
1

360

(
CijklC

ijkl + RijR
ij − R2

3
+ �R

)
+

1

4

(
1

6
− ξ
)2

R2+

+
m4

4
− 1

2

(
1

6
− ξ
)

m2R +
1

12

(
1

6
− ξ
)

�R.
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Remaining freedom

In the trace c�R. Wald’s fifth axiom does not hold!

I Other regularization methods give different stress-energy
tensors.

I Difference: We can add conserved tensors tab build out of
the metric, m and ξ only.

I It must behave as 〈Tab〉 under “scale” transformations.

I Some possibilities arises from the variation of

tab =
δ

δgab

∫ √
g
(
C R2 + D RabR

ab
)

I The trace ta
a is proportional to �R

I We use this freedom to cancel the �R term from 〈T 〉.
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Some Remarks:

I Wald’s fifth axiom partially holds for 〈T ′ab〉 = 〈Tab〉 − tab.

I General principle of local covariance: When regularization
freedom is fixed in a region, is fixed in every spacetime.
[Brunetti Fredenhagen Verch 2003].

I The remaining freedom is 〈φ2〉′ω = 〈φ2〉ω + A m2 + B R.

I But we can not completely cancel [v1] from 〈T 〉ω.

I Similarities with f (R) gravity, but tab alone does not guaranty
stable solutions.

With κ = 0 and ξ = 1/6, the equation −R = 8π〈T 〉 becomes

−6
(
Ḣ + 2H2

)
= −8πGm2〈φ2〉ω +

G

π

(
− 1

30

(
ḢH2 + H4

)
+

m4

4

)
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Conformal invariant theory

If ξ = 1
6 , m2 = 0, the equation does not depend on the state.

Ḣ

(
H2 − H2

c

2

)
= −H4 + H2

c H2, H2
c =

360π

G

H2 = H2
c and H2 = 0 are solutions (de Sitter, Minkowksi).

They are both stable as seen by the full solution

Ce4t = e2/H

∣∣∣∣H + Hc

H − Hc

∣∣∣∣1/Hc

I It is as in the Starobinsky model but now with stable de
Sitter. [Starobinsky 80, Vilenkin 85]
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Clearly H = 0 and H = Hc = H+ are stable solutions.

0 1 2

1

2

H/H+

t H+

I H = Hc is order of magnitude to big to describe the present
expansion velocity of the universe.

I Two fixed points instead of one, a length scale is introduced
(proportional to G ).
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Particle horizon
Maximal comoving distance (if c = 1) it is τ =

∫ t1

t
dt

a(t) .
Where is the singularity t0 in the Penrose diagram?
Consider: ds2 = a2

(
−dτ2 + dx2

)
.

I Radiation dominated:
τ = τ0 − A(t − t0)1/2 → τ0

for t → t0

I Matter dominated:
τ = τ0 − A(t − t0)1/3 → τ0

for t → t0

I ρ = 1/a(t)2

τ = τ0 − log(t − t0)→ −∞
for t → t0
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Massive model
Important: The quantum states enter in the equation via 〈φ2〉.
We would like to use “vacuum states”.

Impossible. Adiabatic states, have similar properties.
[Parker, Parker and Fulling, Lüders Roberts, Junker Schrohe, Olbermann]

I Minimize the particle creation rate. [Parker]

I Minimal smeared energy in the sense of Fewster. [Olbermann]

I They can be thought as approximated ground states.

They are build in an approximated way by a sequence of ωn.
We expand it in powers of 1/m2

〈φ2〉(n) = Am2 + BR + O

(
1

m2

)
The regime m2 >> R is what we need. If m = 1GeV m2

R ∼ 1082
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We have three parameters A,B,m.

Ḣ
(
H2 − H2

0

)
= −H4 + 2H2

0H2 + M

where H0 and M are two constants with the following values

H2
0 =

180π

G
− 1440π2m2B, M =

15

2
m4 − 240π2m4A

At most two fixed stable points (de Sitter phases)

H2
± = H2

0 ±
√

H4
0 + M.

We want to have Minkowski H− = 0, =⇒ A = (32π2)−1.
Freedom in m and B to “Fine tune” H+.

I H+ can be made small by suitable choices of m2 and A,B

I It could model dark energy.

I Quantum effects are hardly negligible.
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Summary
I There is a regularization freedom not fixed by QFT.

I Semiclassical solutions of Einstein’s equation fix in some sense
the freedom.

I The solutions depend upon the quantum states.

I The de Sitter phases could be stable only fixing the
renormalisation freedom.

Open Questions
I What happens considering more realistic models?

I Fluctuations?

I Connection with f (R) gravity?

I Origin of R2 terms in the action? An hint on quantum
gravity?
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