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Plan of the talk

I Localization: As emerging from symmetry.

I The case of Möbius covariance.

I New aspect: Position operators arising from a modification
of the generators of the group.

I Example: Massless KG scalars on 2D Minkowski.
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Motivations

I Causality is an important concept in relativistic physics.

“Spatially separated events cannot interact.”

I In QFT at level of “second quantization”. Local observables
are charactered by R-linear spaces of local wave-functions.

I It is not completely intrinsic. It seems to depend on the
particular representation of the functions.

I Brunetti Guido and Longo: Localization (R-linear spaces)
descends from symmetrey group.

I Do observables compatible with this localization exsit?

I We analyze the case of Möbius covariant theories.
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Is it a trivial task?

I Quantum mechanics: Example: Particle on the line.

L2(R, dx) states, |ψ(x)|2 probability distribution.

I Coordinate: X : ψ(x) 7→ xψ(x), self-adjoint operator.

I Local states in [a, b] are: L2([a, b], dx) ⊂ L2(R, dx).

I If ψ ∈ L2([a, b], dx) and ‖ψ‖ = 1

a ≤ (ψ,Xψ) ≤ b

We say X its compatible with locality.
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Relativistic situation

In relativistic theories

I Example: Scalar KG field on 2D Minkowski.

I Chose a space-like Hypersurface, then

I Localization and coordinate can be defined as above.
This is called Newton Wigner (NW) localization.

I Problem: NW Localization is not preserved by evolution.

(Classical information cannot travel faster then light?).

It seems not Physically reasonable.
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Quantization scheme and localization

For flat spacetime:

I First quantization: (a la Wigner)

O One-particle Hilbert space H.

O (anti)-unitary representation of the Poincarré group.

I Second quantization:

O Consider the Fock space H := F(H) built by H and the
vacuum Ω.

O Weyl operators W (ψ) on H.
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I Localization: Operators need to be smeared.

O a region of spacetime.
Consider real local function with support in a region O.
By means of causal propagator E .

f : O → R,=⇒ KO := {ψf ∈ H|ψf = Ef ,D(f ) ⊂ O}

KO is a R-linear subset of the one-particle Hilbert space H.

I von Neumann algebras. A(O) := {W (ψ)|ψ ∈ KO}′′

I if O is a double cone A(O) is in standard form:
Ω is cyclic and separating.
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Digression Tomita Takesaki modular theory.

I then if A ∈ A (standard) exists an operator S from AΩ to
AΩ realizing the star operation

SAΩ = A∗Ω

I Has a polar decomposition S := J∆1/2

I ∆ self-adj. positive. ∆itA∆−it = A (modular transf.)

I J is an anti-unitary operator. JAJ = A′ (modular conj.)

I A on Ω satisfy the KMS condition w.r. to modular transf.

I For Wedges in Minkowski spacetime, have a geometrical
meaning: J is a Reflection and ∆it are Boosts
(Bisognano Wichmann)

I Be ψ = AΩ, with A∗ = A, in the one particle Hilbert state
then: Sψ = ψ. And also if ψ ∈ K: Sψ = ψ.
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New scheme
Revert the point of view:

I Recognize JO and ∆O = e−DO within the group of symmetry
for sufficiently many local sets O.

I Consider SO := JO∆
1/2
O .

I Assume KO := {ψ|Sψ = ψ} as a definition for R-linear
subspace of H of object local in O.

Properties:

P KO′ = K′
O.

P If O1 ⊂ O2 then KO1 ⊂ KO2 (Isotony)

P If O1 and O2 spatially separed KO1 ∩ KO2 = ∅ (Locality)

P Local function: dense in H := KO + iKO.
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Möbius group: geometric aspects

Conformal transformations of C where S1 is fixed.

x → ax + b

cx + d
,

(
a b
c d

)
∈ PSL(2,R).

PSL(2,R) transformation on PR.

j : x → −x in R ∪ {∞} involution.

Iwasawa decomposition: g ∈ PSL(2,R)

g := T (x)Λ(y)P(z), x , y , z ∈ R,

x
θ

0

h, d , c : generators

[h, d ] = h, [c , d ] = −c , [c , h] = 2d .
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Local sets: I ⊂ I proper interval I = [a, b] in PR.

∀I , the decomposition: g := TI (x)ΛI (y)PI (z) and a jI exist.

(A) Reflection covariance: jI maps I to I ′ and jgI = gjIg
−1.

(B) Λ covariance: ΛI (t) maps I to I and ΛgI (t) = g ΛI (t) g−1.

(C) Positive inclusions:

I If t > 0, TI (t) maps I to It ⊂ I and

ΛI (b)TI (t)ΛI (−b) := TI (e
2πbt);

I If p < 0, PI (p) maps I to Ip ⊂ I and

ΛI (b)PI (p)Λ(−b) := PI (e
−2πbp).

0

0

Lesson: A particular decomposition selects a particular interval.
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Properties of R-linear Subspaces

I Quantum Theory: H Hilbert space.
Ug positive energy (anti)-unitary representation of the Möbius
group.

I Decompositions: Ug := TI (x)ΛI (y)PI (z), and JI

O Generators of PSL(2,R): Selfadjoint operators HI , DI and CI

satisfy:

[HI ,DI ] = iHI , [CI ,DI ] = −iCI , [HI ,CI ] = 2iDI .

O JI the corresponding antiunitary transformation.

I Remark: A decomposition selects an interval I in an abstract
way. Thus intrinsically.
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Properties of R-linear Subspaces
Fix a particular decomposition, then

I Modular structure:
O ∆I := e−2πDI (modular operator)
O JI (modular conjugation)

I Real subspaces from modular operators: SI := JI∆
1/2
I and

KI := {ψ|SIψ = ψ}

I From now on we choose the decomposition for the upper
semicircle I1
(positive part of PR).
H,D,C the self adj. generators and J the anti-unitary
involution. ∆ := exp−2πD
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Digression: POVM

I Pauli Theorem: It is not possible to have a selfadjoint
operator X , showing CCR with P bounded from below.

I Gen. of rotation (H + C )/2 is positive, does not exists a
self-adj. operator representing a global coordinate.

I Ordinary QM: E energy and T time. Usually this is
circumvent enlarging the concept of observable to POVM.
(Naimark).

I In KMS states E is not bounded from below, then a
selfadjoint T operator exists. (Narnhofer, Thirring)

I We are searching for local coordinates for the interval I : it has
to show CCR with the generator of modular transformation.
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Summary Localization Modular coordinate Physical Example

From positive inclusions: [H,D] = iH [C ,D] = −iC
Candidates for X showing CCR with D: − log H and log C

γ log(C )− (1− γ) log H + f (D).

But we want it being compatible with emerging locality:

If ψ ∈ K[a,b]⊂I1 , log (a) ‖ψ‖2 ≤ (ψ,Xψ) ≤ log (b) ‖ψ‖2.

We have the following results

I D is positive on ψ ∈ KI1 .
(See also Guido and Longo).

I For every ψ ∈ K[a,b]⊂I1 , the subsequent inequalities hold

a2(ψ,Hψ) ≤ (ψ,Cψ) ≤ b2(ψ,Hψ) .
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Some energy bounds

O If ψ ∈ KI1 then (ψ,Dψ) ≥ 0.

Proof steps: J∆1/2ψ = ψ and JDJ = −D.
F (α) := (ψ,D∆αψ), F (0) = −F (1),
d
dαF (α) ≤ 0 if 0 ≤ α ≤ 1. Then F (0) ≥ 0.

O For every ψ ∈ K[a,b]⊂I1 , the subsequent inequalities hold

a2(ψ,Hψ) ≤ (ψ,Cψ) ≤ b2(ψ,Hψ) .

Proof steps: U := e−iaH , ψ ∈ K[a,b] then ϕ := Uψ ∈ KI1

(ψ,Cψ) = (ϕ,C+2aD+a2H ϕ) ≥ (ϕ, 2aD+a2H ϕ) ≥ (ψ, a2H ψ)
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Modular coordinate

Idea: it seems possible to use “energies” for measuring positions.
In fact, since log is a monotone function

log(a) ≤ (log〈C 〉ψ − log〈H〉ψ)/2 ≤ log(b) ,

where 〈C 〉ψ = (ψ,Cψ).
Eventually we shall see that

X =
1

2
log(H−1/2CH−1/2)

NB The domain needs to be fixed properly.
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O From H,C ,D genearte a representation of PSL(2,R) on H.
I Decompose H in irreducible representations H = ⊕iHi .

H̃ :=
H2

2
, D̃ :=

D

2
, C̃ :=

H−1/2CH−1/2

2

I Enjoy sl(2,R) commutation relations.
I There is a dense set of analytic vectors on every Hi .
I Generate a positive-energy unitary representation Ũ of the

covering group of SL(2,R) on H.
I For the lowest eigenvalues of rotation gen. we have

k̃ = k/2 + 1/4

O Let ψ ∈ KI where I = [a, b] ⊂ I1 then

a2

2
‖ψ‖2 < (ψ, C̃ψ) <

b2

2
‖ψ‖2 .
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Position Operator

Since the logarithm is also an operator monotone function, we get

X :=
1

2
log(2C̃ ).

I It is self-adjoint on a suitable domain.

I It shows CCR with D:

[D,X ] := i

I It is compatible with emerging locality: ψ ∈ K[a,b]⊂I1

log (a) ‖ψ‖2 ≤ (ψ,Xψ) ≤ log (b) ‖ψ‖2
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Massless scalar field on R1,1: coordinate of a Wedge

I 2D Minkowski: ds2 = −dt2 + dx2,

I Massless KG equation has two modes, in- and out-

I One-particle Hilbert space is L(R+, dE )⊕ L(R+, dE ).

I On L(R+, dE ), the representation of the Möbius group is
generated by:

H := E , D = −i
√

E
d

dE

√
E , C = −

√
E

d2

dE 2

√
E ,

and the anti-unitary involution: the complex conjugation.
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If we read them in the following coordinates: R1,1 := −dv du

The action of g =

(
a b
c d

)
on wave-function ∂vψ(v) reads:

Ug∂vψ(v) =
1

(cv ′ + d)2
∂v ′ψ(v ′) , v ′ =

dv − b

a− cv

I Emerging localization is compatible with
that of the wedges.

I A Model for Quantum coordinates inside a
wedge.

I The scheme, does not work for massive
fields: the one particle Hilbert space is only
one L2(R+, dh). (h = p +

√
p2 + m2)

I In this case we get at most an operator
measuring a spatial coordinate.

W
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Summary

I Localization can arise from the group properties.

I Also in the case of Möbius covariant theory. (Positive energy
representation)

I An operator representing a local coordinate arises modifying
the energy and the conformal energy

I CCR with generator of modular transformation.
I expectation values on local wavefunction compatible with

localization.

Nicola Pinamonti

Localization and position operators in Möbius covariant theories.
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