Localization and position operators in Möbius covariant theories.

Nicola Pinamonti

II Institute für Theoretische Physik Hamburg Universität

Hamburg, 31 January 2007

Plan of the talk

- Localization: as emerging from symmetry.
- The case of Möbius covariance.
- New aspect: Position Operators arising from a modification of the generators of the group.
- Example. Massless KG scalars on 2D Minkowski.
- O R. Brunetti, D. Guido and R. Longo, Rev. Math. Phys. 14, 759 (2002).
- L. Fassarella and B. Schroer, J. Phys. A 35 91239164 (2002).
- O B. Schroer, Nucl. Phys. **B 499** (1997), 519546.
- O np, math-ph/0610070 (2006)

Motivations

- Causality is one of the most important concept in relativistic physics: spatially separated events cannot interact (realized through localization).
- ▶ In **QFT** at level of "second quantization". Local observables are charactered by ℝ-linear spaces of local wave-functions.
- ▶ It is not completely intrinsic. It seems to depend on the particular representation of the functions.
- Brunetti Guido and Longo: local wave functions K can arise from the properties of the group of symmetry.
- We search for operators representing coordinates compatible with the intrinsic localization.
- We tackle the problem of Möbius covariant theories.

Is it a trivial task?

- ▶ Quantum mechanics: Ex: Particle on the line. $L^2(\mathbb{R}, dx)$. $|\psi(x)|^2$ interpreted as probability distribution.
- ▶ Coordinate: $X : \psi(x) \mapsto x\psi(x)$, self-adjoint operator.
- ▶ Local states in [a, b] are: $L^2([a, b], dx) \subset L^2(\mathbb{R}, dx)$. $a \leq (\psi, X\psi) \leq b$ if $\psi \in L^2([a, b], dx)$. X its compatible.
- In relativistic theories: Ex: Scalar KG field on 2D Minkowski. Localization and coordinate a la Newton Wigner (NW), when a space-like Hypersurface is chosen.
- ▶ Problem: NW Localization is not preserved by evolution. (Classical information cannot travel faster then light?). It seems not Physically reasonable.

Quantization scheme and localization

- ► First quantization: a la Wigner for flat space-time Poincarré on H, usually it is assumed that on H acts (anti)-unitarily the group of symmetry of the theory.
- ▶ Second quantization: building Weyl operators $W(\psi)$ on $\mathfrak{H} := \overline{\mathfrak{F}(\mathcal{H})}$ w.r.to vacuum Ω .
- **Localization**: local object by smearing quantum fields with wave-functions having a local meaning $\mathcal{K}_{\mathcal{O}}$.

$$f: \mathcal{O} \to \mathbb{R}, \Longrightarrow \mathcal{K}_{\mathcal{O}} := \{ \psi_f \in \mathcal{H} | \psi_f = \mathsf{E}f, \mathsf{D}(f) \subset \mathcal{O} \}$$

- ▶ von Neumann algebras. $A(O) := \{W(\psi)|\psi \in \mathcal{K}_O\}''$
- if \mathcal{O} is a double cone $\mathcal{A}(\mathcal{O})$ is in standard form: Ω is cyclic and separating.

Digression Tomita Takesaki modular theory.

▶ then if $A \in \mathcal{A}$ (standard) exists an operator S from $\mathcal{A}\Omega$ to $\mathcal{A}\Omega$ realizing the star operation

$$SA\Omega = A^*\Omega$$

- ▶ Has a polar decomposition $S := J\Delta^{1/2}$
- ▶ Δ self-adj. positive. $\Delta^{it} A \Delta^{-it} = A$ (modular transf.)
- ▶ J is an anti-unitary operator. JAJ = A' (modular conj.)
- lacksquare A on Ω satisfy the KMS condition w.r. to modular transf.
- ▶ For Wedges in Minkowski spacetime, have a geometrical meaning: J is a **Reflection** and Δ^{it} are **Boosts** (Bisognano Wichmann)
- ▶ Be ψ = AΩ in the one particle Hilbert state then: Sψ = ψ. And also if ψ ∈ 𝒦: Sψ = ψ.

New scheme

Up to now we consider the one particle Hilbert space \mathcal{H} .

Revert the point of view:

- ▶ Recognize $J_{\mathcal{O}}$ and $\Delta_{\mathcal{O}} = e^{-D_{\mathcal{O}}}$ within the group of symmetry for sufficiently many local sets \mathcal{O} .
- Consider $S_{\mathcal{O}} := J_{\mathcal{O}} \Delta_{\mathcal{O}}^{1/2}$.
- ▶ Assume $\mathcal{K}_{\mathcal{O}} := \{\psi | S\psi = \psi\}$ as a definition for \mathbb{R} -linear subspace of \mathcal{H} of object local in \mathcal{O} .

Properties:

- $P \mathcal{K}_{\mathcal{O}'} = \mathcal{K}'_{\mathcal{O}}.$
- P If $\mathcal{O}_1 \subset \mathcal{O}_2$ then $\mathcal{K}_{\mathcal{O}_1} \subset \mathcal{K}_{\mathcal{O}_2}$.
- **P** If \mathcal{O}_1 and \mathcal{O}_2 spatially separed $\mathcal{K}_{\mathcal{O}_1} \cap \mathcal{K}_{\mathcal{O}_2} = \emptyset$
- **P** Local function: dense in $\mathcal{H} := \overline{\mathcal{K}_{\mathcal{O}} + i\mathcal{K}_{\mathcal{O}}}$.

Möbius group: geometric aspects

Conformal transformations of \mathbb{C} where \mathbb{S}^1 is fixed. Generated by $PSL(2,\mathbb{R})$ and by an involution j. $z\mapsto -i(z+1)(z-1)^{-1}$, $\mathbb{S}^2\to\mathbb{PR}$.

$$x \to \frac{ax+b}{cx+d}, \qquad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathit{PSL}(2,\mathbb{R}).$$

Then j: maps x to -x in $\mathbb{R} \cup \{\infty\}$. Iwasawa decomposition: $g \in PSL(2,\mathbb{R})$

 $g:=T(x)\Lambda(y)P(z), \qquad x,y,z\in\mathbb{R},$ generated by h,d,c form a basis of the Lie algebra $sl(2,\mathbb{R})$:

$$[h,d] = h,$$
 $[c,d] = -c,$ $[c,h] = 2d.$

 $I \subset \mathcal{I}$ proper intervals I = [a, b] points of \mathbb{PR} : For every $I \Longrightarrow g := T_I(x)\Lambda_I(y)P_I(z)$ and a j_I .

Properties:

- (A) Reflection covariance: j_I maps I to I' and $j_{gI} = gj_Ig^{-1}$
- **(B)** Λ **covariance:** The action of Λ_I is closed in I and $\Lambda_{gI}(t) = g \Lambda_I(t) g^{-1}$.
- (C) Positive inclusions:
 - the action of $T_I(t)$ is closed in I if t > 0 and

$$\Lambda_I(b)T_I(t)\Lambda_I(-b) := T_I(e^{2\pi b}t);$$

• the action of $P_I(t)$ is closed in I if t < 0 and

$$\Lambda_I(b)P_I(t)\Lambda(-b) := P_I(e^{-2\pi b}t).$$

Properties of R-linear Subspaces

- ▶ Quantum Theory: \mathcal{H} and a (anti)-unitary representation of the Möbius group. With positive Energy!
- ▶ **Remark** In a decomposition $\Lambda_I(y)$ (gen. by D_I) individuates an interval I.
- Real subspaces from modular operators: be $\Delta_I := e^{-2\pi D_I}$, then

$$S_I := J_I \Delta_I^{1/2}$$
 and $\mathcal{K}_I := \{ \psi | S_I \psi = \psi \}$

▶ Chose the decomposition for the upper half circle I_1 (positive part of \mathbb{PR}).

H, D, C the self adj. generators and J the anti-unitary involution. $\Delta := exp - 2\pi D$

Digression: POVM

- ▶ Pauli Theorem: It is not possible to have a self adjoint operator X, showing CCR with P bounded from below.
- ▶ Gen. of rotation (H + C)/2 is positive, does not exists a self-adj. operator representing a global coordinate.
- ▶ Ordinary **QM** *E* and *T*. Usually this is circumvent enlarging the concept of observable to POVM. (Naimark).
- In KMS states Energy is not bounded from below, then a self-adjoint Time operator exists. (Narnhofer, Thirring)
- ▶ We are searching for local coordinates for the interval *I*: it has to show CCR with the generator of modular transformation.

From positive inclusions: [H, D] = iH [C, D] = -iC**Candidates** for X showing CCR with D: $-\log H$ and $\log C$

$$\gamma \log(C) - (1 - \gamma) \log H + f(D).$$

But we want it being compatible with emerging locality:

If
$$\psi \in \mathcal{K}_{[a,b] \subset I_1}$$
, $\log a \|\psi\|^2 \le (\psi, X\psi) \le \log b \|\psi\|^2$.

- ▶ D is positive on $\psi \in \mathcal{K}_{I_1}$. (Not surprising after the work of Fewster).
- ▶ For every $\psi \in \mathcal{K}_{[a,b] \subset I_1}$, the subsequent inequalities hold

$$a^2(\psi, H\psi) \le (\psi, C\psi) \le b^2(\psi, H\psi)$$
.

Some energy bounds

O If $\psi \in \mathcal{K}_{I_1}$ then $(\psi, D\psi) \geq 0$.

Proof steps:
$$J\Delta^{1/2}\psi = \psi$$
 and $JDJ = -D$. $F(\alpha) := (\psi, D\Delta^{\alpha/2}\psi), \qquad F(0) = -F(1), \frac{d}{d\alpha}F(\alpha) \le 0 \text{ if } 0 \le \alpha \le 1. \qquad \text{Then } F(0) \ge 0.$

O For every $\psi \in \mathcal{K}_{[a,b] \subset I_1}$, the subsequent inequalities hold

$$a^2(\psi, H\psi) \leq (\psi, C\psi) \leq b^2(\psi, H\psi)$$
.

Proof steps: $U:=\mathrm{e}^{-\mathrm{i} a H}$, $\psi\in\mathcal{K}_{[a,b]}$ then $\varphi:=U\psi\in\mathcal{K}_{I_1}$

$$(\psi, C\psi) := (\varphi, C + 2aD + a^2H, \varphi) \ge$$

$$(\varphi, 2aD + a^2H, \varphi) \ge (\psi, a^2H, \psi)$$

Modular coordinate

Idea: it seems possible to use "energies" for measuring positions. In fact, since log is a monotone function

$$\log(a) \le (\log\langle C \rangle_{\psi} - \log\langle H \rangle_{\psi})/2 \le \log(b) ,$$

where $\langle C \rangle_{\psi} = (\psi, C\psi)$.

Eventually we shall see that

$$X = \frac{1}{2}\log(H^{-1/2}CH^{-1/2})$$

NB The domain needs to be fixed properly.

O From H, C, D genearte a representation of $PSL(2, \mathbb{R})$ on \mathcal{H} . Decompose \mathcal{H} in order to get irreducible representations $\mathcal{H} = \bigoplus_i \mathcal{H}_i$.

$$\widetilde{H} := \frac{H^2}{2}, \qquad \widetilde{D} := \frac{D}{2}, \qquad \widetilde{C} := \frac{H^{-1/2}CH^{-1/2}}{2}$$

formally enjoy $sl(2,\mathbb{R})$ commutation relations.

There is a dense set of analytic vectors on every \mathcal{H}_i . Generate a positive energy unitary representation \widetilde{U} of the **covering group** of $SL(2,\mathbb{R})$ on \mathcal{H} .

For the lowest eigenvalues of rotation gen. we have $\tilde{k}=k/2+1/4$

O Let $\psi \in \mathcal{K}_I$ where $I = [a, b] \subset I_1$ then

$$\frac{a^2}{2} \|\psi\|^2 < (\psi, \widetilde{C}\psi) < \frac{b^2}{2} \|\psi\|^2.$$

Position Operator

Since the logarithm is also an operator monotone function, we get

$$X:=\frac{1}{2}\log(2\widetilde{C}).$$

- It is self-adjoint on a suitable domain.
- ▶ It shows CCR with *D*:

$$[D,X]:=i$$

▶ It is compatible with emerging locality: $\psi \in \mathcal{K}_{[a,b] \subset I_1}$

$$\log a \|\psi\|^2 \le (\psi, X\psi) \le \log b \|\psi\|^2$$

Massless scalar field on $\mathbb{R}_{1,1}$: coordinate of a Wedge

- ▶ 2D Minkowski: $ds^2 = -dt^2 + dx^2$,
- ▶ Massless KG equation has two modes, in- and out-
- ▶ The One particle Hilbert space is $L(\mathbb{R}^+, dE) \oplus L(\mathbb{R}^+, dE)$.
- ▶ On $L(\mathbb{R}^+, dE)$, the representation of the Möbius group is generated by:

$$H := E,$$
 $D = -i\sqrt{E}\frac{d}{dE}\sqrt{E},$ $C = -\sqrt{E}\frac{d^2}{dE^2}\sqrt{E},$

and the anti-unitary involution: the complex conjugation.

If we read them in the following coordinates: $\mathbb{R}_{1,1} := - ext{d} ext{v} \, ext{d} ext{u}$

The action of $g=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ on wave-function $\partial_{\nu}\psi(\nu)$ reads:

$$U_{\mathbf{g}}\partial_{\mathbf{v}}\psi(\mathbf{v})=\frac{1}{(c\mathbf{v}'+d)^2}\partial_{\mathbf{v}'}\psi(\mathbf{v}'), \qquad \mathbf{v}'=\frac{d\mathbf{v}-c}{a-c\mathbf{v}}$$

- Emerging localization is compatible with that of the wedges.
- A Model for Quantum coordinates inside a wedge.
- ▶ The scheme, does not work for massive fields: the one particle Hilbert space is only one $L^2(\mathbb{R}^+, dE)$.
- ► In this case we get at most an operator measuring a spatial coordinate. Minkowski or Rindler?

Summary

- ▶ Localization can arise from the group properties.
- ▶ Also in the case of Möbius covariant theory. (Positive energy representation)
- An operator representing a local coordinate arises modifying the energy and the conformal energy
 - ► CCR with generator of modular transformation.
 - expectation values on local wavefunction compatible with localization.

