Localization and position operators in Möbius covariant theories.

Nicola Pinamonti

II Institute für Theoretische Physik
Hamburg Universität
Hamburg, 31 January 2007

Plan of the talk

- Localization: as emerging from symmetry.
- The case of Möbius covariance.
- New aspect: Position Operators arising from a modification of the generators of the group.
- Example. Massless KG scalars on 2D Minkowski.

O R. Brunetti, D. Guido and R. Longo, Rev. Math. Phys. 14, 759 (2002).
O L. Fassarella and B. Schroer, J. Phys. A 3591239164 (2002).
O B. Schroer, Nucl. Phys. B 499 (1997), 519546.
O np, math-ph/0610070 (2006)

Motivations

- Causality is one of the most important concept in relativistic physics: spatially separated events cannot interact (realized through localization).
- In QFT at level of "second quantization". Local observables are charactered by \mathbb{R}-linear spaces of local wave-functions.
- It is not completely intrinsic. It seems to depend on the particular representation of the functions.
- Brunetti Guido and Longo: local wave functions \mathcal{K} can arise from the properties of the group of symmetry.
- We search for operators representing coordinates compatible with the intrinsic localization.
- We tackle the problem of Möbius covariant theories.

Is it a trivial task?

- Quantum mechanics: Ex: Particle on the line. $L^{2}(\mathbb{R}, d x)$. $|\psi(x)|^{2}$ interpreted as probability distribution.
- Coordinate: $X: \psi(x) \mapsto x \psi(x)$, self-adjoint operator.
- Local states in $[a, b]$ are: $L^{2}([a, b], d x) \subset L^{2}(\mathbb{R}, d x)$. $a \leq(\psi, X \psi) \leq b$ if $\psi \in L^{2}([a, b], d x) . X$ its compatible.
- In relativistic theories: Ex: Scalar KG field on 2D Minkowski. Localization and coordinate a la Newton Wigner (NW), when a space-like Hypersurface is chosen.
- Problem: NW Localization is not preserved by evolution. (Classical information cannot travel faster then light?). It seems not Physically reasonable.

Quantization scheme and localization

- First quantization: a la Wigner for flat space-time Poincarré on \mathcal{H}, usually it is assumed that on \mathcal{H} acts (anti)-unitarily the group of symmetry of the theory.
- Second quantization: building Weyl operators $W(\psi)$ on $\mathfrak{H}:=\overline{\mathfrak{F}(\mathcal{H})}$ w.r.to vacuum Ω.
- Localization: local object by smearing quantum fields with wave-functions having a local meaning $\mathcal{K}_{\mathcal{O}}$. $f: \mathcal{O} \rightarrow \mathbb{R}, \Longrightarrow \mathcal{K}_{\mathcal{O}}:=\left\{\psi_{f} \in \mathcal{H} \mid \psi_{f}=E f, D(f) \subset \mathcal{O}\right\}$
- von Neumann algebras. $\mathcal{A}(\mathcal{O}):=\left\{W(\psi) \mid \psi \in \mathcal{K}_{\mathcal{O}}\right\}^{\prime \prime}$
- if \mathcal{O} is a double cone $\mathcal{A}(\mathcal{O})$ is in standard form:
Ω is cyclic and separating.

Digression Tomita Takesaki modular theory.

- then if $A \in \mathcal{A}$ (standard) exists an operator S from $\mathcal{A} \Omega$ to $\mathcal{A} \Omega$ realizing the star operation

$$
S A \Omega=A^{*} \Omega
$$

- Has a polar decomposition $S:=J \Delta^{1 / 2}$
- Δ self-adj. positive. $\Delta^{i t} \mathcal{A} \Delta^{-i t}=\mathcal{A}$ (modular transf.)
- J is an anti-unitary operator. $J \mathcal{A} J=\mathcal{A}^{\prime}$ (modular conj.)
- \mathcal{A} on Ω satisfy the KMS condition w.r. to modular transf.
- For Wedges in Minkowski spacetime, have a geometrical meaning: J is a Reflection and $\Delta^{i t}$ are Boosts (Bisognano Wichmann)
- $\operatorname{Be} \psi=A \Omega$ in the one particle Hilbert state then: $\boldsymbol{S} \psi=\psi$. And also if $\psi \in \mathcal{K}: S \psi=\psi$.

New scheme

Up to now we consider the one particle Hilbert space \mathcal{H}. Revert the point of view:

- Recognize $J_{\mathcal{O}}$ and $\Delta_{\mathcal{O}}=e^{-D_{\mathcal{O}}}$ within the group of symmetry for sufficiently many local sets \mathcal{O}.
- Consider $S_{\mathcal{O}}:=J_{\mathcal{O}} \Delta_{\mathcal{O}}^{1 / 2}$.
- Assume $\mathcal{K}_{\mathcal{O}}:=\{\psi \mid S \psi=\psi\}$ as a definition for \mathbb{R}-linear subspace of \mathcal{H} of object local in \mathcal{O}.

Properties:

P $\mathcal{K}_{\mathcal{O}^{\prime}}=\mathcal{K}_{\mathcal{O}}^{\prime}$.
P If $\mathcal{O}_{1} \subset \mathcal{O}_{2}$ then $\mathcal{K}_{\mathcal{O}_{1}} \subset \mathcal{K}_{\mathcal{O}_{2}}$.
P If \mathcal{O}_{1} and \mathcal{O}_{2} spatially separed $\mathcal{K}_{\mathcal{O}_{1}} \cap \mathcal{K}_{\mathcal{O}_{2}}=\emptyset$
P Local function: dense in $\mathcal{H}:=\overline{\mathcal{K}_{\mathcal{O}}+i \mathcal{K}_{\mathcal{O}}}$.

Möbius group: geometric aspects

Conformal transformations of \mathbb{C} where \mathbb{S}^{1} is fixed. Generated by $\operatorname{PSL}(2, \mathbb{R})$ and by an involution j. $z \mapsto-i(z+1)(z-1)^{-1}, \mathbb{S}^{2} \rightarrow \mathbb{P} \mathbb{R}$.

$$
x \rightarrow \frac{a x+b}{c x+d}, \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{PSL}(2, \mathbb{R})
$$

Then j : maps x to $-x$ in $\mathbb{R} \cup\{\infty\}$. Iwasawa decomposition: $g \in \operatorname{PSL}(2, \mathbb{R})$

$$
g:=T(x) \wedge(y) P(z), \quad x, y, z \in \mathbb{R}
$$

generated by h, d, c form a basis of the Lie algebra $s /(2, \mathbb{R})$:

$$
[h, d]=h, \quad[c, d]=-c, \quad[c, h]=2 d .
$$

$I \subset \mathcal{I}$ proper intervals $I=[a, b]$ points of $\mathbb{P} \mathbb{R}:$
For every $I \Longrightarrow g:=T_{l}(x) \Lambda_{l}(y) P_{l}(z)$ and a j_{l}.

Properties:

(A) Reflection covariance: j_{l} maps I to I^{\prime} and $j_{g I}=g j_{I} g^{-1}$
(B) Λ covariance: The action of Λ_{I} is closed in I and

$$
\Lambda_{g l}(t)=g \Lambda_{l}(t) g^{-1}
$$

(C) Positive inclusions:

- the action of $T_{l}(t)$ is closed in I if $t>0$ and

$$
\Lambda_{l}(b) T_{l}(t) \Lambda_{l}(-b):=T_{l}\left(e^{2 \pi b} t\right) ;
$$

- the action of $P_{l}(t)$ is closed in I if $t<0$ and

$$
\Lambda_{l}(b) P_{l}(t) \wedge(-b):=P_{l}\left(e^{-2 \pi b} t\right) .
$$

Properties of \mathbb{R}-linear Subspaces

- Quantum Theory: \mathcal{H} and a (anti)-unitary representation of the Möbius group. With positive Energy!
- Remark In a decomposition $\Lambda_{l}(y)$ (gen. by D_{l}) individuates an interval l.
- Real subspaces from modular operators: be $\Delta_{I}:=e^{-2 \pi D_{I}}$, then

$$
S_{I}:=J_{I} \Delta_{l}^{1 / 2} \text { and } \mathcal{K}_{I}:=\left\{\psi \mid S_{I} \psi=\psi\right\}
$$

- Chose the decomposition for the upper half circle I_{1} (positive part of $\mathbb{P R}$). H, D, C the self adj. generators and J the anti-unitary involution. $\Delta:=\exp -2 \pi D$

Digression: POVM

- Pauli Theorem: It is not possible to have a self adjoint operator X, showing CCR with P bounded from below.
- Gen. of rotation $(H+C) / 2$ is positive, does not exists a self-adj. operator representing a global coordinate.
- Ordinary QM E and T. Usually this is circumvent enlarging the concept of observable to POVM. (Naimark).
- In KMS states Energy is not bounded from below, then a self-adjoint Time operator exists. (Narnhofer, Thirring)
- We are searching for local coordinates for the interval I : it has to show CCR with the generator of modular transformation.

From positive inclusions: $[H, D]=i H[C, D]=-i C$
Candidates for X showing $C C R$ with $D:-\log H$ and $\log C$

$$
\gamma \log (C)-(1-\gamma) \log H+f(D)
$$

But we want it being compatible with emerging locality:

$$
\text { If } \psi \in \mathcal{K}_{[a, b] \subset l_{1}}, \log a\|\psi\|^{2} \leq(\psi, X \psi) \leq \log b\|\psi\|^{2} .
$$

- D is positive on $\psi \in \mathcal{K}_{I_{1}}$. (Not surprising after the work of Fewster).
- For every $\psi \in \mathcal{K}_{[a, b] \subset l_{1}}$, the subsequent inequalities hold

$$
a^{2}(\psi, H \psi) \leq(\psi, C \psi) \leq b^{2}(\psi, H \psi)
$$

Some energy bounds

0 If $\psi \in \mathcal{K}_{l_{1}}$ then $(\psi, D \psi) \geq 0$.

$$
\text { Proof steps: } J \Delta^{1 / 2} \psi=\psi \text { and } J D J=-D .
$$

$$
\begin{array}{lr}
F(\alpha):=\left(\psi, D \Delta^{\alpha / 2} \psi\right), & F(0)=-F(1) \\
\frac{d}{d \alpha} F(\alpha) \leq 0 \text { if } 0 \leq \alpha \leq 1 . & \text { Then } F(0) \geq 0 .
\end{array}
$$

O For every $\psi \in \mathcal{K}_{[a, b] \subset l_{1}}$, the subsequent inequalities hold

$$
a^{2}(\psi, H \psi) \leq(\psi, C \psi) \leq b^{2}(\psi, H \psi)
$$

Proof steps: $U:=e^{-i a H}, \psi \in \mathcal{K}_{[a, b]}$ then $\varphi:=U \psi \in \mathcal{K}_{l_{1}}$

$$
\begin{gathered}
(\psi, C \psi):=\left(\varphi, C+2 a D+a^{2} H, \varphi\right) \geq \\
\left(\varphi, 2 a D+a^{2} H, \varphi\right) \geq\left(\psi, a^{2} H, \psi\right)
\end{gathered}
$$

Modular coordinate

Idea: it seems possible to use "energies" for measuring positions. In fact, since log is a monotone function

$$
\log (a) \leq\left(\log \langle C\rangle_{\psi}-\log \langle H\rangle_{\psi}\right) / 2 \leq \log (b)
$$

where $\langle C\rangle_{\psi}=(\psi, C \psi)$.
Eventually we shall see that

$$
X=\frac{1}{2} \log \left(H^{-1 / 2} C H^{-1 / 2}\right)
$$

NB The domain needs to be fixed properly.

O From H, C, D genearte a representation of $\operatorname{PSL}(2, \mathbb{R})$ on \mathcal{H}. Decompose \mathcal{H} in order to get irreducible representations $\mathcal{H}=\oplus_{i} \mathcal{H}_{i}$.

$$
\widetilde{H}:=\frac{H^{2}}{2}, \quad \widetilde{D}:=\frac{D}{2}, \quad \widetilde{C}:=\frac{H^{-1 / 2} C H^{-1 / 2}}{2}
$$

formally enjoy $s l(2, \mathbb{R})$ commutation relations.
There is a dense set of analytic vectors on every \mathcal{H}_{i}.
Generate a positive energy unitary representation \widetilde{U} of the covering group of $S L(2, \mathbb{R})$ on \mathcal{H}.
For the lowest eigenvalues of rotation gen. we have $\tilde{k}=k / 2+1 / 4$
\mathbf{O} Let $\psi \in \mathcal{K}_{\boldsymbol{I}}$ where $I=[a, b] \subset I_{1}$ then

$$
\frac{a^{2}}{2}\|\psi\|^{2}<(\psi, \widetilde{C} \psi)<\frac{b^{2}}{2}\|\psi\|^{2}
$$

Position Operator

Since the logarithm is also an operator monotone function, we get

$$
X:=\frac{1}{2} \log (2 \widetilde{C})
$$

- It is self-adjoint on a suitable domain.
- It shows CCR with D :

$$
[D, X]:=i
$$

- It is compatible with emerging locality: $\psi \in \mathcal{K}_{[a, b] \subset l_{1}}$

$$
\log a\|\psi\|^{2} \leq(\psi, X \psi) \leq \log b\|\psi\|^{2}
$$

Massless scalar field on $\mathbb{R}_{1,1}$: coordinate of a Wedge

- 2D Minkowski: $d s^{2}=-d t^{2}+d x^{2}$,
- Massless KG equation has two modes, in- and out-
- The One particle Hilbert space is $L\left(\mathbb{R}^{+}, d E\right) \oplus L\left(\mathbb{R}^{+}, d E\right)$.
- On $L\left(\mathbb{R}^{+}, d E\right)$, the representation of the Möbius group is generated by:

$$
H:=E, \quad D=-i \sqrt{E} \frac{d}{d E} \sqrt{E}, \quad C=-\sqrt{E} \frac{d^{2}}{d E^{2}} \sqrt{E},
$$

and the anti-unitary involution: the complex conjugation.

If we read them in the following coordinates: $\mathbb{R}_{1,1}:=-d v d u$ The action of $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ on wave-function $\partial_{v} \psi(v)$ reads:

$$
U_{g} \partial_{v} \psi(v)=\frac{1}{\left(c v^{\prime}+d\right)^{2}} \partial_{v^{\prime}} \psi\left(v^{\prime}\right), \quad v^{\prime}=\frac{d v-c}{a-c v}
$$

- Emerging localization is compatible with that of the wedges.
- A Model for Quantum coordinates inside a wedge.
- The scheme, does not work for massive fields: the one particle Hilbert space is only one $L^{2}\left(\mathbb{R}^{+}, d E\right)$.
- In this case we get at most an operator measuring a spatial coordinate. Minkowski or Rindler?

Summary

- Localization can arise from the group properties.
- Also in the case of Möbius covariant theory. (Positive energy representation)
- An operator representing a local coordinate arises modifying the energy and the conformal energy
- CCR with generator of modular transformation.
- expectation values on local wavefunction compatible with localization.

