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ZUSAMMENFASSUNG

In der vorliegenden Arbeit werden die Methoden von Dimensionaler Regular-

isierung (DimReg) und Minimaler Subtraktion (MS) konsistent im Minkowsiki-

Ortsraum formuliert, und in den Rahmen der perturbativen Algebraischen Quan-

tenfeldtheorie (pAQFT) implementiert. Die entwickelten Kozepte werden be-

nutzt, um die Rekursion von Epstein und Glaser für die Konstruktion zeitge-

ordneter Produkte in allen Ordnungen der kausalen Störungstheorie zu lösen.

Es wird eine geschlossene Lösung in Form einer Waldformel à la Zimmermann

angegeben. Eine Verbindung zu dem alternativen Zugang zur Renormierungs-

theorie über Hopf-Algebren wird hergestellt.

ABSTRACT

The present work contains a consistent formulation of the methods of dimen-

sional regularization (DimReg) and minimal subtraction (MS) in Minkowski po-

sition space. The methods are implemented into the framework of perturbative

Algebraic Quantum Field Theory (pAQFT). The developed methods are used to

solve the Epstein-Glaser recursion for the construction of time-ordered products

in all orders of causal perturbation theory. A solution is given in terms of a forest

formula in the sense of Zimmermann. A relation to the alternative approach to

renormalization theory using Hopf algebras is established.
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Introduction

Yet knowing how way leads on to way,

I doubted if I should ever come back.

Robert Frost: The Road Not Taken

In 1957 Bogoliubov and Parasiuk introduced an inductive method for the solu-

tion of the renormalization problem of perturbative Quantum Field Theory, that is

the problem of constructing the terms in the perturbative expansion of the scat-

tering matrix (S-matrix) [BP57, BS59]. It was later shown by Hepp “that the

subtraction rules of Bogoliubov an Parasiuk lead to well-defined renormalized

Green’s distributions” [Hep66]. From this common origin the method of Bogoli-

ubov, Parasiuk, and Hepp (BPH) evolved mainly along two different roads. The

BPHZ method induced by the solution of the BPH recursion in terms of Zimmer-

mann’s forest formula in momentum space on the one hand side [Zim69], and

causal perturbation theory induced by Epstein and Glaser’s rigorous solution of the

renormalization problem in position space on the other [EG73]. Both methods are

rigorous incarnations of BPH, however, they have played quite different roles in

the development of perturbative Quantum Field Theory (pQFT).

Causal perturbation theory has proven to be superior to the so-called “stan-

dard approach” to renormalization in momentum space when it comes to more

conceptual questions of perturbative renormalization, and it is widely accepted as

the landmark with which one has to test new approaches to renormalization (see,

e.g., [FHS10]). What is more, Epstein-Glaser renormalization is the only renormal-

ization method which has been successfully formulated on more general, physical

backgrounds [BF00a]. Induced by the development of Quantum Field Theory on

curved spacetimes [Rad96, BFK96, BF00a]1 and along with the successful formu-

lation of the renormalization group in generic, globally hyperbolic spacetimes by

Hollands and Wald [HW01, HW02, HW03], Brunetti, Dütsch, and Fredenhagen

started a program on the structural analysis of perturbative Quantum Field Theory

in the algebraic approach [DF99, DF01b, DF01a, DF03, Hol04, DF04, BF04, DF07,

BF07]. One of the main results of this program was the precise formulation and

proof of what Popineau and Stora called the Main Theorem of Perturbative Renor-

malization [PS82]. This is the fact that the definition of the S-matrix of pQFT in-

volves a freedom described by the Stückelberg-Petermann renormalization group

1See also [BF09] for a selfcontained treatment of the topic.
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8 INTRODUCTION

[SP53]. A milestone of the algebraic approach to perturbative Quantum Field The-

ory was reached with the formulation of perturbative Algebraic Quantum Field The-

ory (pAQFT), which has been shown to give a common basis to the different other

incarnations of the renormalization group in literature [BDF09].

Despite these deep results in perturbative renormalization, causal perturba-

tion theory has its weak point when it comes to concrete predictions, say, for scat-

tering amplitudes in collision processes of elementary particles. Here the stan-

dard approach to pQFT in momentum space and in particular the method of di-

mensional regularization (DimReg) and minimal subtraction (MS) [BG72a, tHV72]

combined with Zimmermann’s forest formula has proven to be efficient in its ap-

plication and to produce predictions which are in astonishing accordance with

measurements in accelerator experiments. The proof that DimReg+MS is com-

patible with the combinatorics described by BPHZ was given in [BM77a, BM77b,

BM77c], and in particular the compatibility with gauge theories has contributed

to the success of dimensional regularization in favor of other analytic renormal-

ization techniques in elementary particles phenomenology [BRS75]. A seemingly

forgotten part of this road is that Zimmermann realized in 1970 and proved in 1975

that the additional subtractions found in his formula in comparison to BPH do not

contribute in the limit where the regularization is removed [Zim70, Zim76].2

In recent years great interest in the mathematical community for the renor-

malization method of DimReg+MS combined with BPHZ has been triggered by

Kreimer’s discovery of a Hopf algebra structure underlying the BPHZ renormal-

ization method [Kre98]. Connes and Kreimer pointed out various relations of

this discovery to fields of research in pure mathematics, such as Number The-

ory and Noncommutative Geometry [CK98, CK00, CK01]. Consequently, by now

the field has grown to a research area of considerable extent between the poles

of more mathematically oriented research in Algebraic Geometry and Number

Theory [BEK06, CM07] and applications in the computation of higher order con-

tributions to the perturbative expansion of the S-matrix [Wei06, BW09, BW10].

Shortly after Kreimer’s discovery Gracia-Bondía and Lazzarini observed, and Pin-

ter showed that also Epstein-Glaser renormalization exhibits a Hopf algebra struc-

ture of the Connes-Kreimer type [GBL00, Pin00a, Pin00b]. Thus the Hopf algebra

structure was observed to be a remnant of the common origin of the two roads

in perturbative Quantum Field Theory briefly outlined above. It was shown that

the Hopf algebra structure of BPHZ renormalization is invariant under certain

partial summations of graphs in the perturbative expansion [BF00b, BF01, Fra07,

vS07a]. Furthermore, many results on the occurrence of different Hopf algebras

in perturbative QFT have been obtained in recent years and it was found that the

Faà di Bruno Hopf algebra plays a distinguished role among them [FGB05].

2I want to thank José Gracia-Bondía for directing my attention to these references. See also reference
[FHS10] in this respect.
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The aim of this thesis is to “combine the good parts” of both roads to renormal-

ization in perturbative Quantum Field Theory. That is, to incorporate the effective

methods of dimensional regularization and minimal subtraction combined with

Zimmermann’s forest formula in the conceptually clear setting of causal perturba-

tion theory. After a brief introduction to the theory of extension of distributions,

which is the main tool in modern formulations of causal perturbation theory, in the

first chapter, I will describe the setting of perturbative Algebraic Quantum Field

Theory in the special case of flat Minkowski spacetime in Chapter II. Following

the arguments in an appendix of the pAQFT article (loc. cit.) I will show in Chap-

ter III how one can use a modification of the Bessel parameter in a representation

of the Wightman two point function in Minkowski space to construct a dimension-

ally regularized analytic (Hadamard-) two point function in flat spacetime which

depends smoothly on the mass parameter m2. As shown by Hollands, smooth

mass dependence is a suitable requirement for a covariant treatment of renormal-

ization [Hol04]. In Chapter IV I will then construct the dimensionally regularized

position space amplitude to any graph Γ in scalar quantum field theory as a distri-

bution in D 1

pM|VpΓq|
q (M denotes Minkowski spacetime and |VpΓq| the number of

vertices of Γ). I have to remark here that Bollini and Giambiagi already gave a for-

mulation of dimensional regularization in position space by Fourier transforming

the regularized momentum space amplitude to position space and found a mod-

ification in the Bessel parameter of the corresponding two point function [BG96].

Conversely, a Fourier transformation of the amplitudes constructed in this work

(which are different from the ones found by Bollini and Giambiagi) to momen-

tum space is not possible in general, since the condition of smoothness in m2 will

select a propagator which is not in Schwartz space. As a result of this chapter, I

define the position space dimensionally regularized S-matrix, Sµ,ζ , which fulfills

the conditions of the main theorem of perturbative renormalization as proven in

[DF04, BDF09]. In Chapter V I will show how minimal subtraction can be applied

to the dimensionally regularized position space amplitudes in a graph by graph

manner, and will test the method by reproducing the result of Zimmermann that

so-called “pure BPHZ subgraphs” do not contribute to the forest formula in the

limit where the regularization is removed [Zim76]. The last chapter of my thesis

will use Sµ,ζ as an example for an analytically regularized S-matrix, but does not

depend on the way it was constructed. In this sense, the results of the last chapter

are independent of the formulation of dimensional regularization in position space

summarized above, and consequently they can be applied in a much wider range.

I will show in Chapter VI of the present thesis that a forest formula for regularized

Epstein-Glaser renormalization can be derived directly from the main theorem of

perturbative renormalization. I will give the formula and prove locality of the MS

counterterms. Furthermore I will show that the Hopf algebra structure observed

in perturbative renormalization theory can be understood as a direct consequence
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of the main theorem. However, in contrast to the Connes-Kreimer theory of renor-

malization, the Feynman rules will emerge naturally from the construction, and it

will be shown that the commutative Hopf algebra of graphs introduced by Connes

and Kreimer is not enough for an algebraic construction of the counterterms found

in pAQFT. Another difference to the original Hopf algebra approach is that the

Hopf algebraic structure found in the construction of pAQFT counterterms will

correspond to sums of graphs rather than individual ones, however, the corre-

spondence to the Hopf algebra of graphs is established by linearity; in accordance

with the results of [BF00b, BF01, Fra07, vS07a].

In order to be precise and prevent confusion, I want to remark that I mean by

“regularization” in this thesis always parametric regularization, i.e., the introduc-

tion or modification of a parameter, which makes the extensions of the regularized

distributions unique. “Dimensional regularization” is one example. “Renormal-

ization”, on the other hand, I want to use as a synonym for the extension of dis-

tributions, as it is widely used in the terms “Epstein-Glaser renormalization” or

“BPHZ renormalization”. Observe, however, that the extension of its time-ordered

products is only a necessary but by no means sufficient prerequisite for a quantum

field theory to be renormalizable by power counting. That is to say, we are not con-

cerned with the number of counterterms that are to be introduced at each order of

perturbation theory, but only with the fact that this number is finite. Neither will

we treat the question whether the counterterms can be absorbed in a redefinition

of the parameters in a Lagrangian of the theory.

A last remark I want to make is that the extension of the time-ordered products

to the total diagonal, which will be treated in some detail below and corresponds

to the elimination of ultraviolet (UV) divergences in the standard approach, suf-

fices for the perturbative definition of the quantum field theory under investiga-

tion in the algebraic adiabatic limit. This was shown in [BF00a, DF01b, HW03].

The algebraic adiabatic limit is a way to remove the explicit spacetime dependence

of the interaction without introducing so-called infrared (IR) divergences. IR di-

vergences typically appear in the standard approach if one removes the cutoff at

small momenta (or large distances) in theories with long range interactions. Such

divergences appear also in the causal approach of Epstein and Glaser in the strong

and in the weak adiabatic limit. Neither strong nor weak adiabatic limit will be

treated in this thesis, and as much as the algebraic adiabatic limit is concerned I

cannot add anything new to the discussion in [BDF09, Chap. 6].



CHAPTER I

Mathematical Preliminaries:

Extension of Distributions

The main tool in renormalization in position space is the extension of distri-

butions, thus we want to summarize here the basic definitions and main results

of this part of distribution theory. We will first give the general result on the exis-

tence of extensions of distributions with the same scaling degree and will indicate

how such extensions are constructed. In the second section we will review the

special case of homogeneous distributions; homogeneity being a suitable condi-

tion for the existence of a unique extension. We will generalize the uniqueness

result on homogeneous extensions to the case of heterogeneous distributions in

the third section. The fourth section will be devoted to the definition of an (ana-

lytic) regularization of a distribution. We will derive some direct consequences to

be used in later chapters. A general reference for this chapter, and a guidance for

mathematical questions throughout the thesis is the book of Hörmander [Hör03].

We generally use the notation of Laurent Schwartz for the function spaces,

E pRd
q � C8pRd

q of smooth functions, and DpRd
q � C80 pR

d
q of smooth functions

with compact support (test functions) with their respective standard topologies;

and E 1, respectively D 1 for their dual spaces.

I.1. Extensions and Steinmann Scaling Degree

Definition I.1 (Extension). Let u P D 1

pRd\ {0}q be a distribution defined for all

test functions supported in the complement of the origin. We call 9u P D 1

pRd
q an

extension of u, if

(I.1) � f P DpRd\ {0}q : 9up f q � up f q .

Not every distribution u P DpRd\ {0}q has an extension, and if there is one

it is not unique. However, by (I.1) two extensions of u differ by a distribution

supported at the origin. By [Hör03, Thm. 2.3.4] any distribution supported at the

origin is a polynomial in the derivatives of Dirac’s δ-distribution. We call such

distributions local and denote the space of all local distributions by E 1Dirac. One way

to restrict the freedom in the extension procedure is to require that the extension

should have the same scaling degree, cf. [Ste71, BF00a].

11
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Definition I.2 (Steinmann Scaling Degree). Let

(I.2)
Λ : R

�

�D Ñ D

(ρ, φ) ÞÑ φρ :� ρ�dφpρ�1
�q

be the action of the positive reals on test functions in D P

{
DpRd

q, DpRd\ {0}q
}

.

This induces, via the pullback, the action on distributions. For u P D 1 we define

�φ P D : uρpφq :� upφρ
q .

The scaling degree sdpuq of a distribution u with respect to the origin is defined to

be

sdpuq :� inf

{
ω P R : lim

ρÑ0�
ρωuρ � 0 P D

1

}
.

Example I.3. Dirac’s δ-distribution has scaling degree sdpδq � d, since

lim
ρÑ0�

ρω 〈δ, φρ〉 � lim
ρÑ0�

ρω�dφp0q .

Furthermore, a similar argument shows that any smooth function has scaling

degree smaller than or equal to zero. The basic properties of the scaling degree are

summarized in the following

Lemma I.4 (cf. [BF00a, Lem. 5.1]). Let u P D 1

pRd
q, v P D 1

pRk
q and let α P Nd be a

multiindex, then

(a) sdpBαuq ¤ sdpuq � |α|
(b) sdpxαuq ¤ sdpuq � |α|
(c) � f P E pRd

q : sdp f uq ¤ sdpuq

(d) sdpub vq � sdpuq � sdpvq

For later reference we also define the related concept of degree of divergence

of a distribution.

Definition I.5 (Degree of Divergence). Let u P D 1

P

{
D 1

pRd
q, D 1

pRd\ {0}q
}

, then

we define the degree of divergence of u

divpuq :� sdpuq � d .

Observe that the scaling degree of a product of distributions u, v P D 1

pRd
q, if

it exists, is given by the scaling degree of the tensor product ub v P D 1

pR2d
q,

sdpuvq � sdpub vq ,

whereas the degree of divergence of the product is greater

divpuvq � divpub vq � d .

Although this observation follows directly from Lemma I.4(d) the following theo-

rem shows that it reflects the freedom involved in the definition of the product of

distributions. Recall that, if it exists, the pointwise product uv P D 1

pRd
q is defined
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as the pullback of ub v P D 1

pR2d
q via the diagonal map

diag : Rd
Q x ÞÑ (x, x) P R2d ,

cf. [Hör03, Thm. 8.2.10]). One often encounters the situation, that the pullback

uv � diag�pub vq defines the product only in the complement of the origin, even

if u, v P D 1

pRd
q. This is the case, e.g., in perturbative renormalization theory and

hence one is naturally lead to the problem of finding extensions of certain (prod-

ucts of) distributions [BP57]. This lead Epstein and Glaser to their constructive

extension procedure by “distribution splitting” [EG73]. The mathematically quite

involved inductive procedure carried out by Epstein and Glaser may be called the

first rigorous construction of extensions of distributions in position space. It was

Steinmann who introduced the concept of scaling degree in the discussion related

to the construction of extensions of certain distributions [Ste71]. There are later

works contributing to this topic, such as [Est98a], and it is treated by now in sev-

eral text books [Hör03], however, the most general result known to the author is

the theorem to be cited below. It was to my best knowledge first proven in [BF00a,

Thms. 5.2 & 5.3].

Theorem I.6 (Extension of Distributions). Let u P D 1

pRd\ {0}q have scaling degree

sdpuq with respect to the origin. Let


 sdpuq   d. Then there exists a unique extension 9u P D 1

pRd
q of u, which has

the same scaling degree, sdp 9uq � sdpuq.


 d ¤ sdpuq   8. Then there exist several extensions 9u P D 1

pRd
q with sdp 9uq �

sdpuq. They are uniquely defined by their values on a finite set of test functions.

For completeness we remark that u has no extension, if sdpuq � 8, the dis-

tribution f ÞÑ

∫
dx e

1
x f pxq is a standard example of this case. Furthermore we

remark that the scaling degree of the extension 9u cannot be smaller than that of u.

Thus the condition that 9u should have the same scaling degree as u is a condition

of minimal scaling degree or “maximal smoothness” at the origin.

SKETCH OF PROOF OF THM. I.6. Let first sdpuq   d. Uniqueness follows im-

mediately from the fact that two extensions 9u, :u P D 1

pRd
q differ by a polynomial

Ppδq in derivatives of Dirac’s δ-distribution, which has scaling degree sdpPpδqq ¥

d, cf. Lemma I.4(a).

Let ϑ P E pRd
q, 0 ¤ ϑ ¤ 1, such that ϑpxq � 0 for |x|   1 and ϑpxq � 1 for

|x| ¥ 2 and set ϑρpxq � ϑpρxq, then

(I.3) 9u :� lim
ρÑ8

ϑρu

converges in D 1

pRd
q, i.e.,

�g P DpRd
q : lim

ρÑ8

〈
u, ϑρg

〉
P C ,

and 9u defines an extension of u with the same scaling degree, cf. [BF00a].
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Now regard the case d ¤ sdpuq   8. We define the space DλpR
d
q of functions,

which vanish up to order λ ¡ 0 at the origin,

(I.4) DλpR
d
q �

{
f P DpRd

q| � |α| ¤ λ : (Bα f ) p0q � 0
}

.

Then u is uniquely defined on functions, which vanish up to the order given by the

degree of divergence of u, i.e., u has a unique extension ũ P D 1

λpR
d
q, λ � divpuq,

with the same scaling degree. Any function f P DλpR
d
q can be written in the form

(I.5) f pxq � ∑
|α|�⌊λ⌋�1

xαgαpxq , gα P DpRd
q ,

where ⌊λ⌋ denotes Gauß’s floor function, i.e., the largest integer smaller or equal

λ. We define ũ by

〈ũ, f 〉 :� ∑
|α|�⌊λ⌋�1

〈
(xαu)� , gα

〉
,

where the extensions (xαu)� on the right hand side are unique by Lemma I.4(b)

and the first part of the theorem. They can be computed as weak limits of the form

(I.3), and thus the limit exist for each term separately. We have

∑
|α|�⌊λ⌋�1

lim
ρÑ8

〈
xαu, ϑρgα

〉
� lim

ρÑ8

〈
u, ϑρ f

〉
,

which shows that the extension ũ does not depend on the chosen representation

(I.5) of f P DλpR
d
q, cf. [DF04].

Regard now the ambiguity left in the extension to D � DpRd
q. Dλ � D is a

closed subspace, hence there are projections W : D Ñ Dλ, one for each choice of

the complement C ,

D � Dλ `C .

where Dλ � ranpWq and C � ranp1�Wq. This split of D induces a split of the

dual space D 1 according to the following diagram, cf. [DS67, Lem. VI.3.3],

(I.6) C D
1�W

oo

duality
��

W
// Dλ

DK

λ D 1

1�W1

oo
W1

//
CK

D
1

� D
K

λ `C
K

where

D
K

λ :�
{

u P D
1

| � f P Dλ : 〈u, f 〉 � 0
}

,

and

C
K :�

{
v P D

1

| �g P C : 〈v, g〉 � 0
}

.

The dual projections are induced by

�u P D
1, � f P D :

〈
W1u, f

〉
:� 〈u, W f 〉 .

Any dual basis
{

wα P D :
〈

δ(β), wα

〉
� δ

β
α

}
of the basis

{
δ(α) : |α| ¤ λ

}
of DK

λ

spans a complement C � D aDλ and thus defines a projection W. As a conse-

quence we have the following characterization of projections W : D Ñ Dλ.



I.2. HOMOGENEOUS DISTRIBUTIONS 15

Lemma I.7 (cf. [DF04, Lem. B.1]). There is a one-to-one correspondence between families

of functions

(I.7)
{

wα P D | � |β| ¤ λ :
(
B

βwα

)
p0q � δ

β
α , |α| ¤ λ

}

and projections W : D Ñ Dλ. The set (I.7) defines a projection W by

W f :� f � ∑
|α|¤λ

f (α)p0qwα .

Conversely a set of functions of the form (I.7) is given by any basis of C � ranp1�Wq

dual to the basis
{

δ(α) : |α| ¤ λ
}

of DK

λ � D 1.

We reach the conclusion that for each projection W : D Ñ Dλ there is a unique

extension W1ũ P CK of u P D 1

pRd\ {0}q. The most general extension 9u of u,

fulfilling the assumptions of the theorem, can be read off from the split of D 1 (I.6),

(I.8) 9u � W1ũ� ∑
|α|¤divpuq

Cαδ(α) ,

where Cα P C are free constants. Observe, however, that a particular extension is

fixed by a choice of its values on C , namely 〈 9u, wα〉 � Cα. �

Although (I.8) gives the most general extension of u with the same scaling

degree, it is important to note that the second term in (I.8) does not introduce an

additional freedom, but only reflects the freedom in the choice of the projection W.

Lemma I.8 (cf. [DF04, Lem. B.2]). Let 9u P D 1

pRd
q be an extension of u P D 1

pRd\ {0}q
with divp 9uq � divpuq � λ. Then there exists a complementary space C of Dλ in D such

that

9u
∣∣
C
� 0 ,

i.e., Cα � 0 in (I.8).

That is, any extension 9u of u can be written as a W-extension, 9u � W1ũ with a

suitably chosen projection W.

Despite its wide applicability (sdpuq is defined for any u P D 1), the scaling

degree is often too rough a tool for describing the behavior of distributions at the

origin. A refinement of the notion of scaling degree is the degree of homogeneity

defined only for homogeneous distributions. We will see in the next section that

this refinement leads to a stronger result regarding the uniqueness of extensions.

I.2. Homogeneous Distributions

Definition I.9 (Homogeneous Distribution, cf. [Hör03, Def. 3.2.2]). A distribution

u P D 1

P

{
D 1

pRd
q, D 1

pRd\ {0}q
}

is called homogeneous of degree D P C, if

(I.9) �ρ ¡ 0 : 〈u, φ〉 � ρ�D
〈
uρ, φ

〉
�φ P D ,

where
〈

uρ, φ
〉

:� 〈u, φρ〉 with φρ
pxq :� ρ�dφpρ�1xq as in (I.2). We will sometimes

write D � homogpuq for the homogeneity degree of a distribution u.
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Remark I.10. Observe that a distribution u, homogeneous of degree D P C, has

scaling degree sdpuq � �RepDq,

sdpuq � inf
{

ω P R : lim
ρÑ0�

ρω 〈u, φρ〉 � lim
ρÑ0�

ρω�RepDqρi ImpDq
� 0
}
� �RepDq .

In this sense the homogeneity degree “homog” is a refinement of the scaling de-

gree “sd”, and Consequently we will get a stronger statement for the extendability

of homogeneous distributions in Theorem I.12 below. However, before citing this

result, let us regard an alternative characterization of homogeneity.

Theorem I.11 (Euler). A distribution u P D 1

P

{
D 1

pRd
q, D 1

pRd\ {0}q
}

is homoge-

neous of degree D P C if and only if

(I.10) 〈(x � Bx �D) u, φ〉 � 0 �φ P D ,

where x � Bx � ∑
d
i�1 xi B

Bxi
denotes the radial vector field or “Euler operator”.

PROOF. By (I.9) we infer that
(
ρBρ

)
ρ�D

〈
uρ, φ

〉
�

(
ρBρ

)
〈u, φ〉 � 0 .

Computing the derivative gives:

ρBρ

(
ρ�D

〈
uρ, φ

〉)
� �Dρ�D

〈
uρ, φ

〉
� ρ�D

〈
(x � Bx) uρ, φ

〉

� ρ�D
〈
(x � Bx �D) uρ, φ

〉
,

hence, evaluating at ρ � 1 gives (I.10). Conversely let ϕpρq :� 〈u, φρ〉, then

ρϕ1pρq � ρBρ

〈
upxq, ρ�dφpρ�1xq

〉

� �d 〈u, φρ〉� 〈upxq, (x � Bx) φρ
pxq〉

� �d 〈u, φρ〉� d 〈u, φρ〉� 〈(x � Bx) upxq, φρ
pxq〉

� D 〈u, φρ〉 � Dϕpρq

Hence we have the differential equation

ϕ1pρq

ϕpρq
�

D

ρ

which is solved by ϕpρq � CρD, i.e., C � ϕp1q. This means
〈

uρ, φ
〉
� ρD 〈u, φ〉 . �

Observe that u is a (weak) eigenvector of x � Bx to the (weak) eigenvalue D.

Theorem I.12 (cf. [Hör03, Thm. 3.2.3]). Let u P D 1

pRd\ {0}q scale homogeneously of

degree D P C and let �D R N0 � d, then u has a unique extension 9u P D 1

pRd
q which is

homogeneous of degree D. The map

D
1

pRd\ {0}q Q u ÞÑ 9u P D
1

pRd
q

is continuous.
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A proof of the theorem can be found in the book of Hörmander. Observe,

however, that the existence of a (not necessarily homogeneous) extension already

follows from Theorem I.6. And if there is a homogeneous extension the unique-

ness follows from the proof of the same theorem and the fact that the deriva-

tives of Dirac’s δ-distribution have integer scaling degree greater or equal d. Ob-

serve that any homogeneous extension 9u P D 1

pRd
q of a homogeneous distribution

u P DpRd\ {0}q in particular has the same scaling degree, sdp 9uq � sdpuq by Re-

mark I.10. Thus Theorem I.12 really is a refinement of the previous result (Theo-

rem I.6) for the special case of homogeneous distributions.

I.3. Heterogeneous Distributions

A straight forward generalization of Theorem I.12 to the case when the distri-

bution is not homogeneous, but is given as a finite sum of homogeneous parts will

be important for the construction of the dimensionally regularized amplitude in

Section IV.2.

Definition I.13 (Heterogeneous Distribution). A distribution u P D 1 is called het-

erogeneous of order k P N and multidegree α � {α1, . . . , αk} (i � j � αi � αj), if

(I.11)
k

∏
j�1

(
x � Bx � αj

)
u � 0 .

Lemma I.14. Heterogeneous distributions of finite order have a unique decomposition

into their homogeneous components.

PROOF. Let u be a heterogeneous distribution of order k and multidegree α �

{α1, . . . , αk}, i.e., u fulfills (I.11). Then

Pi :� ∏
j�i

x � Bx � αj

αi � αj

projects u onto the eigenspace of x � Bx to eigenvalue αi, since (x � Bx � αi) Piu � 0

by assumption (I.11), and

P2
i u � ∏

j�i

x � Bx � αj

αi � αj
Piu � ∏

j�i

αi � αj

αi � αj
Piu � Piu .

Thus ui :� Piu is homogeneous of degree αi, and u can be uniquely decomposed

into eigenvectors of x � Bx,

u �
k

∑
i�1

ui . �

Corollary I.15 (Ext. of Heterogeneous Distributions). Let u P D 1

pRd\ {0}q be a

heterogeneous distribution of multidegree α � {α1, . . . , αk}. Let furthermore

�αj P C\N0 �j P {1, . . . , k} .

Then u has a unique heterogeneous extension 9u P D 1

pRd
q of the same multidegree.
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PROOF. Uniqueness. Let :u P D 1

pRd
q be a second extension of u, then :u differs

from 9u by a distribution supported at {0},

:u� 9u � ∑
|α|¤ρ

Cαδ(α) .

However, any term in the sum on the right hand side has integer degree of ho-

mogeneity smaller or equal to �d. Hence the sum in the above expression is not

annihilated by ∏
k
j�1

(
x � Bx � αj

)
with �αj R N0, whereas 9u is annihilated by as-

sumption. Thus :u is not annihilated by ∏
k
j�1

(
x � Bx � αj

)
and hence is not hetero-

geneous of multidegree α � {α1, . . . , αk}.

Existence. By Lemma I.14 above, u has a unique decomposition into homoge-

neous parts, ui P D 1

pRd\ {0}q, each of which has a unique homogeneous extension

9ui by Theorem I.12. Hence

9u �
k

∑
i�1

9ui

is an extension of u which is heterogeneous of order k and multidegree α. �

If the eigenvalues in the product (I.11) coincide, αi � α �i P {1, . . . , k}, we get

to the notion of almost homogeneous distributions, which are homogeneous up to a

polynomial of order k� 1 in lnpρq, where ρ ¡ 0 is the scaling parameter. Hollands

and Wald proved a uniqueness result for the extension also in this case [HW02,

Lem. 4.1], see also [DF04, Prop. 3.3]. However, the distributions we will analyze

in this work are at most heterogeneous of finite order, and thus we will not need

the lemma of Hollands and Wald. This is due to the fact that we regard only

regularized distributions, a concept to be defined in the next section. We want to

remark, however, that in the limit where the regularization is removed we will get

back almost homogeneous distributions in the generic case.

I.4. Regularization of Distributions

Definition I.16 (Regularization). Let u P D 1

pRd\ {0}q be a distribution with de-

gree of divergence divpuq � λ. Let ũ P D 1

λpR
d
q be the unique extension of u with

the same degree of divergence. A family
{

uζ
}

ζPΩ\{0} of distributions uζ
P D 1

pRd
q,

where Ω � C is a neighborhood of the origin, is called a regularization of u, if

(I.12) �g P DλpR
d
q : lim

ζÑ0

〈
uζ , g

〉
� 〈ũ, g〉 .

The regularization
{

uζ
}

is called analytic, if for any function f P DpRd
q the map

(I.13) ζ ÞÑ
〈

uζ , f
〉

is analytic for ζ P Ω\ {0}, possibly with a pole of finite order at the origin, i.e.,

(I.13) is a meromorphic function. We speak of a finite regularization, if

� f P DpRd
q : lim

ζÑ0

〈
uζ , f

〉
P C ,

in this case limζÑ0 uζ
P D 1

pRd
q is a renormalization, or extension of u.
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Given a regularization
{

uζ
}

of u we have for all f P DpRd
q and any projection

W : D Ñ Dλ that

(I.14) 〈ũ, W f 〉 � lim
ζÑ0

〈
uζ , W f

〉
.

According to Lemma I.7 for any W-projection there exists a family of functions{
wα P D :

(
Bβwα

)
p0q � δαβ

}
such that

W � 1� ∑
|α|¤λ

(�1)|α| wαδ(α) ,

and since uζ
P D 1

pRd
q we can write (I.14) as

(I.15) 〈ũ, W f 〉 � lim
ζÑ0



〈

uζ , f
〉
� ∑

|α|¤λ

〈
uζ , wα

〉
f (α)

p0q


 .

In the generic case the limit on the right hand side cannot be split, since the lim-

its of the individual terms might not exist. However, if
{

uζ : ζ P Ω\ {0}
}

is an

analytic regularization, the individual terms can be expanded in Laurent series

around ζ � 0, and since the overall limit is finite the principal parts (pp) of these

Laurent series have to coincide,

� f P D : pp
〈

uζ , f
〉
� pp


 ∑

|α|¤λ

〈
uζ , wα

〉
f (α)p0q



� ∑

|α|¤λ

f (α)p0qpp
〈

uζ , wα

〉
.

We conclude that the principal part of any analytic regularization
{

uζ
}

is a poly-

nomial in derivatives of Dirac’s δ-distribution up to order λ � divpuq,

(I.16) pppuζ
q � ∑

|α|¤divpuq

Cαpζqδ
(α)

P E
1

Dirac ,

where we set Cαpζq � pp
〈
uζ , wα

〉
. That is, pppuζ

q is local for all ζ P Ω\ {0} and

vanishes if divpuq   0. The fact that the principal part of an analytic regularization

is a local distribution will be crucial for the discussion in Chapter VI of the present

thesis. In particular this implies that we can fix an extension 9uMS P D 1 of u by

setting

(I.17) 〈 9uMS, f 〉 :� lim
ζÑ0

[〈
uζ , f

〉
� ppp

〈
uζ , f

〉
q

]
.

This way of choosing a renormalization of u is called minimal subtraction (MS). By

construction 9uMS has the same scaling degree as u, and thus minimal subtraction

can be implemented as a W-extension, cf. Lemma I.8. We choose a projection

WMS : D Ñ Dλ , λ � divpuq ,

which fulfills

(I.18) � f P D : 〈 9uMS, f 〉 �
〈

ũ, WMS f
〉

.

Let us regard this projection for finite ζ P Ω\ {0}. The regular part of
〈
uζ , f

〉
is
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given by

〈
rppuζ

q, f
〉
�

〈
uζ
� pppuζ

q , WMS f � ∑
|α|¤divpuq

wMS
α f (α)p0q

〉

�

〈
uζ , WMS f

〉
� ∑

|α|¤divpuq

〈
rppuζ

q, wMS
α

〉
f (α)p0q ,

since pp
〈
uζ , WMS f

〉
� 0 by (I.12). The first term on the right hand side, as well as

the left hand side of this equation tend to 〈 9uMS, f 〉 as ζ Ñ 0, cf. (I.17)/(I.18),

(I.19) lim
ζÑ0

〈
rppuζ

q, f
〉
� lim

ζÑ0

〈
uζ , WMS f

〉
� 〈 9uMS, f 〉 .

Hence the sum on the right hand side has to vanish in this limit. Since it is the

regular part of some Laurent series we infer that it is at least of order one in ζ,

(I.20) �ζ P Ω\ {0} :
〈

rppuζ
q, f
〉
�

〈
uζ , WMS f

〉
�Opζq .

Hence for finite regularization parameter, ζ P Ω\ {0}, minimal subtraction can

be expressed as a W-projection up to a contribution which vanishes identically in

the limit ζ Ñ 0. This fact will become important in the discussion of minimal

subtraction on the level of graph amplitudes in Chapter V and in particular for the

proof of Proposition V.4.

The coefficients Cαpζq in (I.16) are called counterterms. They are local in the

sense that they are the coefficients of a local distribution. In particular they do

not depend on the chosen W-projection. The Cαpζq are often referred to as infinite

counterterms, since they do not possess a limit as ζ Ñ 0 and the way of intro-

ducing them by splitting the W-projection before taking the limit in (I.15) was also

discussed in [KTV96].

In Fourier space the Cαpζq are the coefficients of a polynomial in (external)

momenta p,

Fp ∑
|α|¤λ

Cαpζqδ
(α)
qppq � ∑

|α|¤λ

i|α|

(2π)
d
2

Cαpζqp
α .

In this sense the counterterms are invariant under Fourier transform and thus pro-

vide a basis on which one can compare the position space approach to dimensional

regularization and minimal subtraction (DimRegx
�MSq, to be discussed in the

present work, with the standard approach in momentum space.



CHAPTER II

The Setting of

Perturbative Algebraic Quantum Field Theory

We want to analyze the methods of analytic regularization (in particular di-

mensional regularization) and minimal subtraction, introduced on the level of

distributions in the previous chapter, in the algebraic approach to perturbative

Quantum Field Theory. More specifically, we will use the framework of perturba-

tive Algebraic Quantum Field Theory (pAQFT) [BDF09]. Although the methods of

pAQFT apply in a much more general framework we want to restrict ourselves

in the present work to the case of d-dimensional Minkowski spacetime. The aim

of this chapter is to introduce the main concepts and the basic constructions of

pAQFT, which will be used in the main part of this work.

II.1. Classical Field Theory and Deformation Quantization

In 1990 Dito showed how the formalism of deformation quantization can be

applied to field theory [Dit90]. He constructed the algebra of the free scalar field

without reference to an underlying Hilbert space. In his work he used the ear-

lier analysis of the deformation of algebras by Bayen, Flato, Fronsdal, Lichnerow-

icz, and Sternheimer [BFF�78]. Dito also related his approach to the (despite

its mathematical problems) widely known and used Feynman path integral ap-

proach to quantum field theory. The work of Brunetti, Dütsch, and Fredenhagen

[DF01b, DF01a, DF03, DF04, BF07, BDF09] showed that the star product approach

of Dito can be extended to a purely algebraic formulation of perturbative Quan-

tum Field Theory (pQFT) in general and perturbative renormalization theory in

particular. To give a motivation for the deformation view point in field theory, we

briefly review in this first section the structure of the algebra of classical field the-

ory and define its Poisson structure. The construction of the algebra of observables

of pQFT will then be carried out in full detail in the next section for the case of flat

Minkowski spacetime.

Let M denote the d-dimensional Minkowski spacetime with metric tensor η �

(1,�1, . . . ,�1) on the diagonal. Timelike (spacelike) vectors fulfill x2
¡ 0 (x2

  0)

and the set of all timelike vectors is called the open lightcone V � V� 9YV�. It is

the disjoint union of two connected components, which we refer to as the forward

and backward lightcones, V� �
{

x P M| x2
¡ 0, �x0

¡ 0
}

. We denote by V� and

BV� the closure and boundary of these sets, respectively.

21
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The configuration space of classical field theory is the space of smooth func-

tions

ϕ : M Ñ C , ϕ P E pMq ,

and the observables are (not necessarily linear) functionals on this space.

Definition II.1 (Smooth Functional). A functional

F : E pMq Ñ C

ϕ ÞÑ Fpϕq ,

is called smooth, if for any ϕ P E pMq and for all n P N its nth functional derivative,

〈
F(n)

pϕq, h1 b � � � b hn

〉
:�

dn

dλ1 � � � dλn
Fpϕ�

n

∑
i�1

λihiq

∣∣∣∣
λ1�����λn�0

, hi P E pMq ,

exists as a symmetric distribution with compact support, F(n)
pϕq P E 1pMn

q. Oc-

casionally we will write F(n)
pϕq � δnF

δϕn . The triangular brackets denote the dual

pairing (of E 1pMn
q with E pMn

q here). We denote the space of smooth functionals

by F̃pMq.

Definition II.2 (Support of a Functional). Let F P F̃ pMq, then we define the sup-

port of F implicitly by the equivalence, h P E pMq,

supppFq X suppphq � H � �ϕ P E pMq : Fpϕ� hq � Fpϕq .

Smooth functionals form a (commutative) algebra,
(
F̃pMq, �

)
, with respect to

the pointwise product, �F, G P F̃ pMq, �ϕ P E pMq,

(F � G) pϕq :� FpϕqGpϕq .

Typical examples of such functionals are,

(II.1) (i) Fpϕq �
∫

f pxq ϕpxq3 dx , (ii) Gpϕq �
∫

gpxq [Bϕpxq]2 dx ,

or (iii) Kpϕq �
∫

kpx, yq ϕpxq ϕpyq dx dy ,

where f , g P DpMq, k P DpM2
q are test functions of compact support, and the

integral is taken over the whole spacetime M, or over M2, respectively. The field

itself is represented as a linear evaluation functional, � f P DpMq,

ϕ ÞÑ ϕp f q �
∫

f pxq ϕpxq dx .

It is not possible (in the framework presented here) to deform the whole al-

gebra of smooth functionals
(
F̃ pMq, �

)
. However, we can restrict ourselves to

a suitably chosen subalgebra of functionals F pMq � F̃ pMq, which will have a

quantized counterpart in deformation quantization. This “deformable algebra” is

defined by imposing conditions on the wave front set of the functional derivatives

F(n)
pϕq P E 1pMn

q, F P F̃pMq. The wave front set of a distribution u P D 1

pMn
q,

roughly speaking, is a conic subset of the cotangent bundle WFpuq � 9T�pMn
q �

T�pMn
q\ {0}, where the first component gives the singular support, singsupppuq,
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and the second gives the directions in which the Fourier transform Fpuq does not

decrease rapidly. The precise definition of this mathematical tool, as well as the

large number of deep implications of the wave front set properties of distributions

can be found in the book of Hörmander, cf. [Hör03, Def. 8.1.2].

Definition II.3 (Deformable Algebra). A smooth functional F P F̃ pMq is an el-

ement of the deformable algebra (F pMq, �), if for all n P N the wave front set of

F(n)
pϕq does not meet the n-fold product of the closed forward or backward light

cone,

�ϕ : WFpF(n)
pϕqq X

(
supppF(n)

pϕqq �
[
V�n

Y V�n
])

� H .

We refer to elements of the deformable algebra as deformable functionals.

Since WFpuq � 9T�pMn
q, the forward and backward lightcone are here to be

understood as subsets of the cotangent space, V�n
,V�n

� T�x pM
n).

The deformable algebra (F pMq, �) can be made into a Poisson algebra by using

the Peierls bracket [DF03]. The Poisson structure is defined by

(II.2) ⌊F, G⌉ pϕq :� i
〈

F(1)
pϕq, ∆ �G(1)

pϕq
〉

.

where � denotes convolution, and ∆ is defined as the difference of the unique

retarded and advanced fundamental solutions ∆ret, ∆adv P D 1

pMq of the Klein-

Gordon operator, cf. [DF03, Eq. (28)]. Regard these fundamental solutions in more

detail, we have
(
l�m2

)
∆ ret

adv
� δ , with suppp∆ ret

adv
q � V�

∆ :� (∆ret � ∆adv) .

We also define the corresponding “causal two point function” or “commutator

function”,

� f , g P DpMq : ∆p f , gq :� 〈 f , ∆ � g〉 ,

and it should be clear from the context, which of the two interpretations of the

symbol ∆ is to be understood. The wave-front set of the commutator function is

given by

(II.3) WFp∆q �
{
(x, y, k,�k) P 9T�pM2

q| (x� y)2
� 0, k‖px� yq, k2

� 0
}

.

And by [Hör03, Thm. 8.2.10] the pointwise product of the distributions in

⌊F, G⌉ �
∫

∆px, yq � F(1)
pxqG(1)

pyq dx dy , F, G P F pMq ,

is well-defined, if the covectors in the second component cannot add up to zero.

The wave front set of the tensor power
(

F(1)
b G(1)

)
pϕq P E 1pM2

q is given by,
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cf. [Hör03, Thm. 8.2.9],

WFpF(1)
b G(1)

q � WFpF(1)
q �WFpG(1)

q

Y

{
[supppFq � {0}]�WFpG(1)

q

}

Y

{
WFpF(1)

q � [supppGq � {0}]
}

,

and by comparing this with (II.3) we see that the covectors cannot add up to zero,

if F, G P F pMq. For
(

x, y, kx, ky
)
P WFp∆q we clearly have

(
kx, ky

)
P V � V , and

since k f , kg R V for px, k f q P WFpF(1)
pϕqq and py, kgq P WFpG(1)

pϕqq neither one of

the equations

kx � k f � 0 or ky � kg � 0

has a solution. By a similar argument we also have ⌊F, G⌉ P F pMq in that case. It

was proven that, besides linearity, antisymmetry and the Leibniz rule, the bracket

⌊�, �⌉ fulfills also the Jacobi identity, and thus defines a genuine Poisson structure

on F pMq [DF03]. As was discussed there a (formal) quantization of (F pMq, ⌊�, �⌉ , �)

can be understood as a map

(F pMq, ⌊�, �⌉ , �)Ñ (F pMqrrh̄ss, [�, �]
Æ

, Æ) ,

to a non-commutative, associative algebra, such that

(II.4) F ÆG
h̄Ñ0
ÝÝÝÑ F � G and 1

h̄ [F, G]
Æ

h̄Ñ0
ÝÝÝÑ ⌊F, G⌉ .

In particular we have for the field itself

(II.5) [ϕp f q, ϕpgq]
Æ

� ih̄∆p f , gq .

The product Æ of the quantized algebra is not to be confused with the notation �

for convolution.

II.2. The Algebra of Observables

As the name suggests the subalgebra (F pMq, �) can be deformed to give the

algebra of perturbative Quantum Field Theory. To construct this algebra, let H P

D 1

pMq be a Hadamard distribution. That is, cf. [Rad96], H is a (weak) solution of the

Klein Gordon equation

(II.6)
(
l�m2

)
H � 0

and the corresponding two point distribution, defined by

(II.7) Hp f , gq :� 〈 f , H � g〉 ,

satisfies the causality condition

(II.8) � f , g P DpMq : Hp f , gq � Hpg, f q � i∆p f , gq
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and has the “positive frequency” - or Hadamard wave front set

WFpHq �
{
(x, y, k,�k) P 9T�pM2

q| if x � y : (x� y)2
� 0, k‖px� yq, k0

¡ 0 ;

if x � y : k2
� 0, k0

¡ 0
}

.(II.9)

One example of such a Hadamard distribution is the Wightman function ∆
�

, i.e.

the positive frequency part of the commutator function i∆, ∆
�

�

i
2 ∆� ∆1. How-

ever, any other distribution H, which differs from ∆
�

by a smooth, symmetric,

Lorentz invariant solution of the Klein-Gordon equation will also fulfill the defin-

ing equations (II.6), (II.8), and (II.9), and thus be a valid Hadamard function for

the construction below. The algebraic properties are completely independent of

this choice, the analytic properties, however, will change significantly for differ-

ent choices of H. A Hadamard solution, especially well-suited for our purposes,

will be constructed explicitly in Chapter III. Equation (II.8) fixes the antisymmetric

part of H to be i
2 ∆, which implies that the Poisson structure (II.2) can be induced

by the bidifferential operator

(II.10) ΓH :�
∫

dx dy Hpx, yq
δ

δϕpxq
b

δ

ϕpyq

in the following sense

⌊F, G⌉ � M � ΓH (FbG� Gb F) .

By means of this differential operator a formal quantization of the Poisson algebra

(F pMq, ⌊�, �⌉ , �) can be given in form of the following

Proposition II.4 (Deformed Algebra). Let F pMqrrh̄ss be the space of formal power se-

ries in h̄ with coefficients in the deformable algebra F pMq and regard F, G P F pMqrrh̄ss.

Then

(II.11)

F pMqrrh̄ssb2

Æ

$$H
H

H
H

H

expph̄ΓHq
// F pMqrrh̄ssb2 ,

�

zzuuuu
uuuu

u

F pMqrrh̄ss

F Æ G :�
8

∑
k�0

h̄k

k!

〈
F(k), HbkG(k)

〉

defines a (non-commutative) associative product on F pMqrrh̄ss which fulfills the quanti-

zation condition (II.4). We call (F pMqrrh̄ss, Æ) the algebra of pQFT.

PROOF. First we want to argue that F Æ G is well-defined for any pair F, G P

F pMqrrh̄ss. The kernel representation of the kth term of (II.11) is given by

〈
F(k), HbkG(k)

〉
�

∫
d~x d~y F(k)

px1, . . . , xk
q

k

∏
i�1

Hpxi, yi
qG(k)

py1, . . . , yk
q .

The wave front set of Hbk is given by, cf. [Hör03, Thm. 8.2.9],

WFpHbk
q �

⋃

σPPermpkq

⋃

i�j�k
i¥1

σ
{

WFpHqi � [supppHq � {0}]j
}

,
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where Permpkq denotes the symmetric group in k variables. Hence all covectors

in the x-components, kxi , are elements of the closed forward lightcone V�, cf.

(II.9), and equivalently for the y-components we have �i: kyi P V�. Using [Hör03,

Thm. 8.2.10] we conclude that the pointwise product of distributions above is well-

defined, if

WFpF(k)
q X

(
V�
)k
� H � WFpG(k)

q X

(
V�
)k

,

which is automatically fulfilled for F, G P F pMqrrh̄ss.

Associativity of Æ follows directly from the associativity of the pointwise prod-

uct M (Fb G) � F �G and the form of (II.11). The detailed argument can be found

in [Wal07, Sec. 6.2.4]; it is summarized in the following. Let

Γ
(1,2)
H (Ab Bb C) :� ΓH (Ab B)bC ,

Γ
(1,3)
H (Ab Bb C) :�

〈
H, A(1)

b Bb C(1)
〉

,

and

Γ
(2,3)
H (Ab Bb C) :� Ab ΓH (Bb C) .

Then the Leibniz rule in the second argument implies

ΓH � [idb M] � [idb M] �
(

Γ
(1,2)
H � Γ

(1,3)
H

)
,

and analogously

ΓH � [Mb id] � [Mb id] �
(

Γ
(1,3)
H � Γ

(2,3)
H

)
.

These formulas generalize to the exponential of the bidifferential operators ΓH and

Γ
(i,j)
H by linearity of the tensor product. Hence for the star product one gets

A Æ (B Æ C) � M � eh̄ΓH
�

(
idb M � eh̄ΓH

)
(Ab BbC)

� M � eh̄ΓH
� (idb M) � eh̄Γ

(2,3)
H (Ab Bb C)

� M � (idb M) � e
h̄
(

Γ
(1,2)
H �Γ

(1,3)
H �Γ

(2,3)
H

)

(Ab Bb C)

� M � (Mb id) � e
h̄
(

Γ
(1,2)
H �Γ

(1,3)
H �Γ

(2,3)
H

)

(Ab Bb C)

� (A Æ B) ÆC

by associativity of the pointwise product M. �

An especially important subclass of (F pMqrrh̄ss, Æ) for the description of inter-

actions in QFT is the class of local functionals.

Definition II.5 (Local Functional). Let DiagpMn
q � {~x P Mn : x1 � � � � � xn} de-

note the thin diagonal in Mn. A functional F P F pMq is called local, if for all

n P N:

[LF-1] the nth order functional derivative is supported on the thin diagonal,

�n P N : supppF(n)
pϕqq � DiagpMn

q ,

and
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[LF-2] the wave front set of the nth order functional derivative lies transversal

to the thin diagonal,

�n P N : WFpFn
pϕqq � [TDiagpMn

q]K .

We denote the space of local functionals by FlocpMq.

The first two functionals in (II.1) are examples of local functionals, the third is

not local. Observe that

[TDiagpMn
q]K X

(
Mn

�

[(
V�
)n
Y

(
V�
)n])

� H ,

and hence the wave front set condition for local functionals [LF-2] implies the

wave front set condition of Definition II.3; local functionals are deformable. How-

ever, they do not form a subalgebra of (F pMqrrh̄ss, Æ), since the product of two

local functionals is not local in the generic case. Furthermore we want to remark

that, in contrast to the definition of deformability, the definition of locality does not

depend on the underlying Minkowski signature, a fact which is a major ingredient

in the Euclidean formulation of Epstein-Glaser renormalization in [Kel09].

From the viewpoint of microlocal analysis the wave front set condition

[LF-2] implies that, if F P FlocpMq, the distributions F(n)
pϕq P E 1pMn

q can be

pulled back to surfaces which lie transversal to the thin diagonal

[Hör03, Thm. 8.2.4]. This implies that their distributional part depends only on

relative coordinates, i.e. the Schwartz kernel of the functional derivative of any

local functional can be written as

(II.12)

F(n)
pϕqpx1, . . . , xnq � ∑

k

f n,k
ϕ pxq PkpBrqδprq , f n,k

ϕ P DpDiagpMn
qq � DpMq

where x �

1
n ∑

n
i�1 xi is the “center of mass”-coordinate, r � (r1, . . . , rn�1) are

relative coordinates, and Pk are homogeneous, symmetric polynomials in n � 1

spacetime variables. In flat spacetime the thin diagonal is the coordinate space of

the center of mass, and the relative coordinates are defined in a transversal surface.

In this sense [LF-2] is a microlocal remnant of translation invariance.

The causal partition of unity, which was used in [BF00a] for the distributional

construction of time-ordered products in curved spacetime, can generally not be

used in the functional framework introduced here. It is replaced by the following

result.

Lemma II.6 ([BDF09, Lem. 3.2]). Any local functional can be written as a finite sum of

local functionals of arbitrarily small supports. That is

(II.13) F � ∑
i

σiFi , σi P {�1} ; F, Fi P FlocpMqrrh̄ss ,

where supppFiq � Bi, with Bi a ball of arbitrarily small radius ε ¡ 0.

The proof of this Lemma in the given reference uses a different definition of lo-

cal functionals than the one given above. However, both definitions can be shown
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to be equivalent; see [BFLR10] and [Kel09, App. C].

Combining (II.12) with (II.13), we have that the functional derivative of any

local functional can be expressed as

(II.14) F(n)
pϕqpx1, . . . , xnq � ∑

k
∑

i

f n,k,i
ϕ pxq PkpBrqδprq , F P FlocpMqrrh̄ss ,

where the support of f n,k,i
ϕ P DpMq can be chosen arbitrarily small.

II.3. The Time Ordered Product

We want to regard the situation where the time evolution of the interacting

theory is solved perturbatively, i.e., in terms of formal power series. A convenient

way to describe this evolution is by introduction of a time ordering prescription

for the interaction functionals. Given the theory can be described as a free theory

at asymptotic times [Haa58, Rue62], one can encode the information on the tran-

sition probabilities in collision processes of elementary particles in the so-called

S-matrix [LSZ55, LSZ57],

(II.15) SpFq � exp
�T
pFq .

We will not consider the problem of defining the S-matrix for non-compactly sup-

ported interaction functionals, commonly referred to as the infrared problem (IR-

problem). Instead we will stay within the algebra (F pMqrrh̄ss, Æ) and discuss the

definition of S as a map

S : FlocpMqrrh̄ss Ñ F pMqrrh̄ss

defined on local functionals, i.e., the ultraviolet problem (UV-problem). The ob-

servation, which lies at the very heart of (perturbative) renormalization theory is

that this map cannot be defined in a unique way, but that such a definition neces-

sarily introduces a freedom into the theory, commonly described in terms of the

Stückelberg-Petermann renormalization group [SP53]. We will come to that point

in greater detail in Chapter VI.

In this section we will define the time ordered product and introduce the no-

tion of its partial algebra of functionals. In the framework of pAQFT the time

ordered product, despite its significantly different properties, can be introduced

in much the same way as the star product was defined in the last section. Regard

the second order functional differential operator

(II.16) Γ1HF
:�

1
2

∫
dx dy HFpx, yq

δ2

δϕpxq δϕpyq
,

where HF P D 1

pM2
q denotes a Feynman propagator. That is, there is a fundamen-

tal solution of the Klein-Gordon operator, HF P D 1

pMq,

(II.17)
(
l�m2

)
HF � δ ,
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such that � f , g P DpMq:

(II.18) HFp f , gq � 〈 f , HF � g〉 and HFp f , gq � HFpg, f q ,

and the wave front set of the propagator HF is given by

WFpHFq �

{
(x, y, k,�k) P 9T�pM2

q| for x � y : (x� y)2
� 0, k‖px� yq,

k P BV� if x P BV�y ;(II.19)

for x � y : k P 9T�x pMq

}
,

where we understand V�y as the causal future / past of y P M. Feynman propaga-

tors, HF P DpM2
q, have to be carefully distinguished from the two point functions,

which are (bi-) solutions of the Klein-Gordon equation (II.6) and have positive fre-

quency wave front sets (II.9).

We have that u � HFp f , �q � HFp�, f q is a solution of the inhomogeneous equa-

tion (
l�m2

)
u � f ,

what already implies that the wave front set of HF necessarily contains WFpδq, or

more generally [Hör03, (8.1.11), Thm. 8.3.1],

(II.20) WFpδq � WFppl�m2
qHFq � WFpHFq � WFpδq YCharpl�m2

q ,

and thus a definition of powers of HF which uses only wave front set properties

is impossible, cf. [Hör03, Thm. 8.2.10]. Such a definition will involve an extension

procedure as described in the previous chapter, i.e., renormalization, and it will be

helpful to note that one can read off the scaling degree of HF directly from (II.17),

cf. Lemma I.4,

(II.21) sdpHFq � d� 2 , d � dimpMq .

As in the case of the star product, there is a freedom in the definition of HF.

Observe, however, that HF is fixed once we have chosen a Hadamard function H

which determines the star product,

(II.22) HF � H� i∆adv .

This is also reflected by the fact that H and HF both can be defined as certain

boundary values of the same analytic function. We will exploit the freedom in

the choice of the pair H, HF in Chapter III for the construction of a propagator

which is especially well-suited for the discussion of dimensional regularization

in position space. That is, we will add a smooth, symmetric, Lorentz invariant

solution of the Klein-Gordon equation to the Wightman function, such that the

so defined Hadamard function and corresponding Feynman propagator will have

desirable additional properties. However, let us now come to the definition of the

time-ordered product and its partial algebra.

Proposition II.7 (Partial Algebra of �T ). Let HF P D 1

pM2
q be a Feynman propagator



30 II. SETTING OF PAQFT

in the sense of (II.17)-(II.19) and let ΓHF
be defined by (II.16). Then the product induced

by

(II.23) F pMqrrh̄ssb2 T
b2

//

�

��

F pMqrrh̄ssb2

�T

��
�

�

�

F pMqrrh̄ss
T

// F pMqrrh̄ss

F �T G �

8

∑
k�0

h̄k

k!

〈
F(k), Hbk

F G(k)
〉

,

where

T :� expph̄Γ1HF
q

(
T
�1 :� expp�h̄Γ1HF

q

)

denotes the time-ordering (anti-time-ordering) operator, makes (F pMqrrh̄ss, �T ) into a

partial algebra. That is F �T G is defined for all pairs F, G P F pMqrrh̄ss with

supppFq X supppGq � H ,

and �T is associative for any three functionals with pairwise disjoint supports.

Remark II.8. First. Observe that equation (II.22) implies that �T really is the time-

ordered product for Æ. We have for the scalar field

ϕp f q �T ϕpgq � ϕp f qϕpgq � h̄ 〈 f , HF g〉

ϕp f q Æ ϕpgq � ϕp f qϕpgq � h̄ 〈 f , H g〉 .

Assume that the support of f is later than the support of g, suppp f q Á supppgq, i.e.,

suppp f q and supppgq can be separated by a Cauchy surface Σ, such that suppp f q

lies in the future and supppgq in the past of Σ. Then we infer from suppp∆advq �

V� that 〈 f , ∆adv � g〉 � 0 and hence

〈 f , HF g〉 � 〈 f , H g〉 .

We thus see that

ϕp f q �T ϕpgq � ϕp f q Æ ϕpgq if suppp f q Á supppgq .

Second. The action of the second order differential operator Γ1HF
on functionals

can be interpreted directly in terms of graphs. Let F, G P FlocpMq be interaction

functionals, then the Leibniz rule implies

Γ1HF
(F � G) � 1

2

〈
HF, F(2)

〉
G�

1
2 F
〈

HF, G(2)
〉
�

〈
HF, F(1)

b G(1)
〉

(II.24)

�

1
2
�

�

1
2
�

�

�

The first two terms in this sum are tadpoles, i.e., graphs with lines connecting

one vertex with itself. Defining the time-ordered product as a deformation of the

pointwise product (through T � e
h̄Γ1HF ) removes all tadpole terms. At low orders

in h̄ this can be seen by a simple computation,
(

1� h̄Γ1HF

) [(
1� h̄Γ1HF

)
F �
(

1� h̄Γ1HF

)
G
]
�

�

� h̄
�

�Oph̄2
q.

See the proof below for the general case.
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PROOF OF PROPOSITION II.7. Before proving the main part of the proposi-

tion, we want to show that the diagram in (II.23) is equivalent to the given formula.

This is the same as showing that there are no tadpole terms in the graphical expan-

sion of F �T G and higher oder products. The Leibniz rule (II.24) can be written as

a coproduct rule for Γ1HF
,

∆Γ1HF
� Γ1HF

b id� idb Γ1HF
� ΓHF

.

Writing M for pointwise multiplication and abbreviating ΓHF
� Γ, we read off the

diagram

F �T G � eh̄Γ1
� M

(
e�h̄Γ1Fb e�h̄Γ1G

)

� M � eh̄∆Γ1
(

e�h̄Γ1Fb e�h̄Γ1G
)

� M � eh̄Γ (FbG) �
8

∑
k�0

h̄k

k!

〈
F(k), Hbk

F G(k)
〉

.

And we see that the tadpoles drop out of the expansion. The graph expansion of

the time-ordered will be discussed in more detail in Section IV.1.

One infers from (II.22) that

(II.25) F �T G �





F Æ G if supppFq Á supppGq

G Æ F if supppGq Á supppFq ,

where, as before, O Á U for two regions O,U � M denotes that O is later than U .

Observe that if O Á U and U Á O then O and U are causally disjoint. With (II.25) it

follows from Proposition II.4 that F �T G is well-defined as long as the functionals

have disjoint supports. Associativity follows from the same proposition, but can

also be proven directly. Let A, B, C P F pMqrrh̄ss be three deformable functionals

with pairwise disjoint supports, then the twofold product is defined, and we have

A �T (B �T C) � T

[
T
�1A � T

�1
T

(
T
�1B � T �1C

)]

� T

[
T
�1A � T

�1B � T �1C
]
� (A �T B) �T C �

We want to remark that there is a subalgebra F0pMqrrh̄ss � F pMqrrh̄ss, where

besides the pointwise, � , and the star, Æ , also the time-ordered product, �T , can

be defined as a full product. Namely, F0pMq is given as the algebra of functionals,

such that for any element all functional derivatives are smooth, compactly sup-

ported functions,

�F P F0pMq, �n P N : F(n)
pϕq P DpMn

q .

The third example given in (II.1) is an element of F0pMq. The field equation,(
l�m2

)
ϕ � 0, generates an ideal in (F0pMq, Æ),

J �

{
F P F0pMq : Fpϕq � ∑

a

Gapϕq B
a
pl�m2

qϕ, Ga P F0pMq

}
,



32 II. SETTING OF PAQFT

a P Nd
0, d � dimpMq. And following [DF03, Footnote 5] we want to assume that

J is the set of functionals, which vanish on the space of (smooth) solutions of the

Klein-Gordon equation. Let F P J and G P F0pMq, one easily checks that F Æ G P

J . However, the same is not true for the time-ordered product, F �T G R J , in the

region where �T and Æ are different, since HF (in contrast to H) is not a solution

of the Klein-Gordon equation. Since we do not want to deal with this and related

issues, it is more convenient to work with fields, which are not required to satisfy

the field equation, so-called off-shell fields. As shown in [DF03] a restriction to the

space of solutions is always possible. See also [BD08] for an explicit construction

of the maps involved.

II.4. The Renormalization Problem

Associativity of the time-ordered product makes it possible to speak of n-fold

products
T n : F pMqrrh̄ssbn

Ñ F pMqrrh̄ss

F1 b � � � b Fn ÞÑ F1 �T � � � �T Fn ,

which are well-defined if the supports of the functionals F1, . . . , Fn P F pMqrrh̄ss are

pairwise disjoint,

supppFiq X supppFjq � H �i, j P {1, . . . , n} , i � j .

The aim of perturbative QFT, however, is to define the terms of the S-matrix

(II.15), which are time ordered products of the same interaction functional

SpFq �
8

∑
n�0

1
n!
T npFb � � � b Fq .

Hence one has to extend the definition of T n towards functionals with overlap-

ping supports. In the present formalism such an extension is only possible for local

functionals F P FlocpMqrrh̄ss. One way to extend the maps T n to local function-

als with overlapping supports is the inductive procedure of Epstein and Glaser

[EG73]. See also [BF00a] and [BDF09] for modern generalizations of the original

treatment. We want to remark that the recursive construction of Epstein-Glaser can

be performed without reference to the star-product structure of pQFT, and hence is

suitable also for a discussion of the renormalization problem on Euclidean space,

[Kel09].

We will show in the last chapter that the inductive procedure of Epstein and

Glaser can be solved, by implementing analytic regularization and minimal sub-

traction, which gives preferred extensions in each step of the induction. An an-

alytic regularization, which has been proven to have especially nice properties

when it comes to gauge theories, is dimensional regularization [BRS75]. And the

next two chapters will be devoted to the implementation of this method into the

framework of perturbative Algebraic Quantum Field Theory, although we will re-

strict ourselves to the study of scalar quantum field theory, only.



CHAPTER III

The Dimensionally Regularized

Analytic Hadamard Function

Despite its rigorous formulation in [BG72a, tHV72] dimensional regulariza-

tion has always been a somewhat shady or almost mystic concept, since the idea

of a complex spacetime dimension is quite obscure from a conceptual point of

view. Hence, the insight of Bollini and Giambiagi that dimensional regularization

can be implemented in position space as a modification of the Bessel parameter

in the two point function was, although passing largely unnoticed, an important

one for the mathematical physicist interested in a conceptually clear formulation

of perturbative quantum field theory [BG96]. We will follow the detailed argu-

ment of [BDF09, App. A], which, however, contains a small flaw, to show how a

modification of the Bessel parameter leads to the notion of a “dimensionally regu-

larized” two point function for arbitrary, integer spacetime dimensions. This two

point function will then be used in the next chapter to define a dimensionally reg-

ularized time-ordered product and the corresponding S-matrix.

In a series of articles Hollands and Wald developed a description of the renor-

malization group flow on globally hyperbolic spacetimes by investigating the be-

havior of renormalizable theories under rescalings of the metric [HW01, HW02,

HW03]. A major ingredient of the approach is their “scaling expansion” of time-

ordered products around the thin diagonal. This expansion has the property that

the scaling degree of the individual terms becomes smaller and smaller as one

goes to higher and higher orders in the expansion. In scalar QFT on Minkowski

spacetime such a scaling expansion can be introduced as an expansion in the mass

parameter m2 [Hol04, DF04]. This requires, however, that the two point function

depends smoothly on m2. The Wightman two point function, ∆
�

, in even dimen-

sions, exhibits a logarithmic dependence on the mass parameter, and thus cannot

be used in this framework. However, we can take advantage of the freedom in-

volved in the choice of a (Hadamard) two point function, briefly discussed in Sec-

tions II.2 and II.3, and add to ∆m
�

a smooth, symmetric, Lorentz invariant solution

of the Klein-Gordon equation, which establishes a smooth dependence on m2 for

the sum. In flat spacetime the requirement of smoothness in mass fixes the two

point function uniquely in odd dimensions, and up to a parameter µ of mass di-

mension one in even dimensions [DF04]. Hence, the algebra and the time-ordering

are fixed (up to the parameter µ) by this smoothness condition.

33
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III.1. Odd Dimensions

The Wightman distribution ∆m
�

on d-dimensional Minkowski spacetime can

be expressed, for spacelike arguments x P M (i.e., x2
  0 in our choice of the

metric) in terms of modified Bessel functions (see e.g. [BS59]),

(III.1) ∆m
�

pxq � (2π)1�ν mν
(
�x2

)
�

ν
2

Kνp

√
�m2x2

q , ν � d
2 � 1 .

The right hand side of this equation is a function of one (real) variable x2, which

is parametrized by the complex order ν of the modified Bessel function. In the

case where ν P 1
2 N0, and only then, this function has the physical interpretation of

the Wightman two point function on a spacetime of dimension d � 2 (ν� 1). The

Wightman two point function, as well as its generalizations for arbitrary ν P C

do not scale smoothly in m2. However, starting from (III.1) we can construct a

Hadamard two point function Hm, which scales smoothly in m2
P R, by adding

to ∆m
�

a smooth, Lorentz invariant solution F of the Klein-Gordon equation, Hm �

∆m
�

� F. Any such Lorentz invariant solution F has the form

(III.2) Fpxq �
(
�x2

)
�

ν
2

Gνp

√
�m2x2

q ,

for spacelike arguments x, where Gν is a solution of the modified Bessel equation

of order ν. For non-integer order, ν P C\N0, (e.g., odd dimensions d) Gν is a linear

combination of the modified Bessel functions of first kind {Iν, I
�ν}. For integer

order, n P N0, (i.e., even dimensions d) it is a linear combination of {In, Kn}, where

Kn is the modified Bessel function of second kind, see Appendix A for details.

Requiring smoothness at x � 0 implies for arbitrary order ν P C that

(III.3) Fpxq �
(
�x2

)
�

ν
2

Iνp

√
�m2x2

q .

For ν P C\N0 the modified Bessel functions are related by

(A.4) Kν �
π

2 sinpνπq
[I
�ν � Iν] ,

hence, using this together with (III.3) we reach

Hν
mpxq � ∆m

�

pxq � Fpxq

�(2π)1�νmν
(
�x2

)
�

ν
2
[
Kνp

√
�m2x2

q � a � Iνp

√
�m2x2

q

]

�(2π)1�νmν
(
�x2

)
�

ν
2
[

π
2 sinpνπq

I
�νp

√
�m2x2

q�

(
a� π

2 sinpνπq

)
Iνp

√
�m2x2

q

]
,

(III.4)

where a P C is a free parameter yet to be specified. In order to fix the parameter

a we regard the scaling behavior in m2 of the two terms in (III.4). The (modified)

Bessel functions are of the form

Iνpyq � yν fνpy
2
q .

with an entire analytic function fν. Thus, in the first term the factor m�ν in I
�ν
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cancels with the prefactor mν leaving a smooth function of m2 behind. In the sec-

ond term we get an overall factor m2ν, which is not a smooth function of m2, unless

ν P N0 (which is excluded). Hence the free parameter a has to be chosen in such a

way that the term proportional to Iν cancels, a � π
2 sinpνπq

. Summarizing the above,

we have found, for non-integer order ν P C\N0, and in particular for odd dimen-

sions d, a unique Hadamard two point function, which depends smoothly on m2,

it is given by

(III.5) Hν
mpxq �

(2π)2�ν mν

4 sinpνπq

(
�x2

)
�

ν
2

I
�νp

√
�m2x2

q , x2
  0 , ν P C\N0.

III.2. Analytic continuation

We have already seen that Hν
mpxq scales smoothly in the mass parameter m2

for spacelike x P M, and want to discuss now the analytic properties of Hν
m. It is

a fundamental result of complex analysis that the analytic continuation of Hν
m is

unique in the region where it exists, so let Hν
m : MC

Ñ C be this continuation,

defined as a function on the complexified Minkowski space, MC :� M bR C.

The modified Bessel functions are defined for arbitrary complex arguments and

writing I
�νp

√
m2z2

q �

(√
m2z2

)
�ν

fνpm
2z2
q, with an entire analytic function fν,

we see that the analytic continuation of (III.5) can be written as

(III.6) Hν
mpzq � (2π)1�ν π

2 sinpνπq

(
�z2

)
�ν

fνpm
2 z2

q , z P MC,

from which the smoothness in m2 is obvious. Using the series representation of

the modified Bessel function (A.3) we immediately get a series expansion of Hν
m

in m2,

(III.7) Hν
mpzq �

π2�ν

sinpνπq

(
�z2

)
�ν 8

∑
s�0

1
s! Γp�ν� s� 1q

(
�z2

4

)s (
m2
)s

.

Since this formula contains the power of a complex number,
(
�z2

)
�ν

� e�ν Logp�z2
q,

we have to choose a branch of the logarithm in order to make Hν
m single-valued.

As we shall see below, choosing the principal branch, Log, of the complex loga-

rithm,

Log : C\ {0} Ñ R` i (�π, π]

r eiϑ
ÞÑ Logpr eiϑ

q � lnprq � iϑ , ϑ P (�π, π] � R{2π .

gives a single-valued function Hν
m with the analytic properties of the Wightman

function. The principal branch has a discontinuity along the negative real axis

(ϑ � π), resulting in the fact that the function on the right hand side of (III.7),

regarded as a function of one complex variable

z2
� (x� iy)2

� x2
� y2

� 2i xy ,
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i.e., Hν
mpzq � h

ν
mpz

2
q, is analytic in the cut plane C\R0

�

, see Figure 1(a). The con-

dition z2
R R0

�

is fulfilled if the complex four vector1 z P MC lies in the so-called

future or past tube

T� �
{

x� iy : x P M, y P V�
}
� MC ,

where, as before, V� �
{

y P M : �y0
¡ ‖y‖

}
denote the open forward and back-

ward light cones. Observe that Impz2
q � 0 implies z2

  0, if z � x� iy P T�:

x0y0
� x � y ¤ ‖x‖ ‖y‖   � ‖x‖ y0 ,

hence x2
  0 and z2

  0. We reach the conclusion that the function Hν
m : MC

Ñ C,

given by (III.7), is analytic in the future and past tubes T�.2 Furthermore we see

from the explicit formula (III.7) that the growth of |Hν
mpx� iyq| is bounded by

an inverse polynomial as y approaches zero from within the forward or backward

light cone. Hence, by [Hör03, Thm. 3.1.15], the boundary values of Hν
m from inside

the future and past tube exist as distributions in D 1

pMq.

Hence we can define the Hadamard distribution Hν
m P D 1

pMq to be the bound-

ary value of Hν
m as the real subspace M � MC is approached from the future tube,

y �
(

ε
2 , 0
)
P V�,

(III.8) 〈Hν
m, f 〉 :� lim

εÑ0�

∫

M
dx f pxq h

ν
mpx

2
� ix0εq , ν P C\N0 .

The wave front set of Hν
m P D 1

pMq lies within the dual cone of V�, cf. [Hör03,

Thm. 8.1.6], which is the closed cone V�, and hence we have

WFpHν
mq � M�

(
V�\ {0}

)
, ν P C\N0 .

Thus we have found a parametrized Hadamard distribution, which can be used

to define a star product of functionals as described in the previous chapter, cf.

Proposition II.4.

The corresponding Feynman fundamental solution can be defined in the same

way, it is the time-ordered version of Hν
m,

Hm,ν
F pxq :� θpx0

qHν
mpxq � θp�x0

qHν
mp�xq ,

where θ is the Heaviside step function. Rephrased in the language of complex

analysis, for x0
¡ 0 the Feynman fundamental solution is the boundary value of

the analytic Hadamard function Hν
m : MC

Ñ C from inside the future tube, i.e.

Hm,ν
F pxq � limεÑ0� h

ν
mpx

2
� ix0εq, and for x0

  0 it is the boundary value of the

same analytic function from inside the past tube, Hm,ν
F pxq � limεÑ0� h

ν
mpx

2
� ix0εq.

1By abuse of terminology we will use the term (complex) “four vector” for elements of (complex)
Minkowski space of arbitrary dimension d ¥ 2.
2It is well-known that the analyticity domain of the (Hadamard) two point function is bigger than just
the future and past tubes. By Lorentz invariance, the extended tube, and by permutation symmetry
even the so-called permuted extended tubes are part of the analyticity domain of the corresponding ana-
lytic n point functions [HW57]. However, for our purposes it will suffice to consider the subsets T� of
the analyticity domain of Hν

m.
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Hence in both cases it results

(III.9) � f P DpM\ {0}q :
〈

Hm,ν
F , f

〉
� lim

εÑ0�

∫
dx f pxq h

ν
mpx

2
� iεq .

The distribution Hm,ν
F is given as the boundary value of the analytic two point

function Hν
m from two disjoint areas of its analyticity domain in the cases x0

¡ 0

and x0
  0. For x0

� 0 and x � 0 we are in the analyticity domain of Hν
m. For

x � 0 a definition of Hm,ν
F as boundary value of Hν

m is not possible, hence we have

defined the Feynman propagator as a distribution Hm,ν
F P D 1

pM\ {0}q. Observe,

however, that Hm,ν
F has a unique extension to D 1

pMqwith the same scaling degree.

The scaling degree of Hm,ν
F can be read off directly from (III.7),

(III.10) sdpHm,ν
F q � 2ν .

Hence for half-integer Bessel order ν � d
2 � 1, we have that sdpHm,d

F q � d� 2 and

hence Hm,d
F P D 1

pM\ {0}q has a unique extension 9Hm,d
F P D 1

pMq. Observe that the

terms proportional to
(
m2
)s

in the expansion (III.7) are homogeneous of degree

D � 2 (s� ν), cf. Definition I.9. Hence these terms have unique homogeneous

extensions for 2 (Repνq � s) P N0 � d, cf. Remark I.10 and Theorem I.12, and in

particular for ν R 1
2 N0. This observation is the basis for the discussion undertaken

in the next section and the following chapter.

Hence we have found a unique analytic Hadamard function Hν
m, which de-

pends smoothly on m2 for Bessel order ν P C\N0, and hence in particular for odd

dimensions. Before turning to the more intricate case of even dimensions, let us

briefly discuss the properties of the analytic Hadamard function by visualizing

Hν
m in the two pictures of Fig. 1. In particular observe that the Hadamard bound-

ary value Hν
mpxq grows exponentially in spacelike directions, a fact which makes

a direct comparison in terms of the full time-ordered products of our formulation

to the well-established formulation of dimensional regularization in momentum

space difficult, if not impossible. A comparison of the counterterms, as described

briefly in Section I.4, however, should be possible.

III.3. Even dimensions

The fact that (III.5) or respectively (III.7) fixes the analytic two point function

uniquely for any complex parameter ν P C\N0 suggests to construct the corre-

sponding two point function for ν P N0, i.e., for even dimensions d � 2 (ν� 1), by

a limiting procedure. We introduce a regularization parameter ζ P C and set

ν ÞÑ
d� ζ

2
� 1 , d P 2N, 0   |ζ|   2 ,
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Re((x − iy)2)

x ∈ V−

x ∈ V+

Im((x − iy)2)
Im[hν

m((x − iy)2)]

(A)

d =
2(ν +

1)
Space

like
Dista

nce :
√

|x
2 |

H
ν

m(x)

(B)

FIGURE 1. Generalizations of the Hadamard distribution.
(a) to complex arguments. hp(x� iy)2

q is analytic in the cut plane
C\R0

�

, which implies that Hν
mpx� iyq is analytic in the future and

past tube T�. The values of Hν
mpxq for timelike vectors x are the

boundary values of this function, as y approaches zero from in-
side the forward light cone. For the plot ν � 1

2 and m2
� 1 was

chosen.
(b) to “complex dimensions”. The plot shows the qualitative be-
havior of the Hadamard function Hν

mpxq for spacelike distances,
x2

  0, in dependence of the parameter ν P C. One sees the
(simple) poles at integer values ν �

d
2 � 1 P N0, cf. (III.7), and

that the local singularity structure at x � 0 does not change as ν
varies. Observe also the (alternating) behavior for large spacelike
distances, the absolute value of Hν

m grows exponentially, hence it
cannot be the kernel of a Schwartz distribution, cf. also (III.7). In
the plot ν varies over the reals from 0 to 2. We have chosen m2

� 1
for the plot.

in (III.5). The resulting parametrization of Hν
m we denote by

H̃µ,ζ
m pzq :�

(2π)1� (d�ζ)
2 µ�ζm

(d�ζ)
2 �1

4 sinp
(
(d�ζ)

2 � 1
)

πq

(
�z2

) 2�(d�ζ)
4

I
1� (d�ζ)

2
p

√
�m2z2

q

(III.11)

� (�1)
d
2�1

(
1

2π

) d
2

md�2 π
2 sinpζ π

2 q

(
m
µ

)ζ (√
�m2z2

)1� (d�ζ)
2

I
1� (d�ζ)

2
p

√
�m2z2

q .

We had to introduce a parameter µ of mass dimension one, in order to get the right

mass dimension for the two point function, mdpH̃µ,ζ
m q � d� 2. Apart from the

dependence on the free parameter µ, H̃µ,ζ
m has for 0   |ζ|   2 the same properties

as Hν
m for |ν| between two integers. In particular H̃µ,ζ

m is analytic in future and

past tube T� and depends smoothly on the mass parameter m2.

In order to get an expression for even dimensions, we want to perform the

limit ζ Ñ 0. This limit can not be performed directly, since H̃µ,ζ
m diverges as the

parameter ζ tends to zero. The aim of this section is to construct a dimensionally
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regularized analytic two point function Hµ,ζ
m (without the tilde), which is a smooth

function of m2, and solves the Klein-Gordon equation in the limit ζ Ñ 0. This

is done by exploiting the freedom in the choice of the Hadamard distribution H

mentioned earlier. We will see that Hµ,ζ
m differs from H̃µ,ζ

m by an analytic, Lorentz

invariant function, which is a smooth function of m2 and solves the Klein-Gordon

equation “in d� ζ dimensions”. The exact meaning of this assertion will become

clear in the construction to be carried out now.

For 0   |ζ|   2 we can express H̃µ,ζ
m in terms of the modified Bessel functions,

cf. (A.4),

H̃µ,ζ
m pzq � (2π)�

(d�ζ)
2 µ�ζm

(d�ζ)
2 �1

(
�z2

) 2�(d�ζ)
4

�

(III.12)

�

[
K (d�ζ)

2 �1
p

√
�m2z2

q �

π

2 sinp
(
(d�ζ)

2 �1
)

πq
I (d�ζ)

2 �1
p

√
�m2z2

q

]

�Wµ,ζ
m pzq � B̃µ,ζ

m pzq ,

where we set Wµ,ζ
m for the term proportional to K (d�ζ)

2 �1
and B̃µ,ζ

m for the I (d�ζ)
2 �1

-

term. The first term in (III.12), Wµ,ζ
m pzq, is well defined for ζ � 0, it is (the analytic

continuation of) the Wightman function (III.1) in d dimensions. The second term,

B̃µ,ζ
m pzq �

(�1)(
d
2�1) (2π)�

(d�ζ)
2 µ�ζm

(d�ζ)
2 �1

(
�z2

) 2�(d�ζ)
4

�

π
2 sinpζ π

2 q
I (d�ζ)

2 �1
p

√
�m2z2

q ,

is a meromorphic function in ζ. More precisely, for any fixed d P 2N the map

ζ ÞÑ B̃µ,ζ
m is analytic in the punctured disk {0   |ζ|   2} and has a simple pole

at ζ � 0. That is, ζB̃µ,ζ
m pzq has a removable singularity at ζ � 0, or equivalently

limζÑ0 ζ2B̃µ,ζ
m pzq � 0, cf. [Con78, Def. 1.6 and Thm. 1.2]. Using the fact that

ν ÞÑ Iνpyq is an entire analytic function [Wat22, § 3�13], [WW02], and abbreviating

f pζq � (2π)�
(d�ζ)

2 µ�ζm
(d�ζ)

2 �1
(
�z2

) 2�(d�ζ)
4

I (d�ζ)
2 �1

p

√
�m2z2

q ,

we compute for d P 2N (using l’Hôspital’s rule),

lim
ζÑ0

π

2 sinp
(
(d�ζ)

2 �1
)

πq

[
ζ2 f pζq

]
�

{
1

cosp
(
(d�ζ)

2 �1
)

πq

[
ζ2 f 1pζq � 2ζ f pζq

]}

ζ�0

� 0 .

Given these properties, ζ ÞÑ B̃µ,ζ
m pzq can be expanded in a Laurent series [Con78,

1.11],

(III.13) B̃µ,ζ
m pzq �

8

∑
n��1

anpxq ζn
�

1
ζ RespB̃µ,ζ

m pzq, ζ � 0q � Gµ,ζ
m pzq ,

where ζ Ñ Gµ,ζ
m pxq is analytic in the full disk {|ζ|   2}. For finite ζ the function

B̃µ,ζ
m is (the analytic continuation of) a smooth, Lorentz invariant solution of the
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Klein-Gordon equation “in d� ζ dimensions”, i.e., B̃µ,ζ
m pzq�

(
�z2

)
�

ν
2 Iνp

√
�m2z2

q,

where Iν is the modified Bessel function of first kind of order ν � d�ζ
2 �1, cf. (III.2).

Furthermore H̃µ,ζ
m pzq � Wµ,ζ

m pzq � B̃µ,ζ
m pzq is a smooth function of m2. It is the

whole purpose of this derivation, to maintain as many of these properties as pos-

sible as ζ tends to zero. Subtracting just the pole part of (III.13), as suggested in

the original treatment [BDF09, App. A], although preserving smoothness in z and

m2, does not lead to a solution of the Klein-Gordon equation. The reason for this

is that the residue does not solve the Klein-Gordon equation in d � ζ, but in d

dimensions,

a
�1pxq � RespB̃µ,ζ

m pzq, ζ � 0q � lim
ζÑ0

ζB̃µ,ζ
m pzq

� (�1)(
d
2�1) (2π)�

d
2 m

d
2�1

(
�z2

) 2�d
4

I d
2�1p

√
�m2z2

q .(III.14)

In order to maintain also the solution property in the limit ζ Ñ 0, we need to

subtract from B̃µ,ζ
m a smooth, Lorentz invariant solution of the Klein-Gordon equa-

tion “in d� ζ dimensions”. Furthermore, in order not to spoil the smoothness of

H̃µ,ζ
m pzq in the mass parameter m2, the subtraction has to be a smooth function of

m2. We conclude that the subtraction is a scalar multiple of

Sζ
mpzq � (�1)(

d
2�1) md�2

(√
�m2z2

)1� d�ζ
2

I d�ζ
2 �1

p

√
�m2z2

q .(III.15)

Observe that Sζ
m is an entire analytic function of z2, since Iνpzq � zν fνpz

2
q with fv

entire analytic. A possible subtraction is given by

Bµ,ζ
m pzq � B̃µ,ζ

m pzq � α π
2 sinpζ π

2 q
Sζ

mpzq

�

[
(2π)�

ζ
2

(
m
µ

)ζ
π

2 sinpζ π
2 q
�

π
2 sinpζ π

2 q

]
�

� (�1)(
d
2�1) (2π)�

d
2 m

d
2�1

(
�z2

) 2�d
4
(√

�m2z2
)
�

ζ
2

I d�ζ
2 �1

p

√
�m2z2

q ,

where we had to set the factor in front of the subtraction to be α � (2π)�
d
2 in order

to get a well-defined limit. Adding this to the analytic Wightman function Wµ,ζ
m

defines the dimensionally regularized analytic Hadamard function

Hµ,ζ
m :�Wµ,ζ

m �Bµ,ζ
m � H̃µ,ζ

m � (2π)�
d
2 π

2 sinpζ π
2 q
Sζ

mpzq ,
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which has the explicit form(s)

Hµ,ζ
m pzq � (2π)�

d
2 md�2

(
m
√
�z2

)1� d�ζ
2
�

� (�1)
d
2�1 π

2 sinpζ π
2 q

[(
m

µ

)ζ

I
1� d�ζ

2
pm
√
�z2

q � I d�ζ
2 �1

pm
√
�z2

q

]
(III.16)

� (2π)�
d
2 md�2

(
m
√
�z2

)1� d�ζ
2
�

�

[(
m

µ

)ζ

K d�ζ
2 �1

� (�1)
d
2�1 π

2 sinpζ π
2 q

{(
m

µ

)ζ

� 1

}
I d�ζ

2 �1

]
.(III.17)

From the representation (III.16) we can directly derive a series expansion of

the dimensionally regularized analytic two point function in powers of m2 by in-

serting the power series expansion (A.3) for the modified Bessel functions, d P 2N,

Hµ,ζ
m pzq � (�1)

d�2
2 (2π)�

d
2 2

2�(d�ζ)
2

π

2 sinpζ π
2 q
�

(III.18)

�



8

∑
s�0





(
2

µ
√
�z2

)ζ
1

s! Γp�
ζ
2 �

d�4
2 � sq

�

θps� d�3
2 q(

s� d�2
2

)
! Γp

ζ
2 � s� 1q



 �

�

(√
�z2

2

)2s�(d�2) (
m2
)s


.

Observe that the second term in curly brackets is a smooth function of z2, since it

only contributes for s ¡ d�3
2 , i.e. 2s� (d� 2) ¥ 0.

Since Hµ,ζ
m differs from H̃µ,ζ

m by an entire analytic function, cf. (III.15), it is

also analytic in the future and past tube. Furthermore ζ ÞÑ Hµ,ζ
m pzq is analytic in

{|ζ|   2} by construction, however, for completeness we want to give an explicit

argument here. Regard (III.17), K d�ζ
2 �1

and I d�ζ
2 �1

are entire analytic functions of ζ

by general properties of the (modified) Bessel functions (see e.g. [AS70, Sec. 9.6]).

The analyticity domain of ζ ÞÑ Hµ,ζ
m pzq is thus determined by the factor αpζq �

π
2 sinpζ π

2 q

{(
m
µ

)ζ
� 1
}

, which obviously is analytic in {0   |ζ|   2}. One can show

differentiability in ζ � 0 by computing the differential quotient directly,

lim
ζÑ0

1
ζ
[αpζq � αp0q] �

1
2

[
ln
(

m

µ

)]2

.

Hence (z, ζ) ÞÑ Hµ,ζ
m pzq is analytic for z P T� and |ζ|   2 as asserted above. The

limit ζ Ñ 0 of Hµ,ζ
m exists and defines the analytic Hadamard function in even

dimensions

Hµ
mpzq :� lim

ζÑ0
Hµ,ζ

m pzq , d P 2N ,
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it can be read off directly from (III.17), d P 2N,

Hµ
mpzq �

m
d
2�1 (

�z2
) 2�d

4

(2π)
d
2

[
K d

2�1p
√
�m2z2

q �

(�1)
d
2

2
ln
(

µ2

m2

)
I d

2�1p
√
�m2z2

q

]
.

By construction Hµ
m, as well as its regularization Hµ,ζ

m , 0 ¤ |ζ|   2, is a smooth

function of m2. The boundary values of Hµ
mpzq � h

µ
mpz

2
q define the Hadamard

distribution and Feynman fundamental solution,

(III.19)
〈

H
µ
m, f

〉
� lim

εÑ0�

∫
dx f pxq h

µ
mpx

2
� ix0εq , H

µ
m P D

1

pMq ,

and

(III.20)
〈

H
m,µ
F , g

〉
� lim

εÑ0�

∫
dx f pxq h

µ
mpx

2
� iεq , H

m,µ
F P D

1

pM\ {0}q .

Within the analyticity domain of Hµ,ζ
m pzq the limit ζ Ñ 0 can be exchanged

with taking boundary values, resulting in regularizations of these distributions.

What seems artificial at this stage, since H
µ
m needs no regularization at all and

H
m,µ
F already has a unique extension with the same scaling degree by Theorem I.6,

will prove to be useful for the regularization of higher time-ordered products in

the next chapter. Hence we define the dimensionally regularized Hadamard distri-

bution, as well as the corresponding Feynman fundamental solution as boundary

values of Hµ,ζ
m pzq � h

µ,ζ
m pz2

q,

(III.21)
〈

H
µ,ζ
m , f

〉
� lim

εÑ0�

∫
dx f pxq h

µ,ζ
m px2

� ix0εq , H
µ,ζ
m P D

1

pMq ;

and

(III.22)
〈

H
m,µ,ζ
F , g

〉
� lim

εÑ0�

∫
dx gpxq h

µ,ζ
m px2

� iεq , H
µ,ζ
F P D

1

pM\ {0}q .

The scaling degree of H
m,µ,ζ
F can be read off directly from (III.18),

(III.23) sdpHm,µ,ζ
F q � d�Repζq � 2 .

It is smaller than d for Repζq   2 and we infer again from Theorem I.6 that H
m,µ,ζ
F

has a unique extension in this case. For ζ R R, observe that the singular term of

the expansion (III.18) is homogeneous of degree D � 4� (d� ζ) and hence we get

a unique extension by means of Theorem I.12.

This unique extension 9H
m,µ,ζ
F P D 1

pMq is a regularization of H
m,µ
F P D 1

pM\ {0}q
in the sense of Definition I.16, since by what was said above we have

� f P DpM\ {0}q : lim
ζÑ0

〈
9H

m,µ,ζ
F , f

〉
� lim

ζÑ0

〈
H

m,µ,ζ
F , f

〉
�

〈
H

m,µ
F , f

〉
.

And since the distribution on the right hand side also has a unique extension 9H
m,µ
F ,

we even have

(III.24) � f P DpMq : lim
ζÑ0

〈
9H

m,µ,ζ
F , f

〉
�

〈
9H

m,µ
F , f

〉
.

Observe that H
m,µ,ζ
F has a unique extension by means of homogeneity, and not, as
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H
m,µ
F , by a pure scaling degree argument. We will see in the next chapter how this

leads to an analytic regularization of arbitrary time-ordered products.





CHAPTER IV

Dimensional Regularization in Position Space

The work of Bollini and Giambiagi on dimensional regularization in position

space, mentioned previously, focused on the Fourier transform of this regulariza-

tion method between momentum space and position space [BG96]. In contrast to

their work, our analysis will be formulated exclusively in position space, and a

direct translation to momentum space will generally not be possible. However,

an advantage of the method presented here is that all expressions will depend

smoothly on the mass parameter m2, which makes it possible to apply the covari-

ant framework of [Hol04], see also [DF04]. We will analyze the graph structure of

the time-ordered product in the first section and use this in the second section to

construct for any graph a unique dimensionally regularized amplitude. We will

define the dimensionally regularized time-ordered product and the correspond-

ing scattering matrix. This dimensionally regularized S-matrix will then be used

as an example in the solution of the Epstein-Glaser recursion, and to establish the

relation to Connes-Kreimer theory of renormalization in the last chapter.

IV.1. Graph structure of the Time-Ordered Product

Before turning to the time-ordered product we want to introduce very briefly

the basic notions connected with the definition of a graph. An oriented graph Γ is

a set of vertices VpΓq and a set of edges EpΓq together with maps

s, t : EpΓq Ñ VpΓq ,

which give source and target of an edge e P EpΓq, respectively. Furthermore we

give Γ an orientation by assigning to any pair (e, v) P EpΓq �VpΓq the value

(e : v) :�





�1 if tpeq � v

�1 if speq � v

0 otherwise.

We call e adjacent to v if (e : v) � 0. A graph for which the orientation map

(e, v) ÞÑ (e : v) is multi-valued we call tadpole. However, the definition of the

time-ordered product in (II.23) implies that there are no tadpoles occurring in its

graph expansion, i.e., Equation (IV.2) below; see the proof of Proposition II.7 and

the preceding Remark II.8. In particular this implies that we will only need to

consider graphs for which

(IV.1) �e P EpΓq : speq � tpeq.

45



46 IV. DIMENSIONAL REGULARIZATION IN POSITION SPACE

Furthermore we remark that for scalar QFT the orientation of a given (Feynman-)

graph can be chosen freely, one speaks of an unoriented graph in this case. Let G
denote the set of all unoriented graphs Γ for which the orientation map (e, v) ÞÑ

(e : v) is single-valued, i.e. (IV.1) holds.

Consider the n-fold time-ordered product introduced in Section II.4 as a map

T n : FlocpMqrrh̄ssbn
Ñ F pMqrrh̄ss

F1 b � � � b Fn ÞÑ F1 �T � � � �T Fn .

It was defined with the help of a second order, symmetric functional differential

operator (II.16), which can be written as

ΓHF
pF � Gq �

〈
HF, F(1)

b G(1)
〉

,

due to the absence of tadpoles. On the level of graphs this operation is represented

by drawing one line, HF, between the interaction vertices, F and G. We can split

the time-ordered product, T n, in a similar way into two parts [Fre09]; a differential

operator,

δ
α : F1 b � � � b Fn ÞÑ F

(α1)
1 b � � � b F

(αn)
n , α P Nn ,

where αi is the number of lines adjacent to the vertex with interaction Fi,
1 and a

distribution,

SΓ : F
(α1)
1 b � � � b F

(αn)
n ÞÑ

〈
SΓ, F

(α1)
1 b � � � b F

(αn)
n

〉
,

containing the information as to which vertices of the graph Γ are connected by a

line. The n-fold time-ordered product can then be written as

(IV.2) F1 �T � � � �T Fn � ∑
αPNn

∑
ΓPGα

h̄|EpΓq|

SympΓq
〈SΓ, δ

α (F1 b � � � b Fn)〉 ,

where Gα is the set of (non-tadpole) graphs with n � dimpαq vertices and |α|
2 lines

such that there are αi lines joining at vertex i. SympΓq P N is the symmetry factor

of the graph Γ to be defined below. Observe that in the case of polynomial inter-

actions, e.g., Fipϕq �
〈

ϕki , f
〉

, i P {1, . . . , n}, and fixed n P N only finitely many of

the functional derivatives δ
α give non-vanishing contributions to (IV.2). For arbi-

trary interactions the limiting parameter is the order in h̄ up to which one wants to

compute. One can generate a dependence on the loop number ℓpΓq for connected

graphs Γ by absorbing one factor h̄ in each interaction functional,

ℓpΓq � |EpΓq|� |VpΓq|� 1 ,

a well known identity from graph theory [GY03b].

Example IV.1. As an example regard the threefold time-ordered product of (not

necessarily local) functionals F, G, H P F pMqrrh̄ss. Using Cauchy’s product for-

mula and the Leibniz rule one derives from the power series expansion (II.23) the

1Since we do not want to restrict ourselves to any particular type of interaction, the number of edges
adjacent to a given vertex is not fixed a priori.
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following expression for the threefold time-ordered product

(IV.3) F �T G �T H �

8

∑
n�0

h̄n

n!

n

∑
m�0

m

∑
k�0

(
n

m

)(
m

k

)〈
F(k�m�k)G

(n�m)
(k)

H(n�m)(m�k)

〉
,

where we used the abbreviation G(k) :� Hbk
F � G(k), cf. [Kel09]. The first terms of

this expansion are given by

F �T G �T H � FGH� h̄
{〈

F(1)G(1)H
〉
�

〈
F(1)GH(1)

〉
�

〈
FG(1)H(1)

〉}

� h̄2
{

1
2

〈
F(2)G(2)H

〉
�

〈
F(2)G(1)H(1)

〉
�

1
2

〈
F(2)GH(2)

〉

�

〈
F(1)G(1)H(1)(1)

〉
�

1
2

〈
FG(2)H(2)

〉
�

〈
F(1)G

(1)
(1)H(1)

〉}

� � � �

�

�

� h̄
{
�

�

�

�

�

}

� h̄2
{

1
2�

�

�

�

1
2�

�

�

�

1
2	

�




}

� � � �

Observe that the prefactor of each graph is given by its symmetry factor,

SympΓq�1
�

1
n! (

n
m)(

m
k ) �

1
(n�m)!k!(m�k)! , where for a general graph, Γ P G, SympΓq

is the product of the number of possible permutations of edges which join the

same two vertices in Γ.

The terms in (IV.3) can equivalently be expressed as a composition of the maps

SΓ and δ
α above,

Fb Gb H

δ
α

��

F(m)
b G(n�m�k)

b H(n�k)

1
SympΓq

SΓ

��

1
n! (

n
m)(

m
k )
〈

F(k�m�k)G
(n�m)
(k)

H(n�m)(m�k)

〉
,

hence we can write (IV.3) equivalently as graph expansion,

F �T G �T H � ∑
ΓPG

h̄|EpΓq|

SympΓq
〈SΓ, δ

α
pFb GbHq〉 , α P N3, |α| � 2 |EpΓq| .

We will properly define these maps, δ
α and SΓ, in the sequel.

In the case of local functionals Fv P FlocpMqrrh̄ss we have that the functional

derivative can be written in the form, cf. Eq. (II.14),

F
(αv)
v pϕqpx1, . . . , xαvq � ∑

k
∑

i

f v,k,i
ϕ pxvq PkpBrvqδprvq P DpMq b E

1

DiracpM
αi�1

q ,
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where xv �
1

αv
∑

αv
k�1 xk is the center of mass coordinate and rv are relative coordi-

nates at vertex v P VpΓq. Pk are homogeneous polynomials of order k in αv� 1 vari-

ables, E 1Dirac denotes the space of distributions supported at zero, and suppp f v,k,i
ϕ q

can be chosen arbitrarily small. We want to introduce the short hand notation

DlocpM
αv
q :� DpMq b E

1

DiracpM
αv�1

q

for the space of the αvth functional derivative of a local functional, F(αv)
pϕq P

DlocpM
αv
q and call

δ
α
∣∣

ϕ
: FlocpMqrrh̄ssb|VpΓq|

Ñ

⊗
vPVpΓqDlocpM

αv
q

F1 b � � � b Fn ÞÑ F
(α1)
1 pϕq b � � � b F

(αn)
n pϕq , n � |VpΓq|

the adjacency differential operator.

While the definition of δ
α can be done purely algebraically, the construction of

the distribution SΓ on the other hand involves renormalization, i.e., an extension

procedure for distributions. We start from the tensor power

(IV.4) S̃Γ �

⊗

ePEpΓq

HFpeq ,

containing one factor HF P D 1

pM\ {0}q for every edge e in Γ. Hence S̃Γ is a

well-defined distribution in D 1

ppM\ {0}q|EpΓq|q that can be uniquely extended to

D 1

pM|EpΓq|
q, since the Feynman fundamental solution HF P D 1

pM\ {0}q has a

unique extension 9HF P D 1

pMq with the same scaling degree.

The renormalization problem is now to find a restriction SΓ of the tensor dis-

tribution S̃Γ to the space
⊗

vPVpΓq

DlocpM
αv
q � DpM|VpΓq|

q b

⊗

vPVpΓq

E
1

DiracpM
αv�1

q .

The space E 1Dirac is spanned by the δ-distribution and its derivatives

[Hör03, Thm. 2.3.4], thus the tensor product

V �

⊗

vPVpΓq

E
1

DiracpM
αv�1

q

is graded by the number of derivatives in front of the δ-distributions.

V �

⊕

|~k|
V|~k| ,

∣∣∣~k
∣∣∣ � ∑

vPVpΓq

kv .

Regard the application of S̃Γ to the image of δ
α
∣∣

ϕ
,

〈
S̃Γ,

⊗

vPVpΓq

F
(αv)
v

〉
�

〈
S̃Γ,

⊗

vPVpΓq

∑
kv

∑
Iv

f v,kv,Iv
ϕ Pkv

pBrvqδprvq

〉

�

〈
S̃Γ, P~kpB~rq

⊗

vPVpΓq

∑
kv

∑
Iv

f v,kv,Iv
ϕ δprvq

〉

where~k � (kv)vPVpΓq and~r � (rv)vPVpΓq. We dualize the application of P~kpB~rq and
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get 〈
S̃Γ,

⊗

vPVpΓq

F
(αv)
v

〉
�

〈
S̃(Γ,~k) ,

⊗

vPVpΓq

∑
kv

∑
Iv

f v,kv,Iv
ϕ δprvq

〉

where according to Lemma I.4 this will increase the scaling degree of the distribu-

tion by
∣∣∣~k
∣∣∣,

(IV.5) sdpS̃(Γ,~k)q � sdpS̃Γq �

∣∣∣~k
∣∣∣ .

The multiindex~k thus encodes the derivative couplings (i.e., the interaction func-

tionals containing derivatives of the fields) in the graph Γ. In the framework of

Connes-Kreimer Hopf algebras, or Feynman graphs in general, ~k sometimes is

called the “external structure of the graph”, see [CM07] for instance.

The remaining restriction of S̃(Γ,~k) to a distribution in D 1

pM|VpΓq|
q can con-

veniently be described by the (simplicial) cohomology of the graph Γ. For ease

of presentation, we will forget about the external structure ~k for the time being.

The algebraic structure to be presented below can be developed to a large ex-

tend without recourse to the external structure. We will reintroduce~k by replacing

Γ ÞÑ
(

Γ,~k
)

, where we find it to be relevant for the understanding.

IV.1.1. Simplicial cohomology of a graph and choice of relative coordinates.

The presentation in this subsection is very much inspired by [BBK09, Sec. 2.1].

Let K P {R, C} be a field. We define the (simplicial) cohomology H1
pΓ, Kq with

coefficients in K of a connected graph Γ P G by the exact sequence

(IV.6) 0 // K
�

� c
//
K|VpΓq| d

//
K|EpΓq| o

// // H1
pΓ, Kq // 0 .

Let {av : v P VpΓq} be a basis of K|VpΓq| and {be : e P EpΓq} a basis of K|EpΓq|. The

maps in (IV.6) are then defined as the “center of mass”,

c : x ÞÑ x ∑
vPVpΓq

av ,

and

d : av ÞÑ ∑
ePEpΓq

(e : v) be .

One immediately checks that

�x P K : (d � c) pxq � x ∑
ePEpΓq

∑
vPVpΓq

(e : v) be � 0 .

Furthermore, o � d � 0 is equivalent to

H1
pΓ, Kq � cokerpd q � K|EpΓq|

{impd q ,

an alternative definition of H1
pΓ, Kq. The dimension of this cohomology is called

the first Betti number and gives the number of independent loops of the graph Γ,

dimpH1
pΓ, Kqq � |EpΓq|� |VpΓq|� 1.

Let us regard the map d . The image of a general element ~x � ∑vPVpΓq xvav is
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given by

d p~xq � ∑
ePEpΓq

(
xtpeq � xspeq

)
be .

Thus d expresses the coordinates of a given edge e P EpΓq in terms of the coordi-

nates of the adjacent vertices, re
� xtpeq � xspeq.

Example IV.2. Regard the very simple graph with two vertices and one edge,

γ �
�

.

Let v � speq and w � tpeq, and choose a basis {av, aw} of K|Vpγq|. Then x av � y aw P

K|Vpγq| and we have

d px av � y awq � (y� x) be .

Thus the pullback of d : K|Vpγq|
Ñ K|Epγq|

� K maps a function f P DpKq to

(d
� f ) px, yq � f py� xq .

Consequently, a distribution u P D 1

pKq will be mapped to d
�u P D 1

pK2
q, with

(d
�u) p f b gq �

∫

K2
dx dy upy� xq f pxq gpyq � 〈 f , u � g〉 ,

where � denotes the convolution product and the pullback is defined in the sense

of [Hör03, Thm. 6.1.2].

This construction can be lifted to any K-vector space V, by forming the tensor

product K b V. We are interested here in the lift to Minkowski spacetime M �

RbM. Thus we have, Mn
� Rn

bM,

0 // M
�

� ĉ
//
M|VpΓq| d̂

//
M|EpΓq| // // H1

pΓ, Mq

// 0 ,

i.e., one short exact sequence for each component of z P M.

Example IV.2 (revisited). In terms of this cohomology the Hadamard two point

function is the pullback of the Hadamard solution H P D 1

pMq by dγ,
(

d̂
�

γ H
)
p f , gq � 〈 f , H � g〉 ,

analogously the Feynman propagator is the pullback of the Feynman fundamental

solution HF P D 1

pM\ {0}q,
(

d̂
�

γ HF

)
p f , gq � 〈 f , HF � g〉 ,

suppp f q X supppgq � H.

Also translation invariance can be formulated very conveniently in this coho-

mological framework. The image of c gives all possible translations of the vertex

coordinates by a given vector a P K. Hence the orbits of these translations are the

elements of the cokernel cokerpcq � K|VpΓq|
{impc). We can fix a basis of cokerpcq

by choosing the coordinates of a vertex v0 and setting V0 :� VpΓq\ {v0}. This
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provides us with a projection

πΓ : K|VpΓq|
Ñ K|V0|

� K|VpΓq|�1

and an isomorphism φ between K|V0| and cokerpcq,

φ : K|V0|
Ñ cokerpcq

av ÞÑ av � impcq .

All translation invariant functions in K|VpΓq| can be seen as generic functions on

cokerpcq, or K|V0| respectively. They are related by the pullback via πΓ, e.g. for

smooth functions,

π�Γ : E pK|V0|
q Ñ Etr.inv.pK

|VpΓq|
q

f ÞÑ (π�Γ f ) � f � πΓ .

We define the choice of relative coordinates in K|EpΓq| by

ιΓ :� dΓ � φ : K|V0|
Ñ K|EpΓq|

∑vPV0
xvav ÞÑ ∑ePEpΓq re

p~xq be ,

where re
p~xq � ∑vPV0

(e : v) xv is computed to be

re
p~xq �





xtpeq � xspeq if v0 R {speq, tpeq}
xtpeq if v0 � speq

�xspeq if v0 � tpeq ,

giving the “coordinates of the edges” relative to v0. In Minkowski spacetime we

define correspondingly,

ι̂Γ :� d̂Γ � φ̂ : M|V0|
Ñ M|EpΓq|

as the choice of relative coordinates in M|EpΓq|.

We now want to define SΓ P D 1

pM|VpΓq|
q as the pullback of S̃Γ via d̂Γ,

SΓ � d̂
�

Γ S̃Γ .

Let us regard the case of the unextended amplitude S̃Γ P D 1

p(M\ {0})|EpΓq|q. Each

edge corresponds to a Feynman propagator HF and any set of edges joining the

same two vertices will have the same coordinate re
p~xq. This introduces pow-

ers of HF, which are well-defined distributions only outside the origin, (HF)
k
P

D 1

pM\ {0}q. As a consequence the pullback SΓ is a well-defined distribution only

outside the large diagonal

DIAG �

{
~x P M|VpΓq|

| Dv, w P VpΓq, v � w : xv � xw

}
,

SΓ P D 1

pM|VpΓq|\DIAGq. As remarked before a restriction of S̃Γ by means of a

wave front set argument, i.e. by applying [Hör03, Thm. 8.2.4], is not possible due

to the wave front set of HF. A restriction of S̃Γ, or equivalently an extension of

d̂
�

Γ S̃Γ to D 1

pM|VpΓq|
q, will involve renormalization. In the case of even dimensions,
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d P 2N, the amplitude is a tensor power of the Feynman propagator (III.20),

S̃
µ
Γ :�

⊗

ePEpΓq

H
µ
Fpeq P D

1

p(M\ {0})|EpΓq|q ,

and hence depends on an additional parameter µ of mass dimension one.

We review briefly the Epstein-Glaser induction for constructing the extension

SΓ in order to discuss the renormalization freedom in the cohomological frame-

work advertised here.

IV.1.2. The Epstein-Glaser induction. Having defined what we mean by a

graph Γ P G, we define an Epstein-Glaser subgraph (EG subgraph) γ � Γ to be a

subset of the set of vertices Vpγq � VpΓq together with all lines in Γ connecting

them,

Epγq � {e P EpΓq : {speq, tpeq} � Vpγq} .

The orientation of γ is inherited from Γ. The first step of the Epstein-Glaser in-

duction is to choose extensions for all EG subgraphs with two vertices, |Vpγq| �
2. In this case we have translation invariant distributions d̂

�

γ S̃γ P D 1

pM2\Diagq

(Diag �
{
~x P M|Vpγq|

| �v, w P VpΓq : xv � xw

}
denotes the thin diagonal), which

correspond to generic distributions ι̂�γS̃γ P D 1

pM\ {0}q. The scaling degree of

these distributions is given by their number of lines sdpι̂�γS̃γq � |Epγq| (d� 2), and

we can choose a (possibly unique) extension according to Theorem I.6. By trans-

lation invariance this gives extensions Sγ P D 1

pM2
q of the distributions d̂

�

γ Sγ P

D 1

pM2\Diagq. By causality, i.e. relation (II.25) of time-ordered and algebra prod-

uct, these extensions define the (translation-invariant) restrictions of all EG sub-

graphs with three vertices up to the thin diagonal.

For a generic EG subgraph γ � Γ we make the assumption that the restric-

tions of all EG subgraphs of γ with less vertices have already been chosen (in-

duction hypothesis). The causality condition then gives a translation invariant

distribution d̂
�

γ S̃γ P D 1

pM|Vpγq|\Diagqwhich corresponds to a generic distribution

ι̂�γS̃γ P D 1

pM|Vpγq|�1\ {0}q. The scaling degree and hence the degree of divergence

of this distribution is completely fixed by the structure of the graph, cf. (II.21),

(IV.7) divpγq � divpι̂�γS̃γq � |Epγq| (d� 2)� (|Vpγq|� 1) d , d � dimpMq .

We call γ superficially convergent if divpγq   0, logarithmically divergent if

divpγq � 0 and divergent of degree divpγq otherwise. Again by Theorem I.6 there

is a choice to be made in the extension of ι̂�γS̃γ in the case divpγq ¥ 0. The induc-

tive procedure of Epstein-Glaser will thus lead to an extension SΓ P D 1

pM|VpΓq|
q of

d̂
�

Γ S̃Γ P D 1

pM|VpΓq|\DIAGq. As suggested above, we will refer to any such exten-

sion of d̂
�

Γ S̃Γ as restriction of S̃Γ P D 1

ppM\ {0}q|EpΓq|q.
In the case of couplings which involve derivatives of the fields, also the exter-

nal structure of γ has to be taken into account, cf. (IV.5),

div
(

γ,~k
)
� divpγq �

∣∣∣~k
∣∣∣ .
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This introduces an additional freedom in the choice of the extension in each step,

but does otherwise not change the inductive procedure.

The combination of all choices involved in the inductive construction of a re-

striction SΓ P D 1

pM|VpΓq|
q of S̃Γ make up the Stückelberg-Petermann renormaliza-

tion group acting on local functionals, cf. [BDF09]. We will see in the next section

that the freedom in this construction is considerably restricted, if we replace in

(IV.4) the Feynman propagator by its dimensionally regularized counterpart.

IV.2. The Regularized Amplitude

The aim of this section is to construct a regularization of the above defined

amplitude d̂
�

Γ S̃
µ
Γ P D 1

pM|VpΓq|\DIAGq by applying the Epstein-Glaser reduction

procedure to

(IV.8) S̃
µ,ζ
Γ :�

⊗

ePEpΓq

H
m,µ,ζ
F peq .

We will see in the sequel that S̃
µ,ζ
Γ

has a unique restriction S
µ,ζ
Γ

P D 1

pM|VpΓq|
q by

means of Corollary I.15. This will provide a regularization of the original ampli-

tude d̂
�

Γ S̃
µ
Γ

outside the large diagonal.

Regard the dimensionally regularized Feynman fundamental solution H
m,µ,ζ
F P

D 1

pM\ {0}q constructed in Chapter III. The expansion of H
m,µ,ζ
F in powers of the

mass parameter m2 follows directly from the expansion of the analytic Hadamard

function (III.18),

H
m,µ,ζ
F pxq � (�1)

d�2
2 (2π)�

d
2 2

2�(d�ζ)
2

π

2 sinpζ π
2 q
�

�



8

∑
s�0





(
2

µ
√
�x2

� i0

)ζ
1

s! Γp�
ζ
2 �

d�4
2 � sq

�

θps� d�3
2 q(

s� d�2
2

)
! Γp

ζ
2 � s� 1q



 �(IV.9)

�

(√
�x2

� i0
2

)2s�(d�2) (
m2
)s


,

�:
8

∑
s�0

H
s,µ,ζ
F pxq

(
m2
)s

,

where we used the common shorthand f px2
� i0q � limεÑ0� f px2

� iεq. The co-

efficients of this series, H
s,µ,ζ
F P D 1

pM\ {0}q, are sums of a distributional and a

smooth part, both of which are homogeneous, but of different degree. The distri-

butional part is homogeneous of degree 2s� (d� ζ � 2), whereas the smooth part

is identically zero for s   d�3
2 and homogeneous of degree 2s� (d� 2) otherwise.

Regard now the finite tensor powers of the dimensionally regularized Feyn-

man distribution. The expansion of
(

H
m,µ,ζ
F

)
bk

, k � |EpΓq|, in m2 follows directly
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from (IV.9) and Cauchy’s product formula,

(
H

m,µ,ζ
F

)
bk
�

8

∑
sk�0

(
m2
)sk

sk

∑
sk�1�0

� � �

s2

∑
s1�0

H
(sk�sk�1),µ,ζ
F b � � � b H

s1,µ,ζ
F(IV.10)

�:
8

∑
sk�0

(
m2
)sk
(

H
µ,ζ
F

)
b~s

,

where~s � (sk � sk�1, . . . , s1) P Nk. The scaling degree of the coefficient of
(
m2
)sk

is given by the sum of the scaling degrees of the individual factors, cf. Lemma I.4

and Remark I.10,

(IV.11) sdp
(

H
µ,ζ
F

)
b~s
q � k (d�Repζq � 2)� 2sk .

Hence the scaling degree of the coefficients become arbitrarily small as one regards

higher powers of m2. Thus according to Theorem I.6 these coefficients will have

unique restrictions to arbitrary subdiagonals.2 In other words, only a finite num-

ber of coefficients in (IV.10) need renormalization. This is one of the advantages

of the concept of a “scaling expansion” introduced in [HW02]; see also [Hol04],

[DF04, p. 1310ff]. The coefficients in (IV.10) which need renormalization when

restricted to subdiagonals are in general not homogeneous, since the coefficients

H
s,µ,ζ
F in (IV.9) are not homogeneous. However, since we regard graphs with a

finite number of edges, they are certainly heterogeneous of finite order. If we as-

sume ζ R Q
�

their multidegree contains no integer number. We can construct a

restriction of S̃
µ,ζ
Γ

by the same procedure described in Section IV.1.2, with the only

difference that we have a preferred choice of the extension at each order accord-

ing to Corollary I.15, namely the extensions which are heterogeneous of the same

multidegree. Thus we are lead to a unique restriction S
µ,ζ
Γ P D 1

pM|VpΓq|
q.

Proposition IV.3 (Regularization outside DIAG). The restriction of S̃
µ,ζ
Γ is

uniquely defined by the above homogeneity condition and gives a distribution S
µ,ζ
Γ P

D 1

pM|VpΓq|
q. S

µ,ζ
Γ

is a regularization of d̂
�

Γ S̃
µ
Γ
P D 1

pM|VpΓq|\DIAGq, in the sense that

� f P DpM|VpΓq|\DIAGq : lim
ζÑ0

〈
S

µ,ζ
Γ , f

〉
�

〈
d̂
�

Γ S̃
µ
Γ , f
〉

.

We will refer to S
µ,ζ
Γ

P D 1

pM|VpΓq|
q as the dimensionally regularized amplitude of Γ.

By translation invariance it naturally corresponds to a unique dimensionally regularized

amplitude in relative coordinates, s
µ,ζ
Γ
P D 1

pM|VpΓq|�1
q, which is the unique extension of

ι̂�Γ S̃
µ,ζ
Γ
P D 1

p(M\ {0})|VpΓq|�1
q.

PROOF. The first part follows from the construction above. By the discussion

at the end of the previous chapter we have that the unique extensions 9H
m,µ,ζ
F P

D 1

pMq is a regularization of H
m,µ
F P D 1

pM\ {0}q, cf. (III.24). And by continuity of

2Keep in mind that the product of distributions can be defined as the restriction of their tensor product
to subdiagonals, cf. [Hör03, Thm. 8.2.10].
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the maps involved we get the assertion,

d̂
�

Γ


 ⊗

ePEpΓq

H
m,µ
F peq



� d̂

�

Γ


 ⊗

ePEpΓq

lim
ζÑ0

H
m,µ,ζ
F peq




� lim
ζÑ0

d̂
�

Γ


 ⊗

ePEpΓq

H
m,µ,ζ
F peq




Observe that the extension map d̂
�

Γ S̃
µ,ζ
Γ ÞÑ S

µ,ζ
Γ is also continuous by Theorem I.12.

�

We have that S
µ,ζ
Γ is a regularization of d̂

�

Γ S̃
µ
Γ in a broader sense of the word,

since d̂
�

Γ S̃
µ
Γ is defined only in the complement of the large diagonal. However, the

regularization S
µ,ζ
Γ

P D 1

pM|VpΓq|
q comes with a natural renormalization prescrip-

tion, defined at any order of (causal) perturbation theory: minimal subtraction

(MS). This has already been introduced on the conceptual level in Section I.4, and

we will see in the next chapter, how minimal subtraction is to be applied to the

regularized graph amplitudes s
µ,ζ
Γ and S

µ,ζ
Γ , respectively. The complete renormal-

ization of the graph amplitudes will then be discussed in Chapter VI and it will

be useful, for the derivation of the underlying combinatorial structure to collect

all the different contributions to the perturbative expansion in the definition of a

unique dimensionally regularized S-matrix, defined as a map on local functionals,

cf. Section II.3.

Definition IV.4 (Dimensionally Regularized S-matrix). Let

Γ1
H

m,µ,ζ
F

:�
1
2

∫
dx dy H

m,µ,ζ
F px, yq

δ2

δϕpxq δϕpyq
,

be the dimensionally regularized Feynman bidifferential operator. Define the reg-

ularized time-ordering operator

T µ,ζ :� expph̄Γ1
H

m,µ,ζ
F

q ,

and the dimensionally regularized time-ordered product on local functionals F, G P

FlocpMqrrh̄ss

F �T µ,ζ
G :� T µ,ζ

(
T
�1
µ,ζ F � T �1

µ,ζG
)

.

Then we define the dimensionally regularized S-matrix as

Sµ,ζpFq :� exp
�T µ,ζ

pFq �
8

∑
n�0

1
n!
T

n
µ,ζpF

bn
q , F P FlocpMqrrh̄ss ,

where T
n
µ,ζ denotes the uniquely extended regularized n-fold time-ordered prod-

uct constructed (graph by graph) by Epstein-Glaser induction.

Inserting (IV.2) we can write the regularized S-matrix also in terms of a graph
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expansion

(IV.12)

Sµ,ζpFq �
8

∑
n�0

1
n! ∑

αPNn
∑

ΓPGα

h̄|EpΓq|

SympΓq

〈
S

µ,ζ
Γ , δ

α
(

Fbn
)〉

, F P FlocpMqrrh̄ss.

This expansion is often referred to as the perturbative expansion of the S-matrix.

And we want to remark that the sum over all graphs at a fixed order n of causal

perturbation theory is finite, if we assume that F P FlocpMqrrh̄ss is a polynomial

interaction functional. This remains valid, if F contains derivatives of the field.

The order of causal perturbation theory is given by the number of vertices of the

graphs contributing to (IV.12), irrespective of the fact if they are connected or not.

Conversely, the sum is finite at each order Oph̄|EpΓq|), and we repeat the remark that

this is in essence the “loop order”, if we regard only graphs with a fixed number of

connected components cpΓq. The order is given by the Betti number of the graph

[GY03b],

ℓpΓq � |EpΓq|� |VpΓq|� cpΓq ,

if we “hide” one power of h̄ in the interaction functional F.



CHAPTER V

Minimal Subtraction

Minimal subtraction (MS) in combination with dimensional regularization

(DimReg) and Zimmermann’s forest formula as a renormalization technique has

earned wide acclaim in the standard approach to perturbative renormalization in

momentum space. After having constructed the dimensionally regularized posi-

tion space amplitude to any graph Γ P G, we want to extend the notion of minimal

subtraction given in Section I.4 also to graph amplitudes and products thereof. As

a matter of fact, we will find that minimal subtraction can be formulated inde-

pendently of the graph expansion and the representation (position- or momentum

space). This is to say that we can define a minimal subtraction operator which

acts directly on the prepared, dimensionally regularized time-ordered product, re-

garded as a linear map between functional spaces,

T
n
µ,ζ,prep : FlocpMqrrh̄ssbn

Ñ F pMqrrh̄ss .

The fact that this leads to local counterterms will be the crucial observation which

makes the abstraction in the next chapter possible, and the presented forest for-

mula for Epstein-Glaser renormalization applicable in any chosen representation.

What will be said in this chapter relies on the fact that we dispose of a pre-

pared amplitude. This will be defined in the first section, and we will implement

the graph structure in the second. In the third section we will define minimal

subtraction at subgraphs, and we will test our method by rederiving the result of

Zimmermann that only Epstein-Glaser subgraphs contribute to nested projections

in the limit where the regularization is removed [Zim76]. The independence on

the representation will be discussed in the fourth section and as a result we will

define the minimal subtraction operator on prepared time-ordered products.

V.1. Prepared Amplitude

Definition V.1 (Prepared Amplitude). A regularization
{

s
µ,ζ
Γ,prep : ζ P Ω\ {0}

}
(in

the strict sense of Definition I.16) is called prepared amplitude of
{

s
µ,ζ
Γ

}
, if it is a

regularization of ι̂�Γ S̃
µ
Γ P D 1

p(M\ {0})|VpΓq|�1
q outside the large diagonal in the

sense of Proposition IV.3, i.e.,

� f P Dp(M\ {0})|VpΓq|�1
q : lim

ζÑ0

〈
s

µ,ζ
Γ,prep, f

〉
�

〈
ι̂�Γ S̃

µ
Γ

, f
〉

,

and s
µ,ζ
Γ,prep is heterogeneous of finite, non-integer order in Ω\ {0}.

57
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Observe that for |VpΓq| � 2 the regularization outside the large diagonal is

already a regularization in the strict sense of Definition I.16, and thus a prepared

amplitude. Hence minimal subtraction can be applied and leads to a finite regu-

larization. In the logical framework of Epstein-Glaser one would then define the

prepared amplitude of the third order and subtract the counterterm, and so on to

the order one chooses to compute. At each step minimal subtraction is applied

to a prepared amplitude, but if we want to define the subtraction performed on

the unrenormalized amplitude, these subtractions will be nested. One aim of this

chapter is to analyze these nested subtractions. They will be used in Chapter VI

to solve the recursion of Epstein-Glaser. A closed expression for the prepared am-

plitude will then follow immediately from the solution. Thus we can assume here

that we dispose of a prepared amplitude s
µ,ζ
Γ,prep. Since s

µ,ζ
Γ,prep is a regularization

by assumption, we can directly apply the analysis of Section I.4 and have that the

principal part of its Laurent series is a local distribution,

(V.1) pppsµ,ζ
Γ,prepq P E

1

DiracpM
|VpΓq|�1

q ,

where we denoted by E 1Dirac the space of distributions supported at the origin. We

infer that {
rppsµ,ζ

Γ,prepq : ζ P Ω\ {0}
}

is a finite regularization of ι̂�Γ S̃
µ
Γ and hence

s
µ
Γ,ren :� lim

ζÑ0
rppsµ,ζ

Γ,prepq P D
1

pM|VpΓq|�1
q .

is a renormalization. To have a name for it, we call pppsµ,ζ
Γ,prepq and rppsµ,ζ

Γ,prepq

the projected prepared amplitudes. Nested projections will lead to projections in

different parts of the same graph. The different components of a graph needed for

the discussion later on will be defined in the following section.

V.2. Subgraphs and Complements

Since the method we are analyzing here was originally formulated in momen-

tum space, where the edges of the graphs carry as label the “momentum flowing

through this line”, it is natural to consider as subgraphs all graphs, which are

given by a subset of the set of edges. Given a graph Γ, we call a BPHZ subgraph

any subgraph γ � Γ given by a subset of the set of edges, Epγq � EpΓq, and all

adjacent vertices,

Vpγq � {v P VpΓq| De P Epγq : (e : v) � 0} .

The orientation is inherited from Γ. See, e.g., [CK82] for a description of the BPHZ

procedure within dimensional regularization and minimal subtraction in momen-

tum space.

The set of BPHZ subgraphs of a graph Γ P G is a superset to the set of Epstein-

Glaser subgraphs defined in Section IV.1.2, and we can associate to any BPHZ
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subgraph a unique Epstein-Glaser subgraph. Given a graph Γ with BPHZ sub-

graph γ � Γ, we define the full vertex part γ of γ to be the graph with the same set

of vertices, Vpγq � Vpγq, and all lines in Γ connecting them,

Epγq � {e P EpΓq : speq, tpeq P VpΓq} .

γ obviously is an Epstein-Glaser subgraph. Any BPHZ subgraph, which is not a

full vertex part, we call a pure BPHZ subgraph.

For the definition of products of (projected) amplitudes corresponding to dif-

ferent parts of the same graph Γ it is important to have the notion of a complement

of a subgraph. Observe, however, that there are two natural ways to define this

complement, and both will be of relevance in the sequel.

Definition V.2 (Complements of a graph). Let Γ P G be a graph and G � Γ be a

subgraph. We define the line complement Γ n G of G in Γ to be the graph with

VpΓ n Gq � VpΓq and EpΓ n Gq � EpΓq\EpGq .

Furthermore we define the vertex complement Γn G to be the full vertex part with

vertex set

VpΓn Gq � VpΓq\VpGq ,

i.e.,

EpΓn Gq � {e P EpΓq|speq, tpeq P VpΓn Gq} .

Observe that, while the vertex complement Γn G is a full vertex part by defi-

nition, the line complement is not a full vertex part in the generic case. For the line

complement the number of lines is preserved in the sense that

EpΓq � EpGq 9YEpΓ n Gq .

For the vertex complement, on the other hand, the number of lines is not pre-

served; EpGq 9YEpΓn Gq will be a subset of EpΓq in general, because the lines con-

necting G with Γn G are not considered. We have EpΓq � EpGq 9YEpΓn Gq if and

only if Γ is multiply connected with G one of its (possibly also multiply connected)

components. However, the vertex set is preserved for the vertex complement,

VpΓq � VpGq 9YVpΓn Gq ,

a fact that will be of importance in the discussion of Chapter VI.

Example V.3. Regard the graph Γ and subgraph G � Γ,

Γ �
�

, G �

�

.

Then the two complements of Definition V.2 are depicted by

Γ n G �

�

and Γn G � � ,

respectively.
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We will now use the line complement for the definition of minimal subtrac-

tions at BPHZ subgraphs, and meet the vertex complement again in the next chap-

ter.

V.3. MS at Subgraphs and Redundant Projections

Let γ � Γ be a proper BPHZ subgraph. Then γ has less edges than Γ, Epγq �

EpΓq, and it may have less vertices, Vpγq � VpΓq. Let

(V.2) ̟Γ,γ : M|VpΓq|�1
Ñ M|Vpγq|�1

be the induced projection (̟Γ,γ � id, if VpΓq � Vpγq). Then the pullback ̟�

Γ,γs
µ,ζ
γ

exists as a distribution in D 1

pM|VpΓq|�1
q, cf. [Hör03, Thm. 6.1.2], and we have that

(V.3) s
µ,ζ
Γ � s

µ,ζ
Γnγ �̟

�

Γ,γs
µ,ζ
γ , ζ R Q

�

,

where by the expression on the right hand side we understand the unique hetero-

geneous extension of the pointwise product of the distributions, as constructed in

Section IV.2. Let us now regard the same product (V.3), when the subgraph part is

replaced by a projected prepared amplitude,

(V.4)
(
1� T

γ
MS

)
s

µ,ζ
Γ

:� sΓnγ � rppsµ,ζ
γ,prepq , or T

γ
MSs

µ,ζ
Γ

:� sΓnγ � pppsµ,ζ
γ,prepq ,

respectively. Where the pullback via the projection (V.2) is understood, but not

explicitly written to improve readability. Then we define the product on the re-

spective right hand sides term by term in the Laurent expansion, i.e.,

(V.5) sΓnγ � rppsµ,ζ
γ,prepq �

8

∑
n�0

ζn 1
2πi

∮

C
dξ

1
ξn�1 s

µ,ζ
Γnγ �̟�

Γ,γs
µ,ξ
γ ,

and

(V.6) sΓnγ � pppsµ,ζ
γ,prepq �

�1

∑
n��8

ζn 1
2πi

∮

C
dξ

1
ξn�1 s

µ,ζ
Γnγ �̟�

Γ,γs
µ,ξ
γ ,

where C � Ω\ {0} is a small circle around the origin. The product of the dis-

tributions under the complex line integral is defined by (V.3) for an appropriate

parameter value ζ and almost all values of ξ. Observe also that the extension

map (u ÞÑ 9u) is continuous for a homogeneous distribution, in the case the map is

uniquely defined, cf. Theorem I.12. The fact that we regard finite sums of homo-

geneous distributions (i.e., heterogeneous distributions of finite order) does not

spoil this continuity, and hence the extension of the distribution under the integral

above commutes with the integration over one of its parameters.

In Zimmermann’s forest formula [Zim69, Thm. 3.3], if one reads it as if it was

formulated in position space with the above definitions, there occur nested projec-

tions of the form

(V.7)
(

1� TMS
G

) (
1� TMS

γ

)
s

µ,ζ
G,prep � rp

[
s

µ,ζ
Gnγ � rppsµ,ζ

γ,prepq

]
, γ �G.

Shortly after the publication in 1969 Zimmermann himself realized that not all
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nested projections of the above form contribute in the limit where the regulariza-

tion is removed, i.e., ζ Ñ 0 [Zim70]. The projection
(

1� TMS
γ

)
in (V.7) is redun-

dant, if G and γ have the same set of vertices. This, in turn, leads to the fact that

only Epstein-Glaser graphs contribute to the forest formula. Zimmermann used

the Pauli-Villars regularization method to prove this fact in [Zim76]. In the mo-

mentum space version of dimensional regularization and minimal subtraction the

canceling of spurious terms in the limit has also been observed by Falk, Häußling,

and Scheck by calculating explicit examples. Consequently the authors proposed

an alternative renormalization method in momentum space, which takes into ac-

count the spurious subtractions [FHS10].

We want to use Zimmermann’s observation as a test of our position space

dimensional regularization method, and the prescription for minimal subtraction.

We will see that in position space, i.e., for the nested projection (V.7) with the

definitions given above, Zimmermann’s result is a direct consequence of the fact

that we can write the projection to the regular part, rp, as a W-projection on test

functions (up to a term of Opζq), cf. Equation (I.20).

Proposition V.4 (Redundant Projections). Let γ � G be two BPHZ subgraphs of

Γ P G with the same vertex set, i.e., γ is a pure BPHZ subgraph,

Vpγq � VpGq , and Epγq � EpGq .

The contribution of the pure BPHZ subgraph γ � Γ to
(

1� TMS
G

) (
1� TMS

γ

)
s

µ,ζ
G,prep � rp

[
s

µ,ζ
Gnγ � rppsµ,ζ

γ,prepq

]

vanishes identically in the limit ζ Ñ 0. That is, � f P DpM|Vpγq|�1
q:

(V.8) lim
ζÑ0

〈
rppsµ,ζ

G,prepq, f
〉
� lim

ζÑ0

〈
rp
[
s

µ,ζ
Gnγ � rppsµ,ζ

γ,prepq

]
, f
〉

.

PROOF. The argument of the limit on the right hand side of (V.8) can be rewrit-

ten using (I.20),
〈

rp
[
s

µ,ζ
Gnγ � rppsµ,ζ

γ,prepq

]
, f
〉
�

〈
s

µ,ζ
Gnγ � rppsµ,ζ

γ,prepq, WMS
G f

〉
�Opζq

�

〈
s

µ,ζ
G,prep, WMS

G f
〉
�

〈
s

µ,ζ
Gnγ � pppsµ,ζ

γ,prepq, WMS
G f

〉
�Opζq ,(V.9)

and we will show in the sequel that the second term in this expression vanishes

identically for finite ζ.

The principal part pppsµ,ζ
γ,prepq is a local distribution, suppppppsµ,ζ

γ,prepqq � {0},

cf. (V.1). Hence also the product in the second term of (V.9) is supported at the

origin,

supppsµ,ζ
Gnγ � pppsµ,ζ

γ qq � {0} ,

and thus local, s
µ,ζ
Gnγ � pppsµ,ζ

γ q P E 1Dirac. The degree of divergence of this local

distribution can be inferred directly from the scaling degrees of the individual
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lines, cf. (I.16) and (III.23),

sdpsµ,ζ
Gnγ � pppsµ,ζ

γ qq � |EpG n γq| (d�Repζq � 2)� |Epγq| (d� 2) ,

divpsµ,ζ
Gnγ � pppsµ,ζ

γ qq � |EpGq| (d� 2)� |VpGq| (d� 1)� |EpG n γq|Repζq

� divpGq � |EpG n γq|Repζq .

Hence we infer that

s
µ,ζ
Gnγ � pppsµ,ζ

γ q � ∑
|α|¤

⌊
divpsµ,ζ

Gnγ�pppsµ,ζ
γ qq

⌋
Cαpζqδ

(α) ,

where ⌊�⌋ denotes, as before, Gauß’s floor function. Given
⌊

div
(

s
µ,ζ
Gnγ � pppsµ,ζ

γ q

)⌋
�

divpGq, which is the case if Repζq   1
|EpGnγq| , we have that

�g P DdivpGq :
〈

s
µ,ζ
Gnγ � pppsµ,ζ

γ q, g
〉
� 0

and hence, by the uniqueness property of analytic functions,

� f P D :
〈

s
µ,ζ
Gnγ � pppsµ,ζ

γ q, WMS
G f

〉
� 0

for ζ in a neighborhood of the origin. �

As a matter of fact Proposition V.4 implies only that all forests containing the

same set of full vertex parts give the same contribution to the sum. Hence it could

happen that the contributions add up to give multiple contributions to the forest

formula. However, one can show that of all forests with the same set of full vertex

parts only one contributes to Zimmermann’s formula. The combinatorial argu-

ment is also given in Zimmermann’s proof in [Zim76]. We don’t want to repeat

it at this point, since the result is implied by the forest formula for regularized

Epstein-Glaser renormalization we will prove in the next chapter. Motivated by

these results we drop the cumbersome distinction between Epstein-Glaser - and

BPHZ subgraphs and define a subgraph to be what we called to this point an

Epstein-Glaser subgraph or full vertex part.

Definition V.5 (Subgraph). Let Γ P G be a graph. We define a subgraph γ � Γ to

be given by a subset of the set of vertices Vpγq � VpΓq and all lines in Γ connecting

them,

(V.10) Epγq � {e P EpΓq : {speq, tpeq} � Vpγq} .

We explicitly allow single vertices as subgraphs, and since there are no tadpoles

in G (cf. Section IV.1), these one vertex subgraphs will have no lines. Observe that

also Γ � Γ, trivially, is a subgraph.

V.4. MS for the Time-ordered Product

Regard the set GV � G of all graphs with the same set of vertices V,

GV � {Γ P G : VpΓq � V} .
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This set gives all graph contributions to the order |V| of causal perturbation theory,

and GVp|E|q � Gα, dimpαq � |V|, |α| � 2 |E|, is finite if one regards only the

contributions up to a given order |E| in h̄, cf. Section IV.1 and Equation (IV.12).

Assume that we have a prepared amplitude s
µ,ζ
Γ,prep P D 1

pM|V|�1
q for all graphs

Γ P GVp|E|q at any order |E| of h̄. Let S
µ,ζ
Γ,prep P D 1

pM|V|
q be the corresponding

translation invariant amplitude defined for local functionals in the sense of formal

power series in h̄. Then we can write the minimal subtraction operator at order

|V| of causal perturbation theory on the level of graph amplitudes as,

(V.11)

RVpT
|V|
µ,ζ,prepq � ∑

ΓPGα

h̄|EpΓq|

SympΓq
RV

〈
S

µ,ζ
Γ,prep, δ

α
〉

with RV �





id if |V| � 1

�pp if |V| ¡ 1 .

Here pppSµ,ζ
Γ,prepq is the translation invariant analogue of the local distribution

pppsµ,ζ
Γ,prepq P E 1DiracpM

|VpΓq|�1
q defined above, suppppppSµ,ζ

Γ,prepqq � DiagpM|VpΓq|
q.

We want to apply the corresponding term in the above sum to a tensor product of

local functionals. Analogous to the discussion in Section IV.1 we get

(V.12)
〈
�pppSµ,ζ

Γ,prepq, δ
α
〉
p

⊗

vPV

Fvq �

〈
�pppSµ,ζ

Γ,prepq,
⊗

vPVpΓq

f v
ϕ δprvq

〉
, f v

ϕ P DpMq,

where f v
ϕ P DpMq is a sum of pointwise products of test functions with the field ϕ.

Since�pppSµ,ζ
Γ,prepq is supported on the thin diagonal, all functions f v

ϕ are evaluated

at the same point and the expression on the right hand side of (V.12) gives a local

functional. We have
〈

pppSµ,ζ
Γ,prepq, δ

α
〉

: FlocpMqrrh̄ssb|V|
Ñ FlocpMqrrh̄ss .

The fact which establishes the independence of the presented formalism on the

chosen representation, is that the projection to the principal part, pp, is an oper-

ation with respect to the parameter ζ, and can be performed outside the brackets

“ 〈�〉 ”. Actually it was defined like that in Section I.4. Although the evaluation of

these brackets might look very different, depending on the chosen representation.

Thus minimal subtraction is really an operation which can be performed directly

on time-ordered products,and it is sensible to define

Definition V.6 (Minimal Subtraction Operator on Subsets). For any vertex set V,

we define the minimal subtraction operator (MS operator) on subsets as

RVpT
|V|
µ,ζ,prepq :�





id if |V| � 1

�pppT |V|
µ,ζ,prepq if |V| ¡ 1 ,

where id : FlocpMqrrh̄ss Ñ FlocpMqrrh̄ss is the identity map on local functionals,

and

�pppT |I|
µ,ζ,prepq : FlocpMqrrh̄ssb|I|

Ñ FlocpMqrrh̄ss

is the local counterterm at order |I| of causal perturbation theory.





CHAPTER VI

The Epstein-Glaser Forest Formula

‘What’s the sandwich scenario, Mo?’

‘Ham and cheese; ham and tomato; cheese and tomato.’

‘And ham, cheese and tomato.’

‘How did you know?’

‘You’ve never noticed how you group sandwiches into Venn diagrams?’

‘Do I?’

David Mitchell: Ghostwritten

It was the principle of covariance, understood as the axiom that all physi-

cally relevant concepts must have an analogue in (globally hyperbolic) curved

spacetime, which brought to light the more profound structures of perturbative

renormalization theory in the investigation undertaken by Brunetti, Dütsch, Fre-

denhagen, Hollands, and Wald (see references in the introduction).1 As already

said in the introduction of this thesis one of the main results of their program

was the formulation of perturbative Algebraic Quantum Field Theory (pAQFT),

briefly introduced in Chapter II. In this last chapter we will show that the tools

of pAQFT and in particular the precise statement of Stora’s main theorem of per-

turbative renormalization, augmented by the results on analytic regularization we

have gained in the previous chapters will make it possible to solve the recursive

procedure of Epstein-Glaser renormalization and to prove a forest formula in the

sense of Zimmermann for Epstein-Glaser renormalization. The result will be in-

dependent of the chosen representation and will in particular be applicable in mo-

mentum and in position space. The main theorem of renormalization, written in

termwise form by using Faà di Bruno’s formula for the n-fold chain rule [FdB55],

implies a recursion relation for the minimally subtracted counterterms to an ana-

lytically regularized S-matrix. This recursion relation will be crucial for the proof

of the forest formula.

In 1982 Joni and Rota introduced a bialgebra related to Faà di Bruno’s for-

mula [JR82]. We will use this bialgebra to derive (a summed up version of) the

Connes-Kreimer Hopf algebra of graphs directly from the main theorem of renor-

malization. However, in contrast to the Connes-Kreimer approach the Feynman

1The covariance principle was made precise in [BFV03]. And we want to use this footnote to remark
that despite its reputation of being conceptually clear but “too far from reality” to have predictive
power for experiments the algebraic approach and in particular perturbative Algebraic Quantum Field
Theory has lead to falsifiable predictions in cosmology [DFP08].
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rules will emerge naturally and are not assumed to be characters into the com-

mutative ring of Laurent series with scalar coefficients. The emergent Feynman

rules will rather produce linear maps between spaces of (local) functionals. On

the space of linear maps the construction induces two products, a symmetrized

tensor product, and a non-commutative product, which is given as the composi-

tion of linear maps. Both products, as well as the coproduct, need to be reflected

in the Hopf algebra (of graphs) in order to encode the algebraic structure of the

recursive construction of counterterms. By giving this derivation we will establish

the relation of the pAQFT formalism to the “Hopf algebra school” which was not

present in the original pAQFT article (cf. [BDF09, p. 45]).

After some preliminary remarks on the differential calculus used in this chap-

ter, we will cite the main theorem of renormalization from [BDF09] in the second

section. The third section will be devoted to the derivation of a forest formula for

regularized Epstein-Glaser renormalization from Stora’s main theorem. The above

described Hopf algebra will be constructed in the fourth section of this chapter.

VI.1. Preliminaries on differential calculus

We take the elevator in the hierarchy of differential calculi one floor up and

want to regard functional derivatives of the S-matrix, regarded as a map between

spaces of (local) functionals,

S � exp
�T

: FlocpMqrrh̄ss Ñ F pMqrrh̄ss ,

and of the renormalization group transformations Z P R to be defined below as

maps,

Z : FlocpMqrrh̄ss Ñ FlocpMqrrh̄ss .

The n-fold derivative of S at the origin

S (n)
p0qpFbn

q �

dn

dλn
SpλFq

∣∣∣∣
λ�0

gives the n-fold time-ordered product, i.e. the nth coefficient in the series ex-

pansion of S , cf. Equation (IV.12). The n-fold derivative of Z P R gives the

counterterm at order n of causal perturbation theory. We will equivalently use

S (n)
� S (n)

∣∣
0 � S (n)

p0q, and likewise for Z, wherever there is no risk of confu-

sion.

The mathematically precise definition of such a differential calculus is quite

involved and a focus of research in analysis [Ham82, KM97, Nee05] (taking the

stairs here, might be very hard). However, it is enough for our purposes to assume

that a calculus can be defined in such a way that the corresponding differential,

δ

δF
: S ÞÑ S (1)

pFq ,

fulfills the chain - and the Leibniz rule in the sense below. A calculus fulfilling

the chain rule was defined for locally convex spaces in [Nee05]. And as shown in

[BDF09, Sec. 3.1] F pMq can be endowed with a locally convex topology, defined
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as the initial topology of the Hörmander topology on spaces of distributions with

conic wave front set.

Let Z be differentiable at F, and S be differentiable at ZpFq, then we want to

assume that the derivative of their composition is given by the chain rule

(VI.1) (S � Z)(1)pFq �
(
S (1)

� Z
)
pFq �

(
Z(1)

pFq
)
�

δS

δF1

∣∣∣∣
ZpFq

�

δZ

δF1

∣∣∣∣
F

,

where on the right hand side we have a composition of linear maps, generally

denoted by “ � ” in this chapter. For the iteration of the chain rule and the proof of

the n-fold chain rule in Lemma VI.4 we will also need that the derivative fulfills

the Leibniz rule in the following sense,

(VI.2) (Zb Z)(1) � Z(1)
b Z� Zb Z(1) .

We call a map

Ψ : FlocpMqrrh̄ss Ñ F pMqrrh̄ss

analytic (at F), if the nth functional derivative exists for all n P N as a totally

symmetric, linear map

Ψ
(n)
pFq : FlocpMqrrh̄ssbn

Ñ F pMqrrh̄ss ,

and

(VI.3) Ψ
(n)
pFq : FlocpMqrrh̄ssbn

Ñ FlocpMqrrh̄ss , if impΨq � FlocpMqrrh̄ss.

VI.2. The Main Theorem of Renormalization

An important insight in perturbative renormalization theory is the fact that

the freedom in the definition of the S-matrix can be described in terms of the

Stückelberg-Petermann renormalization group [SP53]. Popineau and Stora termed

this fact the “main theorem of perturbative renormalization theory” [PS82]. One

can find it, although not under this name, already in the early literature of renor-

malization theory [GML54, BS59]. Modern versions are included in [Pin01, Gri01b].

The precise statement and proof of this theorem in the algebraic approach to per-

turbative QFT [DF04, DF07] made it possible to show that the renormalization

group of Stückelberg and Petermann provides a common basis also to other renor-

malization groups found in literature [BDF09]. We will give here a minimalistic

review of the basic definitions needed to formulate the main theorem of renormal-

ization in pAQFT. A more detailed summary, including a sketch of the proof is

contained in Section 4.1 of [BDF09].

The S-matrix

S : FlocpMqrrh̄ss Ñ F pMqrrh̄ss

F ÞÑ SpFq � exp
�T
pFq

is analytic at the origin, where its derivatives are given by the n-fold time ordered

products. However, S is not unique, but needs to be defined perturbatively by

renormalization. As shown in [BDF09] the prerequisites needed for a definition of
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S within causal perturbation theory can be expressed directly in terms of proper-

ties of the S-matrix itself. Let A, B, F P FlocpMqrrh̄ss, then S is required to fulfill

the following conditions,

[C1] Causality. SpA� Bq � SpAq ÆSpBq, if supppAq Á supppBq.

[C2] Starting Element. Sp0q � 1 : E pMq Ñ 1 P C,

S (1)
p0q � id : FlocpMqrrh̄ss Ñ FlocpMqrrh̄ss.

[C3] ϕ-Locality. The value of SpFq P F pMqrrh̄ss at a given field configuration ϕ0

depends only on the Taylor expansion of F P FlocpMqrrh̄ss around ϕ0,

SpFqpϕ0q � SpF
[N]
ϕ0 qpϕ0q �Oph̄N�1

q ,

where F
[N]
ϕ0 pϕq �

N

∑
n�0

1
n!

〈
F(n)

pϕ0q, (ϕ� ϕ0)
bn
〉

denotes the Taylor expan-

sion of F up to order N.

[C4] Field Independence. S depends only implicitly, i.e. via the interaction F, on

the field configuration,

�ψ :
〈

δSpFq

δϕ
, ψ

〉
� S (1)

∣∣∣
F
p

〈
δF

δϕ
, ψ

〉
q .

While [C1] and [C2] are directly related to the inductive procedure of Epstein-

Glaser, condition [C3] implies that only finitely many terms will contribute if one

cuts the perturbative expansion of the S-matrix at a given order in h̄, see also

the discussion at the end of Chapter IV. This makes it possible to regard also

more general, and in particular non-polynomial interactions F P FlocpMqrrh̄ss in

pAQFT. Furthermore [C3] implies together with the fourth condition [C4] the Wick

expansion formula for the time-ordered product of Epstein and Glaser [EG73].

This is needed to reduce the problem of renormalizing S to an extension problem

for distributions. See the discussion in [BDF09, Sec. 4.1] and also [Kel09, Sec. 4.B].

The freedom in the definition of the S-matrix is described by the Stückelberg-

Petermann renormalization group R. In the framework of perturbative Algebraic

Quantum Field Theory R is the group of analytic maps

Z : FlocpMqrrh̄ss Ñ FlocpMqrrh̄ss ,

with composition as group operation, and Z P R having the following properties,

[RG1] Zp0q � 0

[RG2] Starting Element. Z(1)
p0q � id

[RG3] Z � id�Oph̄q
[RG4] Locality. Let A, B, C P FlocpMqrrh̄ss with supppAq X supppCq � H, then

ZpA� B�Cq � ZpA� Bq � ZpBq � ZpB� Cq

[RG5] ϕ-Locality. ZpFqpϕ0q � ZpF
[N]
ϕ0 qpϕ0q �Oph̄N�1

q

[RG6] Field Independence. Z depends only implicitly on the field ϕ,

�ϕ P E pMq :
δZ

δϕ
� 0 .
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With these definitions at hand, we can now formulate

Theorem VI.1 (Main Theorem of Renormalization, cf. [BDF09, Thm. 4.1]). Given

two S-matricesS and Ŝ satisfying the conditions Causality, Starting Element, ϕ-Locality,

and Field Independence, [C1]-[C4], there exists a unique Z P R such that

(VI.4) Ŝ � S � Z .

Conversely, given an S-matrix S satisfying [C1]-[C4] and a Z P R, then (VI.4) defines a

new S-matrix satisfying conditions [C1]-[C4].

We will be interested in this chapter mainly in a special class of scattering

matrices, which we define now.

Definition VI.2 (Analytically Regularized S-matrix). Any scattering matrix, Sκ ,

which fulfills the conditions [C1]-[C4] and depends analytically on an additional

parameter κ P Ω\ {0} � C, such that for all n P N, n ¥ 2, the n-fold functional

derivative,

S
(n)
κ p0q : FlocpMqrrh̄ssbn

Ñ F pMqrrh̄ss ,

is the analytic regularization of a time-ordered product outside the large diagonal

in the sense of Proposition IV.3, we want to call an analytically regularized S-matrix.

Observe that the definition implies that the second derivative S
(2)
κ p0q corre-

sponds to an analytic regularization in the strict sense of Definition I.16. In the

functional framework this implies

pppS (2)
κ p0qq : FlocpMqrrh̄ssb2

Ñ FlocpMqrrh̄ss ,

cf. Section V.4. An example for such an analytically regularized S-matrix is the

unique dimensionally regularized S-matrix Sµ,ζ of Definition IV.4. This follows

directly from its construction, since it was defined using the methods of Epstein-

Glaser renormalization. However, that Sµ,ζ fulfills [C1]-[C4] is also readily seen

from its perturbative expansion (IV.12). And we will take Sµ,ζ as an example,

wherever it is necessary to introduce a regularization in the discussion below.

By the above theorem, the Stückelberg-Petermann renormalization group acts

transitively on all S-matrices fulfilling [C1]-[C4]. Thus, if we want to find a finitely

regularizedS-matrix Sµ,ζ,ren which also fulfills [C1]-[C4] we will have to construct

an element Zµ,ζ of the Stückelberg-Petermann renormalization group, such that

(VI.5) Sµ,ζ,ren � Sµ,ζ � Zµ,ζ .

has a limit ζ Ñ 0 in the set of S-matrices. That is

(VI.6) Sµ,ren :� lim
ζÑ0

(
Sµ,ζ � Zµ,ζ

)

exists in the sense of formal power series in h̄ term by term in the perturbative

expansion; see also [BDF09, Sec. 5.2]. In Epstein-Glaser renormalization the con-

struction of these local counterterms, i.e., the perturbative definition of the map Z
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has to be done recursively, i.e., term by term in the perturbative expansion start-

ing with the counterterm Z(2) for S (2)
p0q. There will be a choice involved in each

step of this recursion and hence it is impossible to express it in an algorithm which

computes, say, the n’th counterterm. However, in the case we dispose of a regu-

larization, Sµ,ζ , the second term, S (2)
µ,ζ , is a regularization in the strict sense, and

hence we have a preferred choice for the local counterterm,

Z
(2)
µ,ζ � �pppS (2)

µ,ζq : FlocpMqrrh̄ssb2
Ñ FlocpMqrrh̄ss .

which renormalizes the time ordered product,

S
(2)
µ,ζ,ren :� rppS (2)

µ,ζq � (1� pp)S (2)
µ,ζ .

It will be show in the following section that this preferred choice can be done at

all orders of perturbation theory in a consistent way, i.e., with local counterterms

at all orders. This, in turn, makes it possible to solve the recursive renormalization

procedure of Epstein-Glaser in quite the same way as it was done by Zimmermann

in 1969 for BPH in momentum space. We will derive from Equation (VI.5) a forest

formula for Epstein-Glaser renormalization which solves the recursive construc-

tion of counterterms to all orders in causal perturbation theory. We want to remark

that the choices at all orders are unique in the minimal subtraction scheme, such

that this leads to a recursive procedure, which, in principle, can also be taught to

a computer - in contrast to the original Epstein-Glaser method.

The relation of the presented method to the modern formulation of renormal-

ization in terms of Hopf algebras will be given in Section VI.4.

VI.3. A Forest Formula for Epstein-Glaser Renormalization

Since we will stay in the functional framework throughout the derivation of

the forest formula, the result will be valid independent of the chosen representa-

tion, in particular it holds for momentum space as well as position space, what-

ever is the best suited representation for the regularization. Furthermore, it is

formulated without regard to the graph expansion of the time-ordered product.

Partitions will take the place of graphs as the basic combinatorial objects. How-

ever, analogous to the discussion in Section V.4, the forest formula for Epstein-

Glaser renormalization also holds in a graph by graph manner, and then implies

Zimmermann’s forest formula of [Zim69] enhanced by his discussion on spuri-

ous subtractions in [Zim76]; see also Proposition V.4 and the discussion thereafter.

However, the combinatorial structures used here will make the role of forests in

Zimmermann’s formula even more transparent.

That a version of Zimmermann’s forest formula should also exist in position

space was observed before. And the assertion is natural considering the common

origin of BPHZ and Epstein-Glaser renormalization. It has been shown that Zim-

mermann’s Taylor subtractions with respect to external momenta of the graphs

correspond to the W-projections in the Epstein-Glaser framework [Pra99, Pra00].
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Gracia-Bondía and Lazzarini gave a direct translation of this “Taylor surgery” (GB)

to position space by considering a more general test function space for the “in-

frared regulators”, i.e. the test functions wα of Lemma I.7, in fact they allowed

the wα to be distributions of the Cesàro type [GB03, GBL03]. A translation of the

complete forest formula to position space was given by Steinmann in the case of

QED [Ste00]. However, Steinmann’s treatment was unsatisfactory in two points.

First, Steinmann’s formulation involves the differentiation of (generalized) func-

tions at singular points. This was recognized by the author himself and is due

to the fact that the implicit regularization2 of the momentum space framework,

namely the fact that Zimmermann performs his manipulations on the integral ker-

nel of the convolution rather than the integral itself, has no counterpart in position

space. Momentum space convolution corresponds to the pointwise product (of

distributions) in position space and it is partly due to this implicit regularization

that momentum space integrals were introduced in perturbative quantum field

theory in the first place [BP57]. Second, Steinmann regards Quantum Electro Dy-

namics (QED). The fact that QED has only one basic vertex of valence three im-

plies that there are no graphs with less lines but the same set of vertices so that

the spurious subtractions do not occur in QED and other theories “of graphical

ϕ3-type”. Consequently, Steinmann’s version of the forest formula cannot be con-

sidered as a complete translation of Zimmermann’s forest formula (which treats

general graphs in G) to position space. Observe that Zimmermann implements a

preferred choice for the extension at all orders in perturbation theory by perform-

ing his Taylor subtractions always at zero external momentum. In order to define

this rigorously he has to introduce additional maps which conceal part of the un-

derlying pattern. However, as already remarked above and as will be clear from

the construction below, such a choice of extension at all orders of perturbation

theory is indispensable for the solution of the recursive procedure of Bogoliubov,

Parasiuk and Hepp, or Epstein and Glaser, respectively. We start by exploring the

termwise structure of the main theorem (Theorem VI.1), by applying the n-fold

derivative to (VI.4). The Faà di Bruno formula arises naturally.

VI.3.1. Faà di Bruno’s formula. In 1855 Francesco Faà di Bruno proved a for-

mula for the n-fold chain rule [FdB55]. And it is quite appealing that this old

formula, when applied to Equation (VI.4) gives a termwise version of the main

theorem of perturbative renormalization (Theorem VI.1). Considering the time

since its first proof, there are quite a few versions of Faà di Bruno’s formula in the

literature today. However, in order to keep the relation to causal perturbation the-

ory and BPHZ renormalization visible at all steps in our calculation, a set partition

version of the form found in [Joh02, p. 219] seems to be the most appropriate. We

prove here an adjusted version. But let us first give an easy definition, mainly to

fix notation.

2I hope this is the only spot in the thesis where I use the word “regularization” only in the sense of
“making things well-defined”.
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Definition VI.3 (Partition, Blocks). By a partition P of a finite set V we mean any

set of non-empty, disjoint subsets Vi � V, i P I, such that

V �

9

⋃

iPI

Vi , that is, P � {Vi : i P I} ,

where 9Y denotes disjoint union. We refer to the non-empty, disjoint subsets Vi as

blocks of P , and denote the set of all partitions of V by PartV.

We generally consider partitions of the set which corresponds to the set of

vertices, VpΓq, in the graphical representation, and in most cases it will be more

convenient to regard instead the set of numbers {1, . . . , n}. However, this implicit

numbering of vertices, is irrelevant for the derivation due to the symmetry of the

functional derivative briefly introduced in Section VI.1.

Lemma VI.4 (Main Theorem - termwise). Let S : FlocpMqrrh̄ss Ñ F pMqrrh̄ss be an

S-matrix fulfilling conditions [C1]-[C4] and let Z : FlocpMqrrh̄ss Ñ FlocpMqrrh̄ss be an

element of the Stückelberg-Petermann renormalization group, Z P R. Then the nth term

in the perturbative expansion of the transformed S-matrix, Ŝ � S � Z, is given by

(VI.7) (S � Z)(n)p0q � ∑
PPPart{1,...,n}

S (|P|)
p0q �

(
⊗

IPP

[
Z(|I|)

p0q
])

,

where the sum is over all partitions P of the index set {1, � � � , n} into |P| blocks,

and ” � ” denotes the composition of linear maps,

(VI.8) FlocpMqrrh̄ssbn
⊗

IPP Z(|I |)
p0q

ÝÝÝÝÝÝÝÝÝÑ FlocpMqrrh̄ssb|P| S
(|P|)

p0q
ÝÝÝÝÝÝÝÝÝÑ F pMqrrh̄ss.

PROOF. We prove (VI.7) by induction following [Joh02]. For n � 1 we have,

(S � Z)(1)
∣∣∣∣

F

� S
(1)
∣∣∣∣
ZpFq

� Z(1)
∣∣∣∣
F

.

However, evaluating at F � 0 gives an empty assertion (id � id) due to the starting

element conditions [C2], [RG1], and [RG2]. The first non-trivial contribution is

from the second derivative, which we compute explicitly for illustration,

(S � Z)(2)
∣∣∣∣

F

�

(
S

(1)
∣∣∣∣
ZpFq

� Z(1)
∣∣∣∣

F

)(1)∣∣∣∣
F

� S (2)
∣∣∣∣
ZpFq

� Z(1)
∣∣∣∣

F

b Z(1)
∣∣∣∣

F

�S (1)
∣∣∣∣
ZpFq

� Z(2)
∣∣∣∣

F

,

where the two terms correspond to the two partitions {{1} , {2}} and {{1, 2}} of

{1, 2}. Evaluating at F � 0 gives, again by using [C2], [RG1], and [RG2],

(S � Z)(2)p0q � S (2)
p0q � Z(2)

p0q ,

and Z(2)
� (S � Z)(2) �S

(2) is found to be the counterterm at second order.



VI.3. A FOREST FORMULA FOR EPSTEIN-GLASER RENORMALIZATION 73

For the induction step regard the derivative of (VI.7). By (VI.1)/(VI.2) we get,
[
S (|P|)

∣∣∣
ZpFq

(
⊗

IPP

[
Z(|I|)

∣∣∣
F

])](1)
� S (|P|�1)

∣∣∣
ZpFq

(
Z(1)

∣∣∣
F
b

⊗

IPP

[
Z(|I|)

∣∣∣
F

])

� ∑
I1PP

S (|P|)
∣∣∣
ZpFq


Z(|I1|�1)

∣∣∣
F
b

⊗

IPP\{I1}

[
Z(|I|)

∣∣∣
F

]

 .(VI.9)

Any partition P̃ of {1, . . . , n� 1} can be written in terms of a partition P of

{1, . . . , n} by either adjoining {n� 1} as a block of its own, or by adding {n� 1}
to one of the blocks in P , i.e.,

P̃ � P Y {{n� 1}} or P̃ �

(
P\
{

I1
})
Y

{
I1 Y {n� 1}

}
,

for some block I1 P P . Thus equation (VI.9) contains all partitions of {1, . . . , n� 1}
which can be obtained from P . Evaluating at F � 0 gives the result. �

Equation (VI.7) describes the action of the Stückelberg-Petermann group on

time-ordered products. This action followed directly from the main theorem by

applying Faà di Bruno’s formula. Since Equation (VI.7) is not the most cited ver-

sion of Faà di Bruno’s formula, we want to show that it reduces to the more preva-

lent versions if we evaluate (S � Z)(n)p0q at the n-fold tensor power of one and the

same interaction functional, Fbn
P FlocpMqrrh̄ssbn. Due to the symmetry of the

functional derivative partitions with identical block sizes will give the same con-

tribution to (S � Z)(n)p0qpFbn
q. So the question is: How many of them are there?

Depending on how one chooses to sort these partitions, one gets the different ver-

sions of Faà di Bruno’s formula. As an example we give one of the derivations.

Let P P Part{1, . . . , n} be a partition with |P| � k blocks. Let (l1, . . . , lk) P

Nk denote the sizes of these blocks, l1 � � � � � lk � n, li ¥ 1. There are ( n
l1,...,lk

)

possibilities to distribute n elements among k different blocks of specified size and

order.3 However, for a partition the order of the blocks is irrelevant. In a sum

over the multiindex (l1, . . . , lk) P Nk we thus have to divide by the number of

permutations of {l1, . . . , lk} to reduce it to a sum over all partitions. In total we get

(S � Z)(n)pFbn
q(VI.10)

�

n

∑
k�1

1
k!
S (k)

� ∑
l1�����lk�n

li¥1

(
n

l1, . . . , lk

)
Z(l1)

pFbl1
q b � � � b Z(lk)

pFblk
q ,

which was the starting point in [FGBV05] for the derivation of

(S � Z)(n)pFbn
q(VI.11)

�

n

∑
k�1

∑
λ1,...,λn

n!
λ1! � � �λn!

S
(k)
�

(
Z(1)

1!

)
bλ1

b � � � b

(
Z(n)

n!

)
bλn

pFbn
q.

3( n
l1,...,lk

) :� n!
l1 !���lk ! denotes the multinomial coefficient, see, e.g., [HHM08].
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Here λl P N0 denotes the number of blocks of size l. Equation (VI.11) is the ver-

sion, which is usually cited as Faà di Bruno’s formula in the literature, and often is

the starting point for the introduction of the Faà di Bruno bialgebra. We will learn

more about this bialgebra in Section VI.4.

VI.3.2. Minimal Subtraction. Regard an analytically regularized S-matrix,

e.g., Sµ,ζ . Then Lemma VI.4 implies a recursion relation for the counterterms

Z
(n)
µ,ζ in the minimal subtraction renormalization scheme introduced in the previ-

ous chapter.

Corollary VI.5 (Recursion Relation for MS Counterterms). In the minimal subtrac-

tion renormalization scheme (MS), a recursion relation for the counterterms Z
(n)
µ,ζ is given

by

(VI.12) Z
(n)
µ,ζ � �pp ∑

PPPart{1,...,n}\{P1}
S

(|P|)
µ,ζ �

(
⊗

IPP
Z
(|I|)
µ,ζ

)
.

The counterterms are local, and all counterterms on the right hand side are of lower order

than n, since the only partition in Part{1, . . . , n} with a block containing n elements is

removed from the sum, P1 � {{1, . . . , n}}.

PROOF. Using the starting element condition [C2] we get from (VI.7),

(
Sµ,ζ � Zµ,ζ

)(n)
� Z

(n)
µ,ζ � ∑

PPPart{1,...,n}\{P1}
S

(|P|)
µ,ζ �

(
⊗

IPP
Z
(|I|)
µ,ζ

)
.

By assumption Zµ,ζ P R is a renormalization group transformation which renders

the limit ζ Ñ 0 of the left hand side finite, cf. Equation (VI.6). Thus the counterterm

Z
(n)
µ,ζ has to subtract at least the principal part of the sum on the right hand side.

In the minimal subtraction scheme, Z
(n)
µ,ζ is fixed by the requirement to remove

exactly the principal part, hence formula (VI.12). The locality of Z
(n)
µ,ζ is implied

directly by the functional calculus, cf. (VI.3). �

The expert reader4 readily recognizes the similarity of (VI.12) to the recursive

formula for the antipode in the Faà di Bruno bialgebra. However, observe that

there are two products involved in the recursion for the counterterms. The tensor

productb and the composition of linear maps “ � ”. What might be obvious for the

expert, namely that this is a structure which cannot be described by a commutative

Hopf algebra alone, will be derived “by foot” in Section VI.4. However, let us

first give the derivation of a forest formula for the n-fold finitely regularized time-

ordered product S (n)
µ,ζ,ren. The forest formula will solve the inductive construction

of the renormalization group transformation Zµ,ζ , which renders Sµ,ζ,ren � Sµ,ζ �

Zµ,ζ finite (in the sense of formal power series in h̄) in the limit ζ Ñ 0.

4I assume here that {readers} �H. If you have a proof, please tell me: kai.johannes.keller@desy.de

mailto:kai.johannes.keller@desy.de
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VI.3.3. Derivation of the forest formula. We begin with the definition of a

forest as it was given by Zimmermann. We will then derive some relations to

partitions which will motivate the definition of an Epstein-Glaser forest and make

it possible to give a transparent proof of the forest formula.

Let us start with Zimmermann’s definition, which was contained in [Zim69].

However, we incorporate directly his results from [Zim76] and will only consider

subgraphs, which are given by a subset of the set of vertices of a graph Γ and all

lines in Γ connecting them, cf. Definition V.5. Zimmermann called such subgraphs

full vertex parts. Observe that this makes it possible to work directly with the set of

vertices instead of the set of general graphs or full vertex parts. However, to keep

the relation to the original definitions transparent, let Γ P G be a graph.

A Γ-forest U is a set of subgraphs γ � Γ, such that any two elements γ, γ1 P U

are non-overlapping, i.e.

(VI.13) either γ � γ1 or γ1 � γ or γX γ1 � H .

The empty set is referred to as the empty forest. The notation γX γ1 � H means

that Vpγq XVpγ1q � H, and it follows from the definition of a subgraph (Defini-

tion V.5) that then also the sets of edges are disjoint, Epγq X Epγ1q � H. A graph

γ P U is called maximal if there is no other graph in U containing it. A Γ-forest

U is called maximal, if there is no other Γ-forest containing it. A forest is called

restricted, if it contains only “divergent graphs”, divpγq ¥ 0, cf. (IV.7). Note that

a (Feynman-) graph Γ has more than one maximal restricted forest, if and only if

it has overlapping divergences, i.e., at least two divergent subgraphs γ, γ1 � Γ for

which (VI.13) does not hold. Given a forest U of Γ and a subgraph G P U, we

define the set

UpGq :� {γ P U : γ � G} ,

and note that UpGq is a G-forest as well as a Γ-forest.

Lemma VI.6 (Structure of Maximal Forests). Let U be a maximal Γ-forest.

(1) With any element G P U, U contains also its vertex complement, Γn G P U.

(2) For any graph G P U the set UpGq � {γ P U : γ � G} is a maximal G-forest.

(3) The forest U\ {Γ} is the disjoint union of two maximal forests. If G P U\ {Γ}
is a maximal element, then

U\ {Γ} � UpGq 9YUpΓnGq .

PROOF. (1). Let G P U, then for any element γ P U, we have either γ � G or

γ � ΓnG. Hence UY {ΓnG} is a forest, and by maximality of U: ΓnG P U.

(2). Let U1 be a G-forest properly containing UpGq. Then there is a subgraph

γ1 � G such that γ1 R UpGq does not overlap with any of the elements in UpGq.

Since G P U it follows that γ1 R U is non-overlapping with any element in U. Thus

U 9Y {γ1} is a forest, in contradiction with the maximality of U.

(3) follows from (1) and (2). �
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The combinatorial result, which leads to the forests formula for Epstein-Glaser

renormalization, is that we can write (maximal) forests of the kind defined above

in terms of (complete) sets of partitions of the vertex set.

Lemma VI.7 (Partitions and Forests). The set of partitions of n elements,

Part{1, . . . , n}, is a partially ordered set (poset). The partial order is defined by saying

that P1 is finer than P2 (and P2 is coarser than P1),

P1 ¤ P2 ,

if for any block I P P1 there is a block J P P2 containing I. (Part{1, . . . , n},¤) is

a complete partial order (cpo) with finest element {{1} , . . . , {n}} and coarsest element

{{1, . . . , n}}.

Let P � Part{1, . . . , n} be a totally ordered subset. We call P maximal, if there is

no totally ordered subset P1 � Part{1, . . . , n} containing P. The union of any totally

ordered subset P is a forest,

UpPq :�
⋃

P 1

PP

P 1 .

UpPq is a maximal forest, if P is maximal.

PROOF. “¤” is reflexive (P ¤ P), antisymmetric (P1 ¤ P2 ^ P2 ¤ P1 ñ

P1 � P2), and transitive (P1 ¤ P2 ^ P2 ¤ P3 ñ P1 ¤ P3), hence a partial

order. For (Part{1, . . . , n},¤) to be a cpo, we have to show that any pair P1,P2 P

Part{1, . . . , n} has a least upper bound P1\P2 and a greatest lower bound P1[P2

in Part{1, . . . , n}. The assertion is trivial, if P1 and P2 are related by “¤”, hence let

P1 and P2 not be related by “¤”. P1 \P2 is the partition where all overlapping

blocks (cf. (VI.13)) are replaced by their union; filled up with the larger blocks of

either P1 or P2. In P1 [P2 overlapping blocks are replaced by their intersection

and filled up with the smaller sets of either P1 or P2, see Figure 2. Since P1 \P2

and P1 [P2 are partitions of {1, . . . , n}, we infer that Part{1, . . . , n} is a cpo.

Regard a totally ordered subset P � Part{1, . . . , n} and let P P P, then by

definition I X J � H for all I, J P P . Let P ,P 1 P P be two different partitions,

P 1 � P , then we have either I X J � H, I � J, or J � I for any pair (I, J) P P �P 1
since P is totally ordered. Thus I and J are non-overlapping, and UpPq is a forest.

Let P be maximal, then it contains {{1, . . . , n}} and {{1} , . . . , {n}}, and with any

partition P P P it contains all partitions which can be constructed out of P by

successively dividing any of its blocks into a pair of disjoint subsets. Let I � I1 9YI2

be an index set, then there is no partition PI of I such that {I1, I2} ¤ PI ¤ {I}
and {I1, I2} � PI � {I}. Hence the maximal set P can be constructed out of

{{1, . . . , n}} by the successive division procedure described above. Conversely,

let U be a maximal forest, by Lemma VI.6, U can be constructed in exactly the

same way. �

We will have to regard in the sequel unions of totally ordered sets of partitions,

which is non-trivial, since the set union of two totally ordered sets of partitions will
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P1

P2

P1 ⊔ P2

P1 ⊓ P2

FIGURE 2. Least upper and greatest lower bound of a pair of partitions.

not be a totally ordered set of partitions, just as the union of forests is not a forest

in general.

Definition VI.8 (Position and Disjoint Union). Let P � Part{1, . . . , n} be a totally

ordered set, then we define the position of any element P P P by

pos
P

pPq :�
∣∣{P 1 P P : P ¤ P 1

}∣∣ .

It is easy to see that posPpPcq � 1, if Pc is the coarsest element of P.

Let PpIq and PpJq be totally ordered subsets of PartI and PartJ, respectively.

Any subset of {
P 9YP 1 : P P PpIq and P 1 P PpJq

}
,

which is a totally ordered set of partitions of I 9YJ, we call a disjoint union of PpIq

and PpJq.

Observe that there are forests which do not correspond to a totally ordered

subset of partitions, e.g., the empty forest or any forest containing just one proper

subset of {1, . . . , n}. We now come to the definition of an Epstein-Glaser forest; a

similar definition for forests was considered in [FGB05] to establish the relation to

incidence Hopf algebras.

Definition VI.9 (Epstein-Glaser Forest). Let V � {1, . . . , n} be a (vertex) set. Then

we call any totally ordered subset F of the set of partitions, F � Part{1, . . . , n},

containing the finest partition Pn :� {{1} , . . . , {n}} of V, an Epstein-Glaser forest

(EG forest), i.e., F has the form

F � {� � � ¥ Pn} , Pn � {{1} , . . . , {n}} .

The EG forest containing only Pn we denote by Fn :� {Pn}. If an EG forest

contains the coarsest partition P1 :� {{1, . . . , n}} we call it a full EG forest (full

forest) and write F. If an EG forest does not contain P1, we call it a normal EG

forest (normal forest) and write F. For n � 1 there is just one forest, the one with

one vertex, and we define this forest to be full. For n ¡ 1 there is a one to one

correspondence between full and normal forests, given by

F � FY {P1} .

An Epstein-Glaser forest F is called maximal, if F is maximal as a totally ordered

set of partitions.

Corollary VI.10. Any normal Epstein-Glaser forest F is a disjoint union of at least two

full Epstein-Glaser forests. If the coarsest partition in F has k elements, then F decomposes
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A B C

FA

FB

FC

ñ

FIGURE 3. The depicted normal forest of A 9YB 9YC decomposes
into tree full forests FA, FB, and FC. Conversely, given the three
full forests, any composition of them, which preserves the order of
partitions in each component separately, gives a different disjoint
union, i.e. a different normal forest of A 9YB 9YC.

into k full forests F1, . . . , Fk, k ¥ 2, and we call F k-fold connected. Conversely one can

say that F is a disjoint union of F1, . . . , Fk in the sense of Definition VI.8,

(VI.14) F �

9

⋃

iP{1,...,k}
Fi .

If Ii is the block of the coarsest partition in the full forest Fi, then Fi � FpIiq. In this sense

the decomposition (VI.14) of F is unique. See also Figure 3. �

So far for the combinatorial part, we now have to define the analytic part,

namely, the minimal subtractions in the blocks of a partition.

Definition VI.11 (MS Operator). For any partition P P Part{1, . . . , n} define the

minimal subtraction operator (MS operator)

�TMS
P S

(n)
µ,ζ :� S

(|P|)
µ,ζ �

(
⊗

IPP
R|I|

(
S

(|I|)
µ,ζ

))
, where Rk �





id if k � 1

�pp if k ¡ 1 ,

cf. Definition V.6.

This defines the operator �TMS
P on the whole regularized time-ordered prod-

uct S (n)
µ,ζ . Observe, however, that the above definition implies that we have chosen

another regularization parameter in each block I of the partition; there is one op-

erator R|I| for each block. To consider all partitions, which possibly contribute to

the principal part, we will regard the n-fold regularized time-ordered product as

being regularized in (n
2) different regularization parameters, one for each pair of

vertices. This is certainly possible regarding the fact that we have “regularized the

lines” of each given diagram, i.e. the propagators. At the stage of only one MS

operator �TMS
P this consideration is not very important, since the singularities in

different blocks are independent, anyway. However, the fact that we can choose

the regularization parameters freely for any pair of vertices becomes important as

soon as we want to define products of the MS operators applied to the same reg-

ularized time-ordered product. Such products occur in the forest formula below,

and we briefly discuss one example in order to clarify this point. We choose the

position space representation for convenience. Let P1 ¤ P2 be different partitions

in Part{1, . . . , n}. Let I1 � I2 be a pair of blocks, I1 P P1, I2 P P2, and regard a
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special graph contribution, say S
µ,ζ
Γ , to S

(n)
µ,ζ for simplicity, |VpΓq| � n. Let γ be the

full vertex part (in Γ) to the vertex set I1 and let G be the full vertex part of I2, then

γ � G. Regard the successive subtraction

s
µ,ζ
ΓnG RI2

(
s

µ,ζ
Gnγ RI1 s

µ,ζ
γ

)
,

and insert the definition from the previous chapter, cf. (V.6),

�

�1

∑
n��8

ζn 1
2πi

∮

C
dξ

1
ξn�1

�1

∑
k��8

ξk 1
2πi

∮

C1
dξ1

1

ξ1k�1
s

µ,ζ
ΓnG � s

µ,ξ
Gnγ � s

µ,ξ1
γ ,

where we had to introduce regularization parameters ξ and ξ1 for the subgraphs

in order to get independent subtractions in all subgraphs. With these remarks

concerning the regularization, we have for the composition of MS operators corre-

sponding to related partitions, P ¥ P 1,

TMS
P TMS

P 1

S
(n)
µ,ζ � S

(|P|)
µ,ζ �

[
⊗

IPP
R|I|

[
S

(|I1{I|)
µ,ζ �

(
⊗

I1�I

R|I1 |
(
S

(|I1 |)
µ,ζ

))]]
,

where |I1{I| denotes the cardinality of {I1 P P 1 : I1 � I}.

Theorem VI.12 (Forest Formula for Epstein-Glaser Renormalization). Let TMS
P be

the minimal subtraction operator of Definition VI.11, and let the product of two MS oper-

ators corresponding to related partitions be defined as described above. Then

(VI.15) S
(n)
µ,ζ,ren :� ∑

F�Part{1,...,n}

(

∏
¥

PPF

�TMS
P

)
S

(n)
µ,ζ

gives a finite regularization of the n-fold regularized time-ordered product S
(n)
µ,ζ � T

n
µ,ζ .

The sum is taken over all Epstein-Glaser forests. The product of the operators is taken in

the order prescribed by “¥”, such that the coarsest partition in F stands to the very left.

PROOF. The forest formula implies an expression for the nth counterterm in

the renormalization scheme of analytic regularization and minimal subtraction.

We can split (VI.15) into a sum over full and normal forests,

S
(n)
µ,ζ,ren � ∑

F

(

∏
¥

PPF

�TMS
P

)
S

(n)
µ,ζ �∑

F

(

∏
¥

PPF

�TMS
P

)
S

(n)
µ,ζ .

Observe that for n � 1 there are no normal forests, and the first sum is empty. Since

any forest in the second sum on the right hand side contains the coarsest partition,

P1 � {{1, . . . , n}}, we can factor out the corresponding MS operator and get from

[C2],

S
(n)
µ,ζ,ren � ∑

F

(

∏
¥

PPF

�TMS
P

)
S

(n)
µ,ζ � Rn

[

∑
F

(

∏
¥

PPF

�TMS
P

)
S

(n)
µ,ζ

]
.

We show in the sequel, that

(VI.16) C
(n)
µ,ζ :� Rn

[

∑
F

(

∏
¥

PPF

�TMS
P

)
S

(n)
µ,ζ

]
� ∑

F

(

∏
¥

PPF

�TMS
P

)
S

(n)
µ,ζ ,
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is the local counterterm of regularized causal perturbation theory in the minimal

subtraction scheme. That is C
(n)
µ,ζ fulfills the recursion relation of Corollary VI.5.

We proceed by induction.

For n � 1 we have by [C2] and the definition of R1,

C
(1)
µ,ζ � R1S

(1)
µ,ζ � id � Z

(1)
µ,ζ .

Thus C
(1)
µ,ζ � id : FlocpMqrrh̄ss Ñ FlocpMqrrh̄ss is local, and we can assume that

C
(k)
µ,ζ � Z

(k)
µ,ζ for all k   n. For the induction step we have to show that

Rn

[

∑
F

(

∏
¥

PPF

�TMS
P

)
S

(n)
µ,ζ

]
� �pp ∑

PPPart{1,...,n}\{P1}
S

(|P|)
µ,ζ �

(
⊗

IPP
C
(|I|)
µ,ζ

)
.

for n ¥ 2. By the definition of Rn this is the case, if

(VI.17) ∑
F

(

∏
¥

PPF

�TMS
P

)
S

(n)
µ,ζ � ∑

PPPart{1,...,n}\{P1}
S

(|P|)
µ,ζ �

(
⊗

IPP
C
(|I|)
µ,ζ

)
.

Regard the left hand side of this equation. Any normal forest is a disjoint union

of at least two full forests (Corollary VI.10). Hence we can write the sum over all

normal forests as

lhs �
n

∑
k�2

∑
P 1

PPart{1,...,n}
|P 1|�k

∑
F� 9

⋃
IPP1FpIq

(

∏
¥

PPF

�TMS
P

)
S

(n)
µ,ζ .

The product splits and we get

�

n

∑
k�2

∑
P 1

PPart{1,...,n}
|P 1|�k

∑
F� 9

⋃
IPP1FpIq

⊗

IPP 1


 ∏

¥

PPFpIq

�TMS
P


S

(n)
µ,ζ .(VI.18)

The sum over all normal, i.e., multiply connected forests F can be performed by

summing over all full forests FpIq in its connected components, cf. Corollary VI.10.

And we have to perform the sum in these components, in order to get a well-

defined expression for (VI.18),

lhs �
n

∑
k�2

∑
P 1

PPart{1,...,n}
|P 1|�k

⊗

IPP 1

∑
FpIq


 ∏

¥

PPFpIq

�TMS
P


S

(n)
µ,ζ .

Inserting the inductive assumption, C
(k)
µ,ζ � Z

(k)
µ,ζ �k   n, gives the desired result

(lhs � rhs). �

Corollary VI.13. Let F1, . . . , Fc be the maximal forests of the vertex set {1, . . . , n}. Then

we can write (VI.15) equivalently as

(VI.19) S
(n)
µ,ζ,ren � ∑

H�{i1,...,iν}
�{1,...,c}

(�1)ν�1


 ∏

¥

PPFi1
X���XFiν

(
1� TMS

P
)

S

(n)
µ,ζ .
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PROOF. This is merely another way of summing up the contributions to (VI.15).

Multiplying out the factors
(
1� TMS

P
)

gives the result, cf. [Zim69, Thm. 3.3]. �

Corollary VI.14 (EG Forest Formula in terms of graphs). Let Γ be a graph with n

vertices, |VpΓq| � n. For any partition P of VpΓq the action of the MS operator on the

level of graphs is given by

�TMS
P
〈

s
µ,ζ
Γ

〉
:�
〈

s
µ,ζ
Γ{P

〉(⊗

IPP
R|I|

〈
s

µ,ζ
γI

〉)
, where Rk �





id if k � 1

�pp if k ¡ 1 ,

where Γ{P is the graph with the blocks I P P as vertices and as lines all lines in Γ which

connect different blocks of P . For each block I P P , the graph γI is the full vertex part of I.〈
s

µ,ζ
Γ

〉
denotes the analytically regularized amplitude in any representation (momentum

or position space). Then the limit

〈
s

µ
Γ,ren

〉
� lim

ζÑ0
∑

F�Part{1,...,n}

(

∏
¥

PPF

�TMS
P

)〈
s

µ,ζ
Γ

〉

is well-defined and gives a UV finite, i.e., renormalized amplitude.

PROOF. The MS operators are tensor products of the corresponding operators

on sets (Definition V.6) and thus linear. Hence the corollary is a direct consequence

of the discussion given in Section V.4 and the above Theorem VI.12. �

Corollary VI.15 (Prepared Amplitude). Let Γ be a graph with n vertices, n ¡ 1, i.e.,〈
S

µ,ζ
Γ , δ

α
〉

with α P Nn and |α| � 2 |EpΓq| is a contribution to the n-fold, regularized

time ordered product

S
(n)
µ,ζ : FlocpMqrrh̄ssbn

Ñ F pMqrrh̄ss.

Then the prepared amplitude to Γ is given by,

(VI.20) S
µ,ζ
Γ,prep :� ∑

H�{i1,...,iν}
�{1,...,c}

(�1)ν�1


 ∏

¥

PPFi1
X���XFiν\{P1}

(
1� TMS

P
)

 S

µ,ζ
Γ

. �

VI.4. More than Hopf Algebra

The investigation of the combinatorial structure of perturbative renormaliza-

tion theory is a vivid field of research in mathematical physics and for the charac-

terization of the underlying pattern Hopf algebras, and in particular the

Faà di Bruno bialgebra introduced by Joni and Rota in 1982 [JR82], became more

and more important in recent years [FGB05]. We will show in this last section,

that there is a more intricate pattern underlying the combinatorial structure of

renormalization than is described by a Hopf algebra. However, the relation to the

Hopf algebra of graphs originally encountered by Connes and Kreimer in BPHZ

[Kre98, CK00, CK01] and later by Gracia-Bondía, Lazzarini, and Pinter in Epstein-

Glaser renormalization [GBL00, Pin00b] will become transparent. The attractive

feature of our derivation is that we can understand the emerging Hopf algebraic
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structure as a direct consequence of the main theorem of renormalization (Theo-

rem VI.1). The elements of this Hopf algebra will be differential operators which

give the time-ordered products, when acting on a S-matrix, and local countert-

erms when acting on an element of the Stückelberg-Petermann renormalization

group. Hence, in a graphical representation they correspond to sums of graphs

with the same set of vertices. The Hopf algebra structure for individual graphs

is regained by linearity. The regularized Feynman rules and the renormalization

map will appear naturally as soon as one specializes to an analytically regularized

S-matrix. This is a major difference to the Connes-Kreimer approach, where the

Feynman rules had to be put by hand as characters into the commutative ring of

Laurent series. We will show, however, that the recursion formula for minimally

subtracted counterterms (VI.12), which was seen to be a direct consequence of

the main theorem, cannot be described within the commutative Hopf algebra of

Connes and Kreimer [CK00, CK01].

As a first step we will use the Faà di Bruno Hopf algebra introduced by Joni

and Rota to derive the commutative, non-cocommutative Hopf algebra of graphs

described briefly above. It will be clear from the given presentation that one needs

an additional, non-commutative, composition product, to get back the recursion

formula for the counterterms (Corollary VI.5). We will sketch in the last section

how this composition product can be implemented into the Hopf algebra to de-

scribe algebraically the construction of counterterms in pAQFT. An interpretation

of the maps in terms of graph operations will be given in the end.

VI.4.1. The Hopf Algebra. As shown by Joni and Rota, Faà di Bruno’s for-

mula for the chain rule gives rise to a natural bialgebra structure, which the au-

thors called the Faà di Bruno bialgebra [JR82]. In modern presentations it is often

introduced as a bialgebra of the coefficients in (VI.11), cf. [FGB05]. However, to

keep the correspondence to causal perturbation theory transparent also in this last

section of the present thesis we regard instead directly the partition version given

in Lemma VI.4. Apart from that we follow essentially the steps of [FGB05] as far

as the Hopf algebra structure is concerned.

Regard Faà di Bruno’s formula (VI.7) in the termwise form of the main theo-

rem of renormalization (Lemma VI.4). We denote the coefficients by

anpSq :� S (n)
p0q and anpZq :� Z(n)

p0q

and get

(VI.21) anpS � Zq � ∑
PPPart{1,...,n}

a|P|pSq �
⊙

IPP
a|I|pZq .

We want to make the symmetry of the functional derivative explicit here and re-

placed the tensor product in (VI.7) by the symmetrized tensor product

k⊙

i�1

Ai :�
1
k! ∑

σPPermpkq

k⊗

i�1

Aσpiq ,



VI.4. MORE THAN HOPF ALGEBRA 83

where Permpkq denotes the group of permutations of k elements. Observe that be-

sides this commutative product (d), there is a second, non-commutative product

in formula (VI.21). Namely, the composition of linear maps

(VI.22) C : a|P|pSq b
⊙

IPP
a|I|pZq ÞÑ a|P|pSq �

⊙

IPP
a|I|pZq ,

cf. (VI.8). This second product is absent if we regard the coefficients in (VI.21) as

scalars. And we will sketch how to implement this additional non-commutative

product into the Hopf algebra in the next section. Let us first regard the commu-

tative part.

Regard the coefficients ak in (VI.21) as differential operators

(VI.23) ak : S ÞÑ akpSq � S (k)
p0q and ak : Z ÞÑ akpZq � Z(k)

p0q .

The operators will produce multi-linear maps on local functionals; with local im-

age in the case they act on Z P R,

akpZq : FlocpMqrrh̄ssbk
Ñ FlocpMqrrh̄ss ,

and with possibly non-local image if they act of S fulfilling [C1]-[C4],

akpSq : FlocpMqrrh̄ssbk
Ñ F pMqrrh̄ss .

Denote by H the space of these coefficients ak. Since the Z(k) and S
(k) (evalua-

tion at zero understood) are linear maps on tensor products of local functionals, H

carries a natural C-vector space structure induced by the C-vector space structure

on local functionals. As already remarked above, the symmetry of the functional

derivative induces a commutative product on H,

M
d

: HbH Ñ H

pak b alq ÞÑ ak d al :� 1
2 [ak b al � al b ak] ,

where we set

(VI.24) (ak d al) pZq :� akpZq d alpZq ,

and likewise for S . We regard H as the free, commutative algebra generated by

the ak, and commit the usual abuse of notation by using the same symbol for the

(symmetrized) tensor product of linear maps on the right hand side of (VI.24) and

the commutative product of the algebra (H,d) on the left. It will be clear from the

context, where we mean which. (H,d) is a unital algebra with unit

1 : Z ÞÑ 1pZq :� id , 1 : S ÞÑ 1pSq :� id ,

where id : FlocpMqrrh̄ss Ñ FlocpMqrrh̄ss denotes the identity map on the space of

local functionals. We denote the corresponding unit map by

e : C Ñ H

α ÞÑ α 1 .

We set Hd1 � H. Joni and Rota interpreted Faà di Bruno’s formula as a coproduct
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rule for the coefficients ak , and we can do exactly the same thing here, by defining

the coproduct, ∆ : HÑ HbH, as

(VI.25) (∆an) :� ∑
PPPart{1,...,n}

a|P| b

(
⊙

IPP
a|I|

)
.

It is obvious from (VI.21) that this coproduct is induced by

(∆an) pS b Zq � anpS � Zq ,

and we break with the tradition of flipping the arguments of ∆an here,5 since, in

contrast to the chain rule for functions or formal power series with scalar coeffi-

cients, we have a composition of linear maps with a prescribed order rather than a

commutative product on the right hand side of Faà di Bruno’s formula, cf. (VI.22).

Consequently we have the linear part of the coproduct on the left hand side of b.

Equipping H with the counit, defined on generators

e : H Ñ C

an ÞÑ epanq :�





1 if an � 1

0 else ,

gives the usual commutative, non-cocommutative Faà di Bruno bialgebra, how-

ever, now interpreted in terms of the functional differential operators (VI.23).

It will be helpful for the construction of the antipode to first discuss the natural

gradings on H.6 As any tensor algebra, H is graded by the number of factors,

degd : H Ñ N
⊙k

i�1 ali
ÞÑ degdpal1 d � � � d alk

q :� k .

That is, H can be written as the direct sum

H �

8⊕

k�0

H
dk , H

dk
�

{
a P H : degdpaq � k

}
, H

d0
� C .

Subordinate to this tensor algebra grading is a naturally induced grading of the

individual al P Hd1 given by the order of the derivative (minus one),

degv
palq :� l� 1 ,

and we have

Hd1
�

8⊕

n�0

Hd1
n , Hd1

n �

{
a P Hd1 : degv

paq � n
}

.

Observe that degv
�1 corresponds to the order of derivative of S (or Z) at

zero. This determines the number of interaction functionals in the argument of

5see, e.g. page 2 of [FGBV05].
6Two articles by Kastler were very helpful in learning about the relevance of grading and other Hopf
related topics [Kas00, Kas04]. They are probably not the standard references to be cited at this point,
however, they contain explicit proofs of the results from Hopf algebra theory needed here. See also
more standard literature like [Swe69, Abe77]. Since we will not make any connection to more advanced
structures in algebraic geometry, the given references will fully suffice for the discussion in this section.
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the corresponding linear map

anpSq � S
(n)
p0q : FlocpMqrrh̄ssbn

Ñ F pMqrrh̄ss , n � degv
�1 ,

and hence degv
�1 is the number of vertices of the graphs contributing to the

graph expansion of S (n)
p0q � T n, cf. Equation (IV.2).

This grading by vertex number can be extended to the tensor product Hdk by

setting

degv
pak d alq :� degv

pakq � degv
palq , i.e., degv

pal1 d � � � d alk
q �

k

∑
i�1

li � k .

With this definition also degv is an algebra grading of the algebra H, and we have

H �

8⊕

n�0

Hn , Hn � {a P H : degv
paq � n} .

Furthermore the vertex grading degv is compatible with the coproduct (VI.25),

degv
p∆anq � |P|� 1� ∑

IPP
(|I|� 1) � n� 1 �P P Part{1, . . . , n} ,

and hence (H,d, e, ∆, e) is graded as a bialgebra. The starting element conditions

[C2] and [RG2],

a1pSq � S (1)
p0q � id and a1pZq � Z(1)

p0q � id

imply that a1 � 1 and hence H is N0-graded connected as a bialgebra, i.e., H0 � C

(we implicitly identify 1 � 1 d 1 here). It is a well-known fact of Hopf alge-

bra theory that any N0-graded connected bialgebra possesses an antipode [Kas00,

Prop. 2.7],

A : HÑ H ,

and thus H is a Hopf algebra. We will now derive a recursion formula for this

antipode. By definition, the antipode A of a Hopf algebra is the inverse of the

identity with respect to the induced convolution product on the Hopf algebra au-

tomorphisms AutpHq. The convolution product on AutpHq is induced by the prod-

uct and coproduct on H, we denote it by

φfψ :� M
d

� (φb ψ) �∆ , φ, ψ P AutpHq .

It is a standard computation to prove that

e � e : HÑ H

defines a unit in the algebra (AutpHq,f). A similar computation will be done

below for the second product on the Hopf algebra, so we leave it out here. The

antipode of an N0-graded connected bialgebra can then be constructed directly

from its defining condition,

idH fA � e � e .
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We have

M
d

� (idH bA) � ∆panq � epepanqq

∑
PPPart{1,...,n}

a|P| d

(
⊙

IPP
Apa|I|q

)
�




1 if n � 1

0 else ,

since, in particular, A is an algebra homomorphism. From the case n � 1 we

get Apa1q � 1, and since there is only one partition of {1, . . . , n} with one block,

P1 � {{1, . . . , n}}, we infer by connectedness of H, i.e., by a1 � 1 that

(VI.26) Apanq � � ∑
PPPart{1,...,n}\{P1}

a|P| d

(
⊙

IPP
Apa|I|q

)
.

Observe the similarity to the recursion for the counterterms in Corollary VI.5.

However, observe also that the composition structure of (VI.12) is completely ab-

sent in (VI.26). This is no problem, if we regard the Feynman rules as characters

of (H,d) into a commutative ring of Laurent series with scalar coefficients, as it

was done in [CK00, CK01]. We want to emphasize the relation of the Hopf alge-

bra (H,d, e, ∆, e,A) to the Connes-Kreimer Hopf algebra of graphs. The elements

of H are differential operators whose order is determined by the vertex grading

degv. By implementing the graph expansion (IV.2), the elements ak P H can be

interpreted as sums over graphs with the same set of vertices. By linearity of the

maps and the fact that only finitely many graphs contribute to the perturbative ex-

pansion at a given order of h̄, [C3], we can break the Hopf algebra structure down

to the level of graphs. However, since the structure for the algebraic construction

of counterterms is not complete yet, we will give a more detailed account of this

interpretation only at the end of the next section.

The fact that we found the Hopf algebra structure in the sums of graphs is in

accordance with the results of Brouder and Frabetti, who found in different exam-

ples (including gauge theories) that Connes and Kreimer’s Hopf algebra structure

is preserved when one sums up the graph contributions at certain orders or per-

turbation theory [BF00b, BF01, Fra07], see also [vS07a]. Brouder and Frabetti, in

collaboration with Krattenthaler and Menous, respectively, also observed the rela-

tion to the Faà di Bruno Hopf algebra [BFK06, BFM09], however, the relation to the

main theorem of perturbative renormalization as proven in [DF04, DF07, BDF09]

was, to the best of my knowledge, unobserved before.

We will now incorporate the non-commutative composition structure into the

commutative Hopf algebra (H,d, e, ∆, e,A) constructed above.

VI.4.2. Algebraic Construction of Counterterms. In contrast to the Connes-

Kreimer approach to renormalization, in our approach the Feynman rules are nat-

urally induced as evaluation maps of the differential operators an P H. The basic
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evaluation operator, which gives the n-fold time-ordered product, and thus corre-

sponds to the Feynman rules is given by

feyn : an ÞÑ anpSq � S (n)
� T

n .

The image of feyn is a multi-linear map between spaces of (local) functionals.

On linear maps there are two natural products, one is the (symmetrized) ten-

sor product discussed above, and the other is the composition. Composition of

linear maps is a non-commutative operation in the generic case, and as a conse-

quence it is impossible to derive the action of the counterterms Z(n) on the time-

ordered products S (n) described by Lemma VI.4 from the commutative Hopf alge-

bra (H,d, e, ∆, e,A) alone. Regard once again the expression given in the lemma,

(S � Z)(n)p0q � ∑
PPPart{1,...,n}

S
(|P|)

p0q �

(
⊙

IPP

[
Z(|I|)

p0q
])

,

and observe that we need both, the commutative product d and the

non-commutative composition “ � ”, as well as the coproduct ∆ for defining the

action of R on itself and on the set of S-matrices term by term in an algebraic

fashion.

We want to incorporate the composition as an additional product in the com-

mutative, non-cocommutative Hopf algebra constructed above,

(H,d, e, ∆, e,A)

with generators ak P H, k P N. We define a map

C : HbHÑ H ,

induced by the composition of linear maps (VI.22),

Cpak b

k⊙

i�1

ali
q � ak c©

k⊙

i�1

ali
, with

(
ak c©

k⊙

i�1

ali

)
pZq :� akpZq �

k⊙

i�1

ali
pZq .

Observe that the application on S is ill-defined in the generic case, since the deriva-

tives S
(n) do not have local images for n ¡ 1. The composition product c© can

be seen as (the dual of) the termwise group action of the Stückelberg-Petermann

group on itself. We implement compatibility with the vertex grading by defining

degv
pak c©

k⊙

i�1

ali
q :� degv

pakq � degv
p

k⊙

i�1

ali
q

� k� 1�
k

∑
i�1

(li � 1) �
k

∑
i�1

li � 1,

and with the Hopf algebra unit

1

c©ak � ak c©1 � ak ,

in accordance with [RG2]. The product is also compatible with the coproduct, in
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the sense that we can define another convolution on AutpHq,

φ 
C ψ :� C � (φbψ) � ∆ .

We check that e � e is a (both sided) identity for this convolution,

(e � e 
C ψ) pakq � ∑
PPPart{1,...,k}

e � e
(

a|P|
)

c©ψp
⊙

IPP
a|I|q

� ∑
PPPart{1,...,k}

δ|P|,11 c©ψp
⊙

IPP
a|I|q

� ψpakq ,

where δ|P|,1 is the Kronecker-δ. Observe that |P| � 1 implies P � {{1, . . . , k}}.

Conversely we get

(φ 
C e � e) pakq � ∑
PPPart{1,...,k}

φ
(

a|P|
)

c©
⊙

IPP
e � epa|I|q

� ∑
PPPart{1,...,k}

φ
(

a|P|
)

c©
⊙

IPP
δ|I|,1

� φpakq .

Here the result is obtained since |I| � 1 �I P P implies P � {{1} , . . . , {k}}. We

define the Z-Feynman rules,

feynZpakq :� akpZq � Z(k)
p0q : FlocpMqrrh̄ssbk

Ñ FlocpMqrrh̄ss .

These are algebra homomorphisms with respect to both algebra products,

feynZ : (H,d)Ñ (Lin,d) and feynZ : (H, c©)Ñ (Lin, �) ,

where we denoted by Lin the space of multi-linear maps between spaces of local

functionals. We get at order n of causal perturbation theory the finite renormal-

izations, the changes of renormalization scheme, or the action of the Stückelberg-

Petermann renormalization group on itself,

(
feynZ1


C feynZ2

)
panq � ∑

PPPart{1,...,n}
Z
(|P|)
1 �

(
⊙

IPP
Z
(|I|)
2

)
.

Let us compute the right sided antipode of the convolution 
C,

idH 
C ACpanq � e � epanq

∑
PPPart{1,...,n}

a|P| c©ACp

⊙

IPP
a|I|q � δn,1

From n � 1 we get ACpa1q � 1. Furthermore we get from the connectedness of the

Hopf algebra, i.e., from a1 � 1,

ACpanq � � ∑
PPPart{1,...,n}\{P1}

a|P| c©ACp

⊙

IPP
a|I|q ,
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where, as before, P1 � {{1, . . . , n}}. Observe the similarity to the result of Connes-

Kreimer in the commutative case, i.e., the recursion formula (VI.26) for the an-

tipode A. And observe the difference, the composition product c©. The aug-

mented Hopf algebra

(H,d, e, ∆, e, c©,AC)

constructed above can be interpreted as the algebraic dual of the Stückelberg-

Petermann renormalization group. We want to discuss now the action of this

algebraic dual on the (regularized) time-ordered products, and its relation to the

original formulation of the Connes-Kreimer theory of renormalization.

Given the nice circumstance that we have a preferred renormalization pre-

scription at all orders of perturbation theory as it is provided by any analytic reg-

ularization of the S-matrix combined with minimal subtraction. Then we define

the regularized Feynman rules as

feynµ,ζpakq :� akpSµ,ζq � S
(k)
µ,ζ : FlocpMqrrh̄ssbk

Ñ F pMqrrh̄ss .

Since the derivatives of Sµ,ζ have non-local images in the generic case, we have

that, in contrast to the Z-Feynman rules above, the regularized Feynman rules

cannot be iterated. This is reflected in the algebraic setting by the fact that the

regularized Feynman rules are algebra homomorphisms with respect to d, but

not with respect to c©,

feynµ,ζpak d alq � feynµ,ζpakq d feynµ,ζpalq .

Following the idea of Kreimer [Kre99], we define

Afeynµ,ζ

C,MS :� R � feynµ,ζ �AC ,

where R denotes minimal subtraction, i.e., the “renormalization map”,

RpS
(k)
µ,ζq �





id for k � 1

pppS (k)
µ,ζq for k ¡ 1 .

Assuming that R is only applied to prepared time-ordered products, we have that

RpS
(k)
µ,ζq is a multi-linear map from local functionals to local functionals, and then

R � feynµ,ζ defines an algebra homomorphism of (H,d, c©) with respect to both

products

R � feynµ,ζ

(
ak c©

k⊙

i�1

ali

)
� RpS

(k)
µ,ζq �

(
k⊙

i�1

RpS
(li)
µ,ζ q

)
.

That R is applied only to prepared time-ordered products is guaranteed by the

recursive definition of the antipode. In particular R itself is a homomorphism

of the symmetrized tensor product d, which makes the Rota-Baxter argument of

[Kre99] redundant in the presented framework (see Remark VI.16 below). We infer

that Afeyn,µ,ζ
C,MS is an algebra homomorphism

Afeyn,µ,ζ
C,MS : (H,d)Ñ (Lin,d) .
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We have that Afeynµ,ζ
C,MS pa1q � id, the identity on local functionals, and for n ¡ 1,

Afeynµ,ζ
C,MS panq � �R ∑

PPPart{1,...,n}\{P1}
a|P|pSµ,ζq �A

feynµ,ζ
C,MS p

⊙

IPP
a|I|q .

This is just the recursion formula we got for the counterterms (VI.12) by applying

the minimal subtraction condition to the main theorem of renormalization in the

form of Lemma VI.4. Observe that one loses the information on the product c© if

one regards the amplitudes, or regularized time-ordered products as elements in a

commutative ring of Laurent series, only. However, similar as in Connes-Kreimer

theory of renormalization, we can define the algebra homomorphism

(VI.27) Afeynµ,ζ
C,ren � feynµ,ζ 
C Afeynµ,ζ

C,MS ,

which gives the finitely regularized n-fold time ordered product, when applied to

a generator an P H,

(VI.28) Afeynµ,ζ
C,ren panq � S

(n)
µ,ζ,ren.

However, although (VI.27) gives the correct result in the general case, i.e., for ar-

bitrary local interactions, this is merely a compact notation for the successive sub-

traction of counterterms in the sense of BPH rather than a forest formula in the

sense of Zimmermann [Zim69, Zim76] or Theorem VI.12. Solving the recursion

would be equivalent to giving a closed formula for the character Afeynµ,ζ
C,ren in (VI.28).

This was done in Section VI.3, although not in this abstract algebraic setting. After

the remark on Rota-Baxter maps, we give a graphical interpretation of the maps

constructed above.

Remark VI.16 (Rota-Baxter Maps). For the reader, less familiar with the “Hopf

algebra school” in renormalization theory, we probably have to remark here that a

linear map fulfilling the algebraic relation

(VI.29) RpaqRpbq � R [Rpaqb]� R [aRpbq]� Rpabq ,

is called a Rota-Baxter map of weight one. Examples of such maps are the projections

in a Birkhoff sum, i.e., an algebra which splits into a direct sum of algebras, both

closed under multiplication,

A � A� ` A�.

The Laurent series with scalar coefficients are elements of a Birkhoff sum. It is

straight forward to show the above claim that any linear projection in a Birkhoff

sum, which projects to one of its components is Rota-Baxter of weight one. Denote

by a� � a� P A� ` A� the elements of a Birkhoff sum, then by linearity and the

fact that the components are closed under multiplication we have
[(

a� � a�
) (

b� � b�
)]
�

�

[
a�b� � a�b�

]
�

� a�b�

�

[
a�b� � a�b� � 2a�b�

]
�

� a�b�

�

[
a�b

]
�

�

[
ab�

]
�

� a�b�.
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Following a suggestion by Brouder, Kreimer used this property for the projection

to the principal part of a Laurent series in order to solve the “multiplicativity con-

straints”, see [Kre99, Sec. 3]. Kreimer’s “multiplicativity constraints” were origi-

nally formulated to have the map

pp � φ �A : (H,d)Ñ L� ,

defined as a character of the commutative Hopf algebra to the ring of scalar Lau-

rent series L. φ : H Ñ L denotes the character which induces Kreimer’s (regu-

larized) Feynman rules, A is the antipode of the commutative Hopf algebra, and

pp : L� ` L� Ñ L� is the projection to the principal part. Kreimer was able

to show that the Rota-Baxter condition implies the multiplicativity of R � φ � A
(Prop. 2, loc. cit.). More advanced topics related to Rota-Baxter algebras in Physics

and Mathematics partially induced by Kreimer’s observation can be found, e.g.,

in [EFG07].

Observe, however, that in the framework advocated here all maps, and in par-

ticular R, are homomorphisms of the commutative algebra (H,d), so that a Rota-

Baxter argument is not necessary, since any algebra homomorphism, trivially, is a

Rota-Baxter map of weight one.

VI.4.3. Graphs. The role of the additional composition product c© and an-

tipode AC in

(H,d, e, ∆, e,A, c©,AC) .

may become clearer if we break them down to the graph level. This graphwise

interpretation is regained, if we insert for S its perturbative expansion (IV.12), and

regard the corresponding operations on the level of the graph contributions. This

can be done since all maps involved are linear and since by condition [C3] all sums

are finite at each fixed order of h̄. Remember that we only regard full vertex parts

as subgraphs.

In accordance with the structure of (H,d, e), we regard the abstract algebra of

graphs with disjoint union 9Y as product and the empty set H as unit. Let Γ P G
be a graph with n vertices, hence a contribution to anpS). Let PartcVpΓq be the

set of all connected partitions of the vertex set of Γ. By connected partition we

mean a partition P whose blocks I P P give rise to connected full vertex parts

γI � Γ. We can restrict to connected partitions, since the principal parts of the

regularized amplitudes corresponding to disconnected graphs vanish. Denote by

Γ{P the graph, which has the blocks I P P as vertices and as lines the lines in Γ,

which connect different blocks of P . Let γI , I P P , be the full vertex part of the

block I P P . Then we can write the coproduct on the level of graphs as

∆Γ � ∑
PPPartcVpΓq

Γ{P b

9

⋃

IPP
γI .
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Applying the map idH bAC gives

(idH bAC) �∆Γ � ∑
PPPartcVpΓq

Γ{P b

9

⋃

IPP
ACpγIq ,

which corresponds to (recursively) computing the counterterms for the connected

subgraphs γI , e.g., in DimReg+MS. Applying the composition product C, inserts

the counterterms ACpγIq at the vertices of Γ{P to give one contribution to the

“renormalized graph”,

idH 
C AC � ∑
PPPartcVpΓq

Γ{P c© 9

⋃

IPP
ACpγIq .

It is one of the results of the present thesis that this procedure, performed on the

level of analytically regularized amplitudes in arbitrary representation (momen-

tum or position space) leads to finitely regularized, i.e., UV convergent integrals,

and local counterterms in all orders of perturbation theory.



Conclusion

The investigation undertaken for this thesis has shown that the methods of

dimensional regularization and minimal subtraction can consistently be imple-

mented into causal perturbation theory in the framework of perturbative Alge-

braic Quantum Field Theory (pAQFT). This enriches the framework by a renor-

malization technique, which has a preferred extension at all orders of causal per-

turbation theory, given the fact one disposes of an analytic regularization of the

S-matrix. A concrete form of such a regularization was given in Minkowski po-

sition space in terms of the dimensionally regularized scattering matrix, Sµ,ζ . It

was proven that the incorporation of an analytically regularized S-matrix makes

it possible to solve the Epstein-Glaser induction at all orders in perturbation the-

ory, and the result was given in terms of the Epstein-Glaser forest formula (Theo-

rem VI.12). This result was derived directly from the main theorem of renormal-

ization and was given in a form which is independent of the chosen representation.

In particular the derived forest formula is valid in both, momentum and position

space, whatever space its better suited for the concrete calculation.

Besides this forest formula, I gave a direct derivation of the Hopf algebra of

Feynman graphs from the main theorem of perturbative renormalization. This

Hopf algebra first occurred in the work of Kreimer and Connes-Kreimer in their

analysis of BPHZ renormalization [Kre98, CK00, CK01] and was later found also

in causal perturbation theory [GBL00, Pin00b]. In the present thesis the Hopf al-

gebra of graphs was derived in a summed up form, i.e. the elements can be re-

garded as sums over all graphs with the same set of vertices. This is in accordance

with the findings of [BF00b, BF01, Fra07, vS07a]. The reduced Hopf algebra of

Pinter with only full vertex parts can be derived by linearity, however, the pure

BPHZ subgraphs of the Connes-Kreimer approach do not emerge here. This is in

accordance with the proof of Zimmermann that pure BPHZ graphs do not con-

tribute to the renormalized amplitude [Zim76]. Although the Hopf algebra of

graphs emerged as a commutative, non-cocommutative Hopf algebra, we could

show that it is necessary to augment it with a non-commutative product stem-

ming from the composition of linear maps in order to get the recursion relation for

the pAQFT counterterms, which has been derived independently from the main

theorem. The recursion relation for the counterterms is described algebraically

as the antipode of the convolution induced by the coproduct and the additional

non-commutative composition product. A main difference to the Connes-Kreimer
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theory of renormalization is that in the algebraic setting described here the Feyn-

man rules emerge naturally from the theory and are not assumed to give Laurent

series with scalar coefficients. I see applications of these results in three main areas

of current research in physics, mathematical physics, and mathematics.

First, physics. The forest formula was proven directly for the time-ordered

products. However, we also gave a “graph form” of the formula, which could be

relevant for concrete computations. I want to emphasize, that the combinatorial

pattern underlying the Epstein-Glaser forest formula is much simpler than the one

underlying Zimmermann’s original version, which is still used in modern compu-

tations. Spurious subtractions do not occur in the EG forest formula. Although

the spurious subtractions do not play a role in QED calculations, they do occur in

Quantum Chromo Dynamics (QCD), since this theory has a four valent vertex. Be-

sides this, there is a second simplification in the forest formula proven in this work.

I showed that one can replace the Zimmermann forests of full vertex parts by to-

tally ordered sets of partitions of the vertex set. This simplifies a lot the intricate

combinatorics of Zimmermann’s forest formula, and might make it possible to im-

plement the advocated method in an algorithm. This, in turn, is certainly relevant

for the computation of higher order contributions to the perturbative expansion

in high energy physics phenomenology. Since the method was proven for any an-

alytic regularization, also gauge symmetries should be preserved if one chooses

a regularization which preserves these symmetries. This assertion is affirmed by

the concrete computations of [FHS10], however, the case of gauge theories was not

discussed in the present thesis.

Second, mathematical physics. The covariant formulation of perturbative Al-

gebraic Quantum Field Theory makes the formalism applicable also in curved,

globally hyperbolic spacetimes. Although the construction of the regularized S-

matrix was done in the present thesis for Minkowski space, the results of the last

chapter, in particular the recursion relation for the counterterms (Corollary VI.5)

and the Epstein-Glaser forest formula (Theorem VI.12) were derived in the more

general, covariant framework. Thus they can be applied directly, given the fact

that one disposes of an analytically regularized S-matrix. Considering the con-

venient properties dimensional regularization has in flat spacetime when it comes

to gauge theories, one may want to have a similar concept in curved spacetime.

However, in the construction of the dimensionally regularized S-matrix in

Minkowski spacetime we made explicit use of translation invariance, and the

choice of relative coordinates was made using the graph cohomology. As shown

in [BF00a] the wave front set condition on local functionals can be understood as

a microlocal remnant of translation invariance. However, one has to understand

better the interplay of this microlocal condition with the graph cohomology in or-

der to give a direct translation of the results.

Third, for mathematics. The analysis of algebraic structures is an active field of
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research in pure mathematics which is of interest in its own right. The Hopf alge-

bra found by Connes and Kreimer in perturbative renormalization theory affected

this research on a profound basis, and the relation to the main theorem of per-

turbative renormalization and the framework of pAQFT which was established in

this thesis could possibly be a new seed for research in this field. I showed that it

is necessary to incorporate an additional composition structure into the Hopf al-

gebra to have an interpretation for the antipode in terms of minimally subtracted

counterterms in pAQFT, with the merit of having naturally emerging Feynman

rules. There are many more intriguing questions about the connection of pertur-

bative quantum field theory to pure mathematics. Questions about the role of

multiple zeta values, graph polynomials, shuffle and stuffle products and the like

in (algebraic) quantum field theory and causal perturbation theory. Such relations

were established on the level of examples in the pioneering works of Connes and

Kreimer [CK00, CK01] and Bloch, Esnault, and Kreimer [BEK06]. One might hope

that the tools developed in this thesis contribute to further investigation of the sug-

gested relations, and to a better understanding of the relation of the framework of

perturbative algebraic quantum field theory to the more abstract algebraic setting

of Connes and Marcolli [CM04a, CM04b].





APPENDIX A

Solutions of the Modified Bessel equation

In this Appendix we briefly review the solution theory of the (modified) Bessel

equation. The interested reader may want to refer to [SS70] (e.g.) for a more de-

tailed discussion of the topic. The modified Bessel equation1

(A.1)
d2y

dx2 �
1
x

dy

dx
�

1
x2

(
x2
� ν2

)
y � 0 , Repνq ¥ 0

is a second order ordinary differential equation with a regular singular point at the

origin. That is, (at least one of) the coefficients ppxq of dy
dx and qpxq of y are singular

at x � 0, but x ppxq and x2qpxq are regular in a neighborhood of zero. Let

x ppxq �
8

∑
n�0

pnxn
� 1 and x2qpxq �

8

∑
n�0

qnxn
� �

(
x2
� ν2

)

be the corresponding Taylor expansions. A differential equation with a regular

singular point at 0 is solved with the ansatz

y � xα
8

∑
s�0

csxs , c0 � 0 .

In order xα one finds the indicial equation

α (α� 1)� p0α� q0 � 0 ,

whose roots are called the exponents of the differential equation. In the case of the

(modified) Bessel equation (A.1), we evidently have

α (α� 1)� α� ν2
� (α� ν) (α� ν) � 0 ,

hence (A.1) has exponents α P {�ν}. It is a straight forward calculation to see that,

in the case ν P C\N0, we have c1 � 0 and

(A.2) cs �
cs�2

(s� α� ν) (s� α� ν)
, α P {�ν} , ν P C\N0.

This leads to the linear independent set of solutions {I
�ν, Iν}, where

(A.3) Iνpxq �
8

∑
s�0

1
s! Γpν� s� 1q

( x

2

)ν�2s
, ν P C\N0.

1The modified Bessel equation (A.1) is related to Bessel’s differential equation by the coordinate trans-
form x ÞÑ ix.
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The functions Iν and I
�ν are called modified Bessel function of first kind, they are

related to the Bessel functions of first kind Jν by

Iν � i�ν Jνpixq .

Observe that in the case of integer order, n P N0, In � I
�n, as can also be

seen from the recursion relations (A.2). This is a general feature of (second order)

ordinary differential equations with regular singular point. Problems occur, when

their exponents differ by an integer value.

A linearly independent set of solutions of (A.1) for arbitrary order can be con-

structed in the following way. For non-integer order, ν P C\N0, we replace I
�ν

by

(A.4) Kν :�
π

2 sinpνπq
[I
�ν � Iν] , ν P C\N0 ,

evidently giving a linearly independent set of solutions {Iν, Kν} for non-integer

order. The limit

Kn :� lim
νÑn

Kν

exists for all integers n P N0, and {In, Kn} is a complete, linear independent set of

solutions of (A.1). That {In, Kn} is linearly independent, also in the case n P N0

can be seen by the following argument. Just setting ν � n clearly results in the

situation 0
0 , hence we apply l’Hôspital’s rule to compute the limit

lim
νÑn

Kν �
π

2

[
(Bν I

�ν)� Bν Iν

π cospνπq

]

ν�n

�

(�1)n

2 [(Bν I
�ν)� Bν Iν]ν�n

We have seen that Iνpxq � xν fνpx
2
q, with entire analytic functions fν, hence the

derivatives of Iν with respect to ν will introduce logarithmic terms, Bν (xν) �

lnpxq � xν, which do not cancel, since fν � f
�ν for all ν � 0.

The introduction of logarithmic terms in the limit ν Ñ n is not a feature of the

special choice of Kν but merely a consequence of the singularity structure of the

(modified) Bessel differential equation at the origin (see e.g. [SS70, Sec. 1.6]).
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