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Abstrat

In this thesis quantum gauge theories are onsidered in the framework of loal,

ausal perturbation theory. Gauge invariane is desribed in terms of the BRS for-

malism. Loal interating �eld operators are onstruted perturbatively and �eld

equations are established. A nilpotent BRS transformation is de�ned on the loal

algebra of �elds. It allows the de�nition of the algebra of loal observables as an

operator ohomology. This algebra of loal observables an be represented in a

Hilbert spae.

The interating �eld operators are de�ned in terms of time ordered produts of

free �eld operators. For the results above to hold the time ordered produts must

satisfy ertain normalization onditions. To formulate these onditions also for �eld

operators that ontain a spaetime derivative a suitable mathematial desription

of time ordered produts is developed.

Among the normalization onditions are Ward identities for the ghost urrent and

the BRS urrent. The latter are generalizations of a normalization ondition that is

postulated by Dütsh, Hurth, Krahe and Sharf for Yang-Mills theory. It is not yet

proven that this ondition has a solution in every order. All other normalization

onditions an be aomplished simultaneously.

A priniple for the orrespondene between interating quantum �elds and interat-

ing lassial �elds is established. Quantum eletrodynamis and Yang-Mills theory

are examined and the results are ompared with the literature.

Zusammenfassung

In dieser Arbeit werden Quanten-Eihtheorien im Rahmen der lokalen, kausalen

Störungstheorie behandelt. Eihinvarianz wird mit Hilfe des BRS-Formalismus

beshrieben. Lokale, wehselwirkende Feldoperatoren werden störungstheoretish

konstruiert und Feldgleihungen zwishen ihnen werden hergeleitet. Eine nilpotente

BRS-Transformation wird auf der lokalen Feld-Algebra de�niert. Sie gestattet die

De�nition der lokalen Observablen-Algebra als eine Operator-Kohomologie. Diese

lokale Observablen-Algebra besitzt eine Hilbertraum-Darstellung.

Die wehselwirkenden Feldoperatoren werden mit Hilfe zeitgeordneter Produkte

freier Feldoperatoren de�niert. Damit die obigen Resultate gelten, müssen die zeit-

geordneten Produkte bestimmte Normierungsbedingungen erfüllen. Um diese Be-

dingungen auh für Felder mit Raum-Zeit-Ableitungen formulieren zu können, wird

eine geeignete mathematishe Beshreibung zeitgeordneter Produkte entwikelt.

Unter den Normierungsbedingungen sind Ward-Identitäten für den Geist-Strom

und den BRS-Strom. Letztere sind Verallgemeinerungen einer Normierungsbedin-

gung, die Dütsh, Hurth, Krahe und Sharf für die Yang-Mills-Theorie fordern. Es

ist noh niht bewiesen, daÿ diese Bedingung in jeder Ordnung eine Lösung besitzt.

Alle anderen Normierungsbedingungen können gleihzeitig erfüllt werden.

Ein Prinzip für die Korrespondenz zwishen wehselwirkenden Quantenfeldern und

wehselwirkenden klassishen Feldern wird aufgestellt. Quanten-Elektrodynamik

und Yang-Mills-Theorie werden untersuht, und die Ergebnisse werden mit der Lit-

eratur verglihen.
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1. Introdution

Four fundamental interations in nature are known today: Gravitation, ele-

trodynamis, weak and strong nulear fores. The latter three are in present day

elementary partile physis suessfully desribed by quantum gauge �eld theories.

Suessfully means in this ontext that there are no experimental data that do not

agree with the preditions of these theories and that the agreement is very good

e.g. in quantum eletrodynamis (QED). The general theory of relativity desribes

gravitation lassially. It is also a gauge theory in a wider sense of the word. A

sound quantum theory for gravitation is still missing.

The distinguishing feature of these gauge theories is their gauge group: SU(2)×U(1)
for the ombined theory of eletri and weak interations and SU(3) for the strong
interation. Both gauge groups are non-Abelian Lie groups. Therefore a ompre-

hensive understanding of non-Abelian quantum gauge theories is needed to under-

stand nature at the quantum level.

Originally the oneptual and mathematial framework of quantum �eld theory

was developed for Abelian theories and in partiular for QED. This was already

an established theory in perfet agreement with the experimental data when physi-

ists direted their attention towards non-Abelian gauge theories. They realized

that quantum �eld theory required a modi�ation of its mathematial desription

before it ould be applied to non-Abelian theories.

The �rst study of a non-Abelian model � motivated by the isospin SU(2) group �
whih attained wide reeption was done by Yang and Mills [YM54℄ in 1954

1
. The

interest of elementary partile physiists in non-Abelian quantum �eld theories grew

strongly when in the next two deades several other suh models were proposed to

explain various phenomena. These inlude e.g. the Salam�Weinberg model [Sal68,

Wei67℄ and the SU(3) olour model for the strong interation [GM64, Zwe64℄, but

also attempts to quantize gravitation, e.g. [Fey63℄ or [DeW67a, DeW67b, DeW67℄.

There was a series of obstales to a satisfatory quantum theory for non-Abelian

gauge theories due to the self oupling of the gauge bosons. A naive appliation of

the methods developed for QED leads to serious di�ulties, like an S-matrix that

fails to be unitary [Fey63, DeW67b℄.

A major step to overome these obstales was made by Faddeev and Popov [FP67,

Fad69℄. They de�ned a unitary S-matrix in the funtional integral approah, but

for that they had to introdue unphysial �elds that violate the spin-statistis the-

orem � the famous Faddeev Popov ghosts. In the mid seventies Behi, Rouet

and Stora [BRS74, BRS76℄ and independently of them Tyutin [Tyu75℄ found that

the Faddeev Popov Lagrangian is invariant under a rigid symmetry transformation

that mixes the ghosts with the other �elds � the BRS transformation. Kugo and

Ojima [KO79℄ gave an operator formulation

2
for this BRS theory, and Sharf and

ollaborators [DHKS94a℄ found with the operator gauge invariane a riterion of

BRS symmetry for operator theories that needs no reurrene to an underlying

lassial theory

3
.

1
The �rst who studied non-Abelian models was O. Klein in 1938 [Kle39℄

2
Curi and Ferrari [CF76℄ gave already an operator formulation, but they postulated wrong

hermitiity properties for the ghosts

3
Originally operator gauge invariane was postulated for theories of the Yang-Mills type. Re-

ent results of Sharf and Wellmann [SW99℄ that it also a suitable riterion for spin two models
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Quantum �eld theory is plagued with two soures of possible in�nities: the ul-

traviolet and the infrared divergenes. Ultraviolet divergenes are due to the dis-

tributional harater of the �eld operators. In perturbation theory they an be

removed by numerous renormalization proedures � so they are under ontrol in

this framework. Unfortunately these renormalization proedures are not unique �

there remains the freedom of �nite renormalization.

Infrared divergenes our sine the asymptoti behaviour of inoming and outgo-

ing interating �elds is not under ontrol. This problem is partiularly severe for

non-Abelian gauge theories. It may be overome by a replaement of the oupling

onstant by a spaetime dependent swithing funtion so that the theory beomes

free at �nite times in the past and in the future. But as the real physial oupling

is onstant, one must in general perform the adiabati limit, i.e. let the swithing

funtion tend to a onstant. This limit does not exist in general.

In QED the infrared divergenes are logarithmi, and Blanhard and Seneor [BS75℄

proved that the adiabati limit exists for Green's and Wightman funtions. Unfor-

tunately this is no longer true for non-Abelian theories. Their infrared behaviour

is in general worse.

For strongly interating �elds this omes from the experimental observation of on-

�nement. This means the fat that strongly interating partiles always ombine

to hadrons. Even after a high energy sattering proess that breaks up the hadron

struture the partiles reombine immediately into new hadrons (hadronization).

So the �elds are not asymptotially free but onstitute bound states. Moreover

on�nement annot be desribed perturbatively.

In the eletroweak theory on�nement does not our, but the model ontains un-

stable, observable partiles � the vetor bosons W±
and Z. These annot our

as asymptoti states.

A solution for the infrared problem is to onsider loal theories, i.e. theories where

all �elds are loalized in a �nite region of spaetime. If the oupling is onstant

within this region and if the algebra of �elds remains unaltered when the oupling

is modi�ed outside that region, the adiabati limit needs not to be performed.

Brunetti and Fredenhagen [BF97℄ proved that suh a modi�ation indues merely

a unitary transformation on the algebra of �elds. So the physial ontent is not

hanged by that modi�ation and there is onsequently no need for the adiabati

limit. Therefore no infrared problems our in the onstrution of the loal alge-

bras.

One ommon problem of gauge theories � already enountered in QED � is that

the algebra of �elds must be quantized in an inde�nite inner produt spae. There-

fore positivity must be assured, i.e. the algebra of observables must be non trivially

represented in a Hilbert spae. Dütsh and Fredenhagen [DF99℄ sueeded in prov-

ing positivity for perturbation theories quantized in the BRS framework, provided

the underlying free theory is also positive. In their view the interating theory is

regarded as a deformation of that underlying free model. They also onstruted a

loal perturbation theory for QED.

The �rst to examine Yang-Mills theories in the ausal framework were Sharf and

ollaborators [DHKS94a℄ - [DHS95b℄, see also [Sh95℄. They investigated the oper-

ator gauge invariane in the Yang-Mills ase and found that it an be aomplished,

provided a weak assumption onerning the infrared behaviour of the Green's fun-

tions is ful�lled.

The aim of this thesis is to onstrut loal perturbative gauge theories as operator
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theories in the BRS framework. The design is as general as possible, the motivation

is Yang-Mills theory whih serves as an example throughout the thesis.

The result is that the onstrution an always be performed, provided the general-

ized operator gauge invariane holds. It ould not be proven that the latter an be

aomplished in general models. A similar set of equations are the desent equa-

tions in the framework of algebrai renormalization � see, e.g. [PS95℄. It may be

possible to prove generalized operator gauge invariane by translating these results

into our language, but this seems to be a tedious task and is not done here.

We use the renormalization sheme of ausal perturbation theory as it was devel-

oped by Epstein and Glaser [EG73℄ following ideas proposed by Bogoliubov, Shirkov

[BS59℄ and Stükelberg. It avoids divergent expressions throughout the entire pro-

edure. Sharf and ollaborators as well as Dütsh and Fredenhagen formulated

their results in the same framework. This makes it easy to use their results for our

onstrution and to ompare them with our results.

Moreover our approah is loal in order to avoid infrared divergenes and to be able

to de�ne observables and physial states.

Like Dütsh and Fredenhagen we use normalization onditions for the time ordered

produts as an essential tool to establish desired relations in the �eld algebra. Their

normalization onditions are generalized to inlude �elds that ontain a spaetime

derivative. Ward identities for the ghost and BRS urrent are introdued as new

normalization onditions with regard to the de�nition of observables and physial

states. We introdue an algebra of auxiliary variables for the �elds ontaining a

spaetime derivative and de�ne a linear representation of the polynomials in this

algebra as operators ating on the Fok spae. We present a reformulation of time

ordering. It is formally a multi linear generalization of the linear representation

mentioned above to multiple arguments. This and the de�nition of propagator

funtions for the �elds with a spaetime derivative allows us to generalize the nor-

malization onditions in the desired manner. It is proven that all these onditions

� exept the BRS Ward identities � an be aomplished simultaneously. The

existene of a solution for the BRS Ward identities and its ompatibility with the

other onditions must be proven in individual models. The proof for QED is pre-

sented.

There are relations for the loal �eld algebra that are determined by the normaliza-

tion onditions, e.g. renormalized �eld equations and the BRS algebra. The latter

allows for a de�nition of observables and a onstrution of a positive physial state

spae.

The thesis is organized as follows: In hapter (2) we set up the algebrai framework

of BRS theory, following Kugo and Ojima [KO79℄. The de�nition of observables

and the onstrution of the Hilbert spae are performed using ertain algebrai

relations between the interating operators. The rest of the thesis will be devoted

to the onstrution of models in whih these relations hold.

In hapter (3) the free model underlying our perturbation theory is put up. The

algebra of auxiliary variables is onstruted and its linear representation as Fok

spae operators is de�ned. Then the propagator funtions are examined. Finally

the proof of Razumov and Rybkin [RR90℄ for the positivity of theories with ertain

BRS harges is presented.

The new de�nition of time ordering is given in hapter (4). It ontains also the

formulation of six normalization onditions and the proof that the �rst �ve have



7

simultaneous solutions. The sixth, the BRS Ward identities, is shown to be equiv-

alent with a generalized version of operator gauge invariane.

Loal ausal perturbation theory is introdued in hapter (5) along the lines of Ep-

stein, Glaser [EG73℄, Dütsh and Fredenhagen [DF99℄. Conditions for a polynomial

to be a andidate for a Lagrangian are given.

The loal �eld algebra is onstruted in hapter (6). The onserved urrents and

harges, the ghost number of an interating �eld and the interating BRS transfor-

mation are de�ned, �eld equations and the BRS algebra are derived. The hapter

onludes with a re�etion on the orrespondene between the quantum theory de-

�ned above and its lassial ounterpart.

The inspetion of gauge theories is deepened in hapter (7) for two exemplary mod-

els: QED and Yang-Mills theory. The BRS Ward identities are proven for QED,

and we ompare the relations between the interating �elds with those between the

orresponding lassial �elds.

At the end a onlusion and an outlook for possible further developments are in-

luded.
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2. BRS theory � algebrai onsiderations

In this hapter anonial BRS theory aording to Kugo and Ojima [KO79℄ is

arried through on a purely algebrai level. The availability of suitable BRS and

ghost harges is formulated as assumptions. Then perturbative theories � i.e.

theories where the operators and the state vetors are formal power series � are

examined in this framework. Dütsh and Fredenhagen [DF99, DF98℄ prove that

the positivity struture of a theory an be maintained during deformation. Their

proof is presented here.

2.1. Why BRS theory? All quantum gauge theories share one ommon di�-

ulty: There is no positive de�nite Hilbert spae in whih the �eld algebra an be

represented and whih possesses a nontrivial unitary representation of the Poinaré

group. Nakanishi and Ojima [NO90℄ proved that there exists no nontrivial Hilbert

spae representation for manifestly ovariant theories with massless gauge bosons.

This ould be irumvented by non ovariant gauges, but this means abandoning

manifest ovariane.

The �eld algebra is not observable, so a diret physial interpretation of the theory

whih requires a Hilbert spae representation is not possible. But the algebra of

observables must have a Hilbert spae representation, and the Hilbert spae must

arry a unitary representation of the Poinaré group.

For QED Gupta [Gup50℄ and Bleuler [Ble50℄ found an elegant way out of this

dilemma. They retain manifest ovariane at the prize of representing the �eld al-

gebra in an inde�nite inner produt spae. Then there exists a non trivial, pseudo

unitary

4
representation of the Poinaré group. This spae is too big: It ontains

vetors with negative norm that have no physial interpretation � they would lead

to negative transition probabilities. Consequently the physial state vetors form a

distinguished proper subspae of the inner produt spae. This subspae is seleted

by a linear subsidiary ondition, and it is found to be positive semide�nite. It

beomes a Hilbert spae with unitary ation of the Poinaré group when all state

vetors di�ering by a zero norm vetor are identi�ed with eah other and the spae

is subsequently ompleted.

Unfortunately this strategy breaks down in non Abelian gauge theories beause

there is no appropriate subsidiary ondition available. This is due to the nonlinear

self interation of the gauge �elds.

BRS theory is a solution for that problem. The anonial BRS formalism of Kugo

and Ojima [KO79℄ follows the same ideas as Gupta and Bleuler but it an also be

applied to non-Abelian theories. Initially the algebra of �elds is again represented

in an inde�nite inner produt spae. The presene of the ghosts in the BRS ap-

proah makes it possible to de�ne a suitable subsidiary ondition for the physial

subspae whih is a Hilbert spae. The formalism provides also a de�nition of an

algebra of observables that is represented in this Hilbert spae. There exists a

pseudo unitary ation of the Poinaré group on the inde�nite spae. This ation is

lifted to a unitary one on the Hilbert spae.

2.2. Canonial BRS theory. The onstrution starts in the following situation:

There is an initial Hilbert spae {V , ( · , · )} with a positive salar produt ( · , · ) that
enompasses all �elds inluding the unphysial ones (salar vetor bosons, ghosts

4
Pseudo unitary, pseudo hermitian et. means unitary, hermitian et. w.r.t. the inde�nite

inner produt.
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et.). This salar produt has no diret physial meaning. It does not desribe

the transition amplitudes, in partiular it is not Poinaré ovariant. The adjoint in

this Hilbert spae is denoted as

+
, i.e. (φ,Aψ) = (A+φ, ψ) for every5 A ∈ EndV .

It is possible to �nd a Krein operator J ∈ End(V) in the Hilbert spae with the

following three properties:

• J is hermitian, i.e. J+ = J
• It is idempotent, i.e. J2 = 1l
• It de�nes a new inner produt on V via

〈φ, ψ〉 def= (φ, Jψ) (2.1)

suh that the new inner produt is Poinaré ovariant.

The new inner produt is assumed to desribe the orret transition probabilities.

Therefore it is referred to as the physial inner produt. The vetor spae V forms

a Krein spae with the physial produt 〈 · , · 〉. Sine ( · , · ) was not ovariant

while 〈 · , · 〉 was, J = 1l an be exluded. Then the physial inner produt is

always inde�nite, beause there must exist a vetor |φ〉 suh that (1l− J) |φ〉 6= 0,
and then (1l − J) |φ〉 has negative norm. The adjoint w.r.t. the physial inner

produt is de�ned as an involution denoted by

∗
, namely A∗ def

= JA+J , suh that

〈φ,Aψ〉 = 〈A∗φ, ψ〉 for every A ∈ EndV .
For the anonial BRS theory the following assumption is essential:

A1: There exists an operatorQB ∈ End(V)� the BRS harge� with the following

properties:

• QB is a onserved harge.

• It is pseudo hermitian, i.e. (QB)
∗ = QB.

• It is nilpotent

6
, i.e. (QB)

2 = 0.
• It annihilates the vauum, i.e. QB |ω〉 = 0

where |ω〉 is the vauum vetor. This assumption is highly non trivial, and the

appearane of ghosts in V is neessary for it. It has to be veri�ed in the onrete

model.

It is easily veri�ed that the image of QB ontains only zero norm vetors w.r.t. the

physial salar produt:

〈QBφ,QBφ〉 =
〈
φ, (QB)

2φ
〉
= 0. (2.2)

With the seond assumption a grading is introdued on V by means of the ghost

harge Qc.
A2: There exists an operatorQc ∈ End(V)� the ghost harge�with the following

properties:

• Qc is a onserved harge.

• It is anti pseudo hermitian, i.e. (Qc)
∗ = −Qc.

• It has integer eigenvalues, i.e. Qc |ψ〉 = q |ψ〉 =⇒ q ∈ ZZ.

• It satis�es the ommutator relation [Qc, QB]− = QB.
• It annihilates the vauum, i.e. Qc |ω〉 = 0 .

The eigenvalue of a state vetor w.r.t. the ghost harge is alled its ghost number.

For the physial inner produt of two vetors to be non zero they must have opposite

5End(V) is the spae of endomorphisms on V
6
Nilpotent means throughout this thesis nilpotent of order two.
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ghost numbers: Let Qc ψ = q ψ and Qc φ = p φ, then

0 = 〈ψ,Qcφ〉 − 〈ψ,Qcφ〉 = 〈ψ,Qcφ〉+ 〈Qcψ, φ〉 = (q + p) 〈ψ, φ〉 , (2.3)

so (q + p) = 0 or 〈ψ, φ〉 = 0. This implies in partiular that only states with van-

ishing ghost number an have non zero norm w.r.t. the physial inner produt.

The ommutator relation [Qc, QB]− = QB forms together with the nilpoteny of

the BRS harge, (QB)
2 = 0, the BRS algebra.

Like in the Gupta-Bleuler sheme the negative norm states are exluded by a sub-

sidiary ondition. The kernel of QB is regarded as a andidate for the physial

Hilbert spae. It ontains neessarily zero norm states from the image of QB �

due to (QB)
2 = 0 we have imQB ⊂ kerQB � and possibly also vetors with non

vanishing ghost number. Therefore the following de�nition for the Hilbert spae

Hph of physial state vetors is given:

Hph
def

= (kerQB,V)/(imQB,V)
‖·‖
. (2.4)

Completion is understood in the norm topology. Now it must be veri�ed that

the physial state vetors form a positive de�nite inner produt spae. This is

guaranteed if the following positivity assumption is valid.

A3:

• The kernel of QB ontains only positive semide�nite vetors, i.e. QB |φ〉 =
0 =⇒ 〈φ, φ〉 ≥ 0
• Its image enompasses all zero norm vetors in its kernel, i.e. |φ〉 ∈ ker(QB ,V)
and 〈φ, φ〉 = 0 =⇒ |φ〉 ∈ (imQB,V).

The seond point guarantees in partiular that all elements in (kerQB,V) with

nonvanishing ghost number are in (imQB,V). The salar produt is well de�ned

on these equivalene lasses, so it does not depend on the representative of a lass:

〈φ+QBχ, ψ〉 = 〈φ, ψ〉+ 〈χ,QBψ〉 = 〈φ, ψ〉 . (2.5)

It is also positive de�nite by onstrution � if assumption A3 holds �, so the

quotient spae is a pre Hilbert spae and beomes a Hilbert spae after ompletion.

The struture above is alled a state ohomology.

The ghost harge indues a derivation on End(V),

sc(A)
def

= [Qc, A]− ∀A ∈ End(V). (2.6)

Its eigenvalue for an operator A ∈ End(V) is alled the ghost number of A and is

always an integer.

The BRS harge indues an graded derivation on End(V), namely the BRS trans-

formation

7

s(A)
def

= [QB, A]∓ ∀A ∈ End(V). (2.7)

It is nilpotent beause QB is also nilpotent and the Jaobi-identity holds for the

graded ommutators.

With these de�nitions the algebra of observables Aph an be de�ned as

Aph
def

=
(
(ker s,End(V)) ∩ (ker sc,End(V))

)
/
(
(im s,End(V)) ∩ (ker sc,End(V))

)
.

(2.8)

7
Here [ · , · ]

∓
denotes the graded ommutator. Suppose, A,B ∈ EndV have ghost numbers

a, b ∈ ZZ. Then [A,B]
∓

def

= AB − (−1)abBA.
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This struture is alled an operator ohomology. Its elements are well de�ned op-

erators on Hph, i.e. Aph(kerQB,V) ⊂ (kerQB,V) and Aph [0] = [0], where [0] is
the equivalene lass of zero.

There is a

∗
-involution indued on the algebra of observables by the

∗
-involution on

the representatives. But unlike the original involution this one ats on operators on

a Hilbert spae, so the notions hermitian, unitary and so on must be used without

the pre�x pseudo.

There is also a unitary ation of the Poinaré group de�ned on Hph, namely the

lift of the initial pseudo-unitary ation on the representatives to the equivalene

lasses. This indues a unitary representation on Hph.

There is a physial interpretation available for the ohomologies. Initially the model

is not haraterized in terms of the algebra of �eld operators desribed here but

in terms of the sub algebra without the ghosts � these were only introdued to

make possible the de�nition of the BRS harge. In the piture above physis is

invariant under loal gauge transformations, i.e. gauge transformations generated

by spaetime dependent funtions. Then the BRS transformation, restrited to the

sub algebra, may be regarded as the in�nitesimal loal gauge transformation. The

role of the spaetime dependent funtions is played by the ghosts. For them the

BRS transformation is de�ned suh that it is nilpotent on the entire algebra.

So the restrition to the kernel of s singles out �elds that are invariant under in�n-
itesimal gauge transformations. Fields in the same equivalene lass are regarded

as physially indistinguishable. In this interpretation the physial Hilbert spae

ontains equivalene lasses of states that are invariant under in�nitesimal gauge

transformations.

2.3. Interating theories and deformation stability. In perturbation theory

�eld operators are represented by formal power series of linear operators. This

makes it neessary to reapitulate the BRS formalism for formal power series of

state vetors and operators, sine e.g. the notion of positivity is not de�ned a

priori for formal power series. This situation has been examined by Dütsh and

Fredenhagen [DF98, DF99℄ and we present their results here.

In their piture the interating theory is a deformation of an underlying free the-

ory. In some models positivity � i.e. assumption A3 � an be proven by diret

omputation for the underlying free theory. Dütsh and Fredenhagen found a on-

strution for the deformed � i.e. interating � state spae suh that positivity

holds also there in a sense de�ned below.

In the interating theory both the state spae and the operators ating on it are

modules over the ring C̃ of formal power series of omplex numbers:

C̃
def

=

{
ã =

∞∑

n=0

gnan : an ∈ C

}
(2.9)

where g is the deformation parameter. The element 1̃l
def

= (1, 0, 0, . . . ) is the identity

in this ring. An element ã ∈ C̃ is only invertible

8
if a0 6= 0. The interating inde�-

nite inner produt spae is de�ned as the C̃-module Ṽ def

=
{
ψ̃ =

∑
n g

n ψn : ψn ∈ V
}

whih has the inner produt 〈·, ·〉 indued from V . For ψ̃ =
∑

n g
n ψn and χ̃ =

8
Bordemann and Waldmann [BW96℄ onsider Laurent series instead. These are invertible if

ã 6= 0, so they form a �eld.
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∑
n g

n χn this means

〈·, ·〉 : Ṽ × Ṽ → C̃

〈
ψ̃, χ̃

〉
=
∑

n

gn

(
n∑

k=1

〈ψk, χn−k〉
)
.

(2.10)

This is sesquilinear in C̃, i.e.
〈
ãχ̃, b̃ψ̃

〉
= ã∗b̃

〈
χ̃, ψ̃

〉
. The

∗
means omplex onju-

gation, where the deformation parameter g is real, so

ã∗ =

∞∑

n=0

gnan (2.11)

where denotes omplex onjugation in C.

The operators in End(Ṽ) ating on Ṽ an be written as

End(Ṽ) =
{
Ã =

∑

n

gnAn : An ∈ End(V)
}

(2.12)

and form a C̃-module, too. The multipliation law in this algebra is

Ã · B̃ =
∑

n

gn

(
n∑

k=1

Ak ·Bn−k
)

Ã, B̃ ∈ End(Ṽ). (2.13)

The interating BRS-harge and the interating ghost harge are suh operators,

Q̃B =
∑

n

gnQB,n, QB,n ∈ End(V)

and Q̃c =
∑

n

gnQc,n, Qc,n ∈ End(V),
(2.14)

where Q̃B,0 and Q̃c,0 agree with the free harges. Q̃B must be hosen suh that it

is nilpotent, Q̃2
B = 0, and pseudo hermitian, (Q̃B)

∗ = Q̃B, and Q̃c must be anti

pseudo hermitian, (Q̃c)
∗ = −Q̃c. The involution ∗

is the one indued from End(V).
The harges must satisfy the BRS algebra

[
Q̃c, Q̃B

]

−
= Q̃B.

The interating state spae an be de�ned as in the general ase,

H̃ph
def

= (ker Q̃B, Ṽ)/(im Q̃B, Ṽ), (2.15)

with the only di�erene that the spae is not ompleted sine there is no onvenient

topology in the spae of formal power series.

The question is whether this spae has a positive saler produt, and above all what

positivity means for formal power series.

Following Dütsh and Fredenhagen [DF99℄ we adopt here Steinmann's [Ste89℄ point

of view

9
that a formal power series b̃ =

∑
n bng

n ∈ C̃ is positive if it is the absolute

square of another power series c̃ ∈ C̃, i.e. b̃ = c̃∗c̃. Dütsh and Fredenhagen de�ne

also that a lass of state vetors [ϕ̃] ∈ H̃ph an be normalized if there exists an

9
Here Bordemann and Waldmann [BW96℄ follow again a di�erent presription: They de�ne a

real formal power series as positive if its �rst non vanishing oe�ient is a positive number. With

this de�nition the �eld of real Laurant series beomes ordered. The notion of positivity presented

here is a striter one: Every positive series in Steinmann's sense is also positive in their sense, but

not onverse.
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ã ∈ C̃ and [ψ̃] ∈ H̃ph suh that [ϕ̃] = ã [ψ̃] and
〈
[ψ̃], [ψ̃]

〉
= 1̃l.

With these notions of positivity and normalizability they prove in [DF99℄ the fol-

lowing results:

Let the positivity assumption A3 be ful�lled for the undeformed theory. Then

(i)
〈
ψ̃, ψ̃

〉
≥ 0 ∀ ψ̃ ∈ (ker Q̃B, Ṽ) (2.16)

(ii) ψ̃ ∈
(
ker Q̃B, Ṽ

)
∧
〈
ψ̃, ψ̃

〉
= 0 =⇒ ψ̃ ∈

(
im Q̃B, Ṽ

)
, (2.17)

(iii) ∀ψ ∈ (kerQB,V) ∃ψ̃ ∈ (ker Q̃B, Ṽ) : (ψ̃)0 = ψ (2.18)

(iv) Every [ψ̃] 6= 0 ∈ H̃ph is normalizable in the sense above. (2.19)

For the proofs of these results we refer to their artile.

So assumption A3 is ful�lled for the interating theory if it is ful�lled for the free

theory underlying it. Therefore the interating physial state spae de�ned above

is a pre Hilbert spae. Result (iii) implies that an interating vauum state |ω̃〉 an
be de�ned that is annihilated by Q̃B suh that |ω̃〉0 = |ω〉, provided that the free

harge annihilates the free vauum.

The interating BRS-transformation is the formal power series

s̃ =
∑

n

gn sn, s̃(Ã)
def

=
[
Q̃B, Ã

]

∓
∀Ã ∈ End Ṽ. (2.20)

Eah sn is an anti-derivation on End Ṽ and s0 agrees with the free BRS-transfor-

mation. s̃c is analogously de�ned as

s̃c =
∑

n

gn sc,n, s̃c(Ã)
def

=
[
Q̃c, Ã

]

∓
∀Ã ∈ End Ṽ (2.21)

where eah sc,n is a derivation on End Ṽ and sc,0 agrees with sc. The interating

observable algebra is de�ned as

Ãph
def

=
(
(ker s̃,End Ṽ) ∩ (ker s̃c,End Ṽ)

)
/
(
(im s̃,End Ṽ) ∩ (ker s̃c,End Ṽ)

)
.

(2.22)

So in the framework of BRS theory an algebra of interating observables an be

de�ned and represented in a (pre) Hilbert spae if the following onditions an be

aomplished:

1. In the underlying free theory a ghost harge Qc and a BRS harge QB an be

de�ned that ful�ll the assumptions A1 - A3.

2. A onserved interating BRS harge Q̃B an be onstruted suh that (Q̃B)0 =

QB with the properties Q̃2
B = 0 and (Q̃B)

∗ = Q̃B.

3. A onserved interating ghost harge Q̃c with integer eigenvalues an be on-

struted suh that (Q̃c)0 = Qc with the property (Q̃c)
∗ = −Q̃c .

4. The BRS algebra

[
Q̃c, Q̃B

]

−
= Q̃B holds.
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3. The free theory

We start our onsiderations onerning BRS theory with free theories. The

treatment of free theories in the BRS framework is not a goal in its own but provides

us with de�nitions that will beome important for the interating theory in the next

hapters. Furthermore positivity is proven for the underlying free model in order

to take advantage of deformation stability for the interating theory.

We already pointed out the essential signi�ane of normalization onditions for

the time ordered produts in our onstrution. For some of these normalization

onditions it is neessary to give a preise meaning to expressions like

∂A
∂ϕj

(x),

the derivative of a Wik monomial A w.r.t. a free �eld operator ϕj . Dütsh and

Fredenhagen [DF99℄ solve this problem for QED by an impliit de�nition,

[A(x), ϕj(y)]∓ = i
∑

k

∆jk(x− y)
∂A

∂ϕk
(x) (3.1)

where ∆jk(x) is a ommutator funtion. This equation is indeed a de�nition for the

partial derivative on the right hand side if the theory ontains no derivated �elds

10

like QED. But for theories that do ontain suh derivated �elds � like Yang-Mills

theory � there is no suh de�nition available.

The natural attempt to inlude derivated �elds would be the replaement of the

partial derivative by a funtional derivative, where the latter would be de�ned by

means of

[A(x), ϕj(y)]∓ = i
∑

k

∫
d4z∆jk(z − y)

δA(x)

δϕk(z)
. (3.2)

Unfortunately the equation above is no de�nition. This an be seen as follows: Let

D be the di�erential operator that implements the �eld equations for the free �elds

suh that ∑

j

Dx
ij∆jk(x) = 0. (3.3)

Suh an operator exists in general, it will be expliitely onstruted later in this

hapter. We an de�ne an operator D∗
aording to

∫
d4zf(z)

(
D∗,z
ij g(z)

)
=

∫
d4z

(
Dz
ijf(z)

)
g(z). (3.4)

Then an expression of the form

∑
mD

∗,z
mjΦm(x, z) with arbitrary operators Φm(x, z)

an be added to the funtional derivative without altering the equation.

Our strategy to solve this problem is the following: We introdue an algebra that

is generated by symbols for the basi and derivated �elds. These symbols serve

as auxiliary variables. For this algebra the derivative w.r.t. a generator is de�ned.

The polynomials in this algebra are then linearly represented as operator valued

distributions ating on the Fok spae. Time ordering is de�ned as a multi linear

representation of several suh polynomials as distributional Fok spae operators

in the next hapter. The derivative that we needed to formulate the normalization

ondiditons ours only in the arguments of time ordered produts. With the de�-

nition of time ordered produts introdued above these arguments are polynomials

in the algebra. For the algebra the derivative is well de�ned, and therefore the

normalization onditions an be formulated.

10
Derivated �elds means here and below �elds ontaining a spaetime derivative.
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The hapter is organized as follows: In the �rst setion we de�ne the algebra P of

auxiliary variables. In the seond setion the Fok spae F and operators therein

are onstruted. This onstrution will be ompletely standard and is inluded here

to establish our notation.

In the third setion the linear representation of the algebra P as (distributional)

Fok spae operators is de�ned. This de�nition inludes ommutator funtions for

basi and derivated �elds.

In the fourth setion propagator funtions for basi and derivated �elds are on-

struted that have a di�erential operator as their inverse.

The hapter onludes with a setion onerning the free model underlying Yang-

Mills theory where the essential operators � ghost harge, BRS harge et. �

are de�ned. In partiular we present Razumovs and Rybkins [RR90℄ proof for the

positivity of that theory.

3.1. The algebra of auxiliary variables. The algebra P is the graded ommu-

tative C-algebra generated by auxiliary variables for the basi and derivated �elds.

At �rst we speify its generators. Therefore we determine whih basi �elds and

whih derivatives of the basi �elds we wish to deal with in the model to be de�ned.

For example, with respet to Yang-Mills theory we inlude Lie algebra valued ve-

tor bosons Aµ and its �rst derivatives (∂νAµ), sine in the interation Yang-Mills

Lagrangian both non derivated and derivated vetor bosons appear. For the same

reason ghosts and anti-ghosts u, ũ and their derivatives (∂νu), (∂ν ũ) are added. If

we whish to inlude fermioni matter, oloured spinor �elds ψ, ψ must be inor-

porated, but no derivated spinors beause these do not appear in the interation

Lagrangian. The set of �elds is then ompleted by the double derivated vetor

bosons (∂ν∂ρAµ) whih do not appear in the Lagrangian but in the BRS urrent

(see below). The non derivated �elds are referred to as basi �elds.

Then we de�ne one symbol for eah of these �elds � with a distint symbol for

eah derivative of the basi �elds that is inluded in the list above. These symbols

are the generators of P. The generators orresponding to the basi �elds are alled

the basi generators, those orresponding to derivated �elds are alled the higher

generators. We adopt the following notation: the generators are written as ϕi where
the index i numerates the basi and higher generators. Sometimes it is desirable

to distinguish basi and higher generators. Then the generators are denoted as ϕαi ,
where the index i numerates here the basi generators, and α is a multi index,

α = (|α| , µ1, . . . , µ|α|). (3.5)

The degree |α| of a generator ϕαi is is the number of spaetime derivatives on the

orresponding �eld operator. Basi generators are therefore denoted as ϕ
(0)
i . The

indies µ1, . . . , µ|α| are Lorentz indies orresponding to the Lorentz indies of the

spaetime derivatives on the �eld operator. The symbols ϕi may arry additional

Lorentz (e.g. if ϕi = Aµ) or spinor (e.g. if ϕi = ψ) indies. We will de�ne a

representation of the Lorentz group on P at the end of this setion. To give an

example for the multi indies, we relate some generators ϕi to the orresponding

�eld operators:

ϕ
(0)
i ←→ ϕi(x), ϕ

(1,µ)
i ←→ ∂µxϕi(x)

ϕ
(2,µν)
i ←→ ∂µx∂

ν
xϕi(x) . . . .

(3.6)
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The symbols are symmetri under permutation of the Lorentz-indies stemming

from the multi-indies, e.g. ϕ
(2,µν)
i = ϕ

(2,νµ)
i .

The set G of all generators of P is de�ned as

G def

= {ϕαi : ϕαi has a ounterpart in the desired set of �elds} . (3.7)

Sometimes the set of basi generators will beome important:

Gb def

= {ϕαi ∈ G : α = (0)} ⊂ G. (3.8)

Now P is de�ned as the unital

11
algebra generated by G. In addition, P is graded

symmetri. There are two gradings involved here: the ghost number g and the

(physial) fermion number f ,

f, g : {monomials in P} → ZZ. (3.9)

They are additive quantum numbers,

g(AB) = g(A) + g(B) and f(AB) = f(A) + f(B) ∀A,B ∈ P, (3.10)

and are de�ned as

g(uα) = 1, g(ũα) = −1, g(ϕαi ) = 0 otherwise

f(ψα) = 1, f(ψ
α
) = −1, f(ϕαi ) = 0 otherwise.

(3.11)

Polynomials in P that have a de�nite ghost or fermion number are alled homoge-

neous w.r.t. the ghost or fermion number.

Graded symmetri means that for any two elements of the algebra A,B ∈ P the

following ommutation relation holds:

AB = (−1)g(A)g(B)+f(A)f(B)BA ∀A,B ∈ P. (3.12)

This means that P is the unital algebra freely generated by G with the equivalene

relation AB ∼ (−1)g(A)g(B)+f(A)f(B)BA divided out. The ommutation relation

above implies that ghosts ful�ll ommutation relations with physial fermions.

It is important that the elements of P are only symbols. In partiular they are no

operators in a Hilbert spae and no funtions on a manifold. The higher generators

have no relation with the basi ones and the symbols do not satisfy �eld equations

� e.g. gµνu
(2,µν) 6= 0, where gµν is the metri tensor, although the ghost u is a

massless Klein-Gordon �eld in our example. Only the representation of the symbols

as operator valued distributions in Fok spae will restore these relations.

On P a derivative w.r.t. its generators is de�ned as a graded derivation aording

to

∂

∂ϕi

(
A · B

)
=

(
∂A

∂ϕi

)
· B + (−1)f(A)f(ϕi)+g(A)g(ϕi)A ·

(
∂B

∂ϕi

)

∂ϕi
∂ϕj

= δij1l ∀A,B ∈ P, ϕi, ϕj ∈ G.
(3.13)

The representation R of the Lorentz group (or its overing group SL(2,C) for the
spinors) on P is de�ned as follows: It ats as an algebra homomorphism, i.e. a linear

mapping for whih

RΛ

(
∏

i

ϕi

)
=
∏

i

(
RΛ(ϕi)

)
, Λ ∈ L

↑
+, ϕi ∈ G. (3.14)

11
This means that there is an identity operator 1l inluded in P
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where L
↑
+ is the homogeneous proper Lorentz group. The ation of R on the gener-

ators is the same as for the orresponding �eld operators. For the basi generators

this means the following: Suppose the generator (ϕi)
(0)

orresponds to the basi

�eld ϕi(x), (ϕi)
(0) ←→ ϕi(x), and the basi �eld transforms aording to

12

U(Λ)ϕi(x)U
−1(Λ) =

∑

j

(RΛ)ij ϕj(Λ
−1x), Λ ∈ L

↑
+ (3.15)

for some numerial matrix (RΛ). Then the basi generator transforms aording to

RΛ

(
(ϕi)

(0)
)

def

=
∑

j

(RΛ)ij (ϕj)
(0)

(3.16)

with the same numerial matrix (RΛ). In our standard example of Yang-Mills

theory we have e.g.

RΛ(A
µ) = (Λ)µνA

ν , RΛ(u) = u, RΛ(ũ) = ũ, Λ ∈ L
↑
+ (3.17)

Here (Λ)µν is the representative of Λ in the de�ning representation of L
↑
+. The

higher generators transform aording to

RΛ

(
(ϕi)

(n,µ1...µn)
)

def

=
∑

j

∑

ν1...νn

(Λ)µ1
ν1
· · · (Λ)µn

νn
(RΛ)ij (ϕj)

(n,ν1...νn). (3.18)

with (Λ) like above, and this ompletes the de�nition of R.

There is also an anti-linear involution

∗
de�ned on P. It ats on produts aording

to

(aAB)∗ = aB∗A∗ ∀A,B ∈ P, a ∈ C, (3.19)

where denotes omplex onjugation in C.
The involution is to implement the Krein adjoint for the �elds in P. So take a basi

generator ϕi and a basi �eld ϕi(x) like above and let (ϕi(x))
∗
=
∑

j aijϕj(x),
where the

∗
-operation on the left hand side is the Krein adjoint on the �elds. Then

we de�ne for this basi generator and its orresponding higher generators

(
(ϕi)

(n,µ1...µn)
)∗

def

=
∑

j

aij(ϕj)
(n,µ1...µn). (3.20)

In antiipation of the results presented in the next setion we state what this means

for the basi generators in the standard example:

(Aµ)∗ = Aµ, (u)∗ = u, (ũ)∗ = −ũ (ψ)∗ = ψγ0, (ψ)∗ = γ0ψ. (3.21)

3.2. Fok spae and Fok spae operators. In this setion we will onstrut

the �eld operators already mentioned as operator valued distributions in the Fok

spae. We begin with some notations: A four-vetor p on the forward light one

V + will be denoted as

13

p̂
def

= (Ep,p) , Ep
def

=
√
p2. (3.22)

12
The �eld operators and the ation U of the Lorentz group on them are onstruted in the

next hapter

13
The onstrution is outlined here for massless �elds, for simpliity.
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The invariant volume measure on the light one and its Dira distribution are

de�ned as usual:

dp̂
def

=
d3p

2(2π)3Ep
δ(p̂)

def

= 2(2π)3Epδ(p). (3.23)

At �rst we must onstrut the Fok spae Fϕi
for eah basi �eld that orresponds to

a basi generator ϕi ∈ Gb. That means for our standard example ϕi = (Aaµ), (u
a, ũa)

or (ψr, ψr), where a and r are possible internal indies. To this end we begin with

the n-partile Hilbert spae H
n
ϕi
. It is the Hilbert spae of L2(dp̂1 · · · dp̂n,Mn)

funtions of n momenta and n sets of indies (group-, olour- and Lorentz indies,

for example) whih are olletively written as ai:

ϕn(a1...an)(p̂1, . . . , p̂n) ∈ H
n
ϕi

(3.24)

These funtions are ompletely symmetri or antisymmetri under transposition of

momenta and indies, (p̂i, ai) ↔ (p̂j , aj), depending on the bosoni or fermioni

harater of ϕi.
The salar produt on Hn

ϕi
is then de�ned as

(ψn, φn)
def

=
∑

a1...an

∫
dp̂1 · · · dp̂n ψ

n

(a1...an)(p̂1, . . . , p̂n)φ
n
(a1...an)

(p̂1, . . . , p̂n) (3.25)

This salar produt is positive and allows to de�ne a norm ‖φn‖ def

= (φn, φn)
1
2
.

With H0
ϕi

def

= C and

(
φ0, ψ0

)
def

= φ0ψ0
we an de�ne the Fok spae Fϕi

for the �eld

ϕi as

Fϕi

def

=

∞⊕

n=0

H
n
ϕi
, (φ, ψ) =

∞∑

n=0

(φn, ψn) , (3.26)

where Fϕi
ontains only sequenes φ with (φ, φ) < ∞. The vetor |ωϕi

〉 def

=
(1, 0, 0, . . . ) is the vauum for this Fok spae.

Next we de�ne Dϕi
as the dense subspae of Hϕi

that inludes only elements with

a �nite partile number and whose wave funtions are Shwartz' test funtions:

φ ∈ Dϕi
⊂ Fϕi

⇐⇒ ∃m ∈ IN : φ ∈
m⊕

n=0

S(Mn) ⊂ Fϕi
(3.27)

where S(Mn) is the spae of Shwartz' test funtions on Mn
. This subspae has

the advantage that Wik produts are well de�ned operators ating on it [GW64℄.

It is the ommon domain of all operators on Fϕi
de�ned below. Reently Brunetti

and Fredenhagen [BF99℄ have found a de�nition of Wik produts that is well posed

on a bigger dense subspae than Dϕi
, but we will stik in this thesis to the spae

Dϕi
de�ned above.

Annihilation operators may be de�ned on Dϕi
aording to

va(p̂) : Dϕi
→ Dϕi

,

[va(p̂)φ]
(n)
(a1...an)

(p̂1, . . . , p̂n) =
√
n+ 1φ

(n+1)
(a,a1...an)

(p̂, p̂1, . . . , p̂n).
(3.28)
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Their adjoint � w.r.t. the salar produt de�ned above � operators v+i (p), the
reation operators v+a (p̂), are de�ned as

[v+a (p̂)φ]
(n)
(a1...an)

(p̂1, . . . , p̂n) =

=
√
n

(
δa,a1δ(p̂1 − p̂)φ(n−1)

(a2...an)
(p̂2, . . . , p̂n)

±
n∑

k=2

δa,akδ(p̂k − p̂)φ(n−1)
(a1...ǎk...an)

(p̂2 . . . p̌k . . . p̂n)

)
.

(3.29)

Here ˇ means omission of the orresponding argument and the plus sign ours if

the �eld is bosoni, the minus sign if it is fermioni. The reation operators are no

endomorphisms of Dϕi
but map Dϕi

to D′
ϕi
, the dual spae of Dϕi

. This is due to

the appearane of the delta funtion in their de�nition.

Creation and annihilation operators ful�ll the usual (anti-) ommutation relations,

[
v+a (p̂), vb(q̂)

]
∓
= δabδ(p̂− q̂),

[
v+a (p̂), v

+
b (q̂)

]
∓
= [va(p̂), vb(q̂)]∓ = 0 (3.30)

for bosons and ghosts (where the ommutator above is the graded one) and

{
v+a (p̂), vb(q̂)

}
+
= δa,−bδ(p̂− q̂),

{
v+a (p̂), v

+
b (q̂)

}
+
= {va(p̂), vb(q̂)}+ = 0

(3.31)

for spinors. Here v−a(p̂) is the annihilator for the �eld that is onjugate to the �eld

with the annihilator va(p̂).
The normal ordering � or Wik ordering � of an arbitrary produt of reation

and annihilation operators is de�ned as the same produt with all the annihilation

operators on the right and all the reation operators on the left. The normal produt

of a produt W is denoted as :W :.
Operators on the Fok spae an be de�ned from these distributional operators

aording to

va(f) =

∫
dp̂ f(p̂) va(p̂), v+a (f) =

∫
dp̂ f(p̂) v+a (p̂). (3.32)

With this smearing also the Wik produts beome operators in End(Dϕi
).

The �eld operators de�ned below are operator valued distributions ating on the

dense subspae Dϕi
. To give a preise meaning to that expression, we de�ne the

nth
order operator valued distributions on an arbitrary subspae D of a Fok spae,

abbreviated as Distn(D), as C-linear strongly ontinuous mappings

Distn(D)
def

= {A : D(Mn)→ End(D)} . (3.33)

whereM is the Minkowski spae and DMn
the spae of test funtions on Mn

with

ompat support.

The �eld operators de�ned below are in Dist1(Dϕi
).

We begin the de�nition of the �eld operators that orrespond to the basi generators

with the vetor bosons. The orresponding Fok spae is denoted as FA, its dense
subspae as DA. The reation and annihilation operators are denoted as aa,+µ (p̂)
and aaµ(p̂). They ful�ll the ommutation relations

[
a+,aµ (p̂), abν(q̂)

]
−
= δabδµνδ(p̂− q̂),

[
a+,aµ (p̂), a+,bν (q̂)

]
−
=
[
aaµ(p̂), a

b
ν(q̂)

]
−
= 0.

(3.34)



20

The vetor boson �eld is de�ned as

Aa0(x)
def

=

∫
dp̂
[
aa0(p̂)e

−ip̂x − aa,+0 (p̂)eip̂x
]
∈ Dist1(DA),

Aai (x)
def

=

∫
dp̂
[
aai (p̂)e

−ip̂x + aa,+i (p̂)eip̂x
]
∈ Dist1(DA).

(3.35)

It satis�es the ommutation relation

[
Aaµ(x), A

b
ν(y)

]
−
= iδabgµνD(x− y) (3.36)

and the massless Klein-Gordon equation

�xAaµ(x). (3.37)

Here D(x) is the massless Pauli-Jordan funtion

D(x)
def

= 2i

∫
dp̂ sin(p̂x). (3.38)

It has ausal support. It may be split into a positive and a negative frequeny part

aording to

D+(x)
def

=

∫
dp̂ eip̂x, D−(x)

def

= −D+(−x). (3.39)

Its orresponding retarded, advaned and Feynman propagators DR, DA
and DF

are de�ned as

DR(x)
def

= θ(x0)D(x), DA(x)
def

= −θ(−x0)D(x), DF (x)
def

= DR(x) −D−(x).
(3.40)

They are the inverse of the massless Klein-Gordon operator:

�xDR,A,F (x) = δ(x). (3.41)

Clearly DR
has retarded and DA

has advaned support.

The 0-omponent of the vetor bosons is anti hermitian, (Aa0)
+ = −Aa0 . Further-

more the salar produt is not Lorentz invariant as an be easily veri�ed already in

the one-partile spae. This is a typial situation in gauge theories as desribed in

the last hapter. To �nd a physial inner produt on FA one must �nd a suitable

Krein operator JA ating on it and de�ne

〈φ, ψ〉 def= (φ, JAψ) . (3.42)

This suitable Krein operator is

JA
def

= (−1)N0 , N0 =
∑

b

∫
dp̂ ab,+0 (p̂)ab0(p̂), (3.43)

where N0 is the number operator for A0(x) with eigenvalues in IN. It is obviously
hermitian, J = J+

, and idempotent, J2 = 1l. With the

∗
-involution

B∗ def

= JAB
+JA, ∀B ∈ End(DA), (3.44)

also alled the Krein adjoint, the vetor bosons beome pseudo-hermitian, (Aaµ)
∗ =

Aaµ. Furthermore we �nd the inner produt 〈·, ·〉 to de�ne a Lorentz invariant norm,

but it is inde�nite.

The de�nition of the spinor Fok spae Fψ and the �eld operators ψ(x), ψ(x) ating
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therein proeeds in the same way and an be found in textbooks on quantum �eld

theory. The fermions satisfy the ommutation relations

[
ψ(x), ψ(y)

]
−
= −i(i∂/x +m)D(x− y) (3.45)

and the �eld equations

(i∂/x −m)ψ = 0, ψ(−i←−∂/ x −m) = 0. (3.46)

The Krein operator Jψ on the spinor Fok spae is trivial, Jψ = 1l.
On the Fok spae for the ghosts, Fu with its dense subspae Du, reation and

annihilation operators are denoted by ba,+(p̂), ca,+(p̂), ba(p̂) and ca(p̂), respetively.
They ful�ll the anti-ommutation relations

{
b+,a(p̂), bb(q̂)

}
+
= δabδ(p̂− q̂),

{
c+,a(p̂), cb(q̂)

}
+
= δabδ(p̂− q̂) (3.47)

and all other anti-ommutators vanish. The ghost �eld ua(x) and the anti-ghost

�eld ũa(x) are de�ned as

ua(x)
def

=

∫
dp̂
[
ba(p̂)e−ip̂x + ca,+(p̂)eip̂x

]
∈ Dist1(Du),

ũa(x)
def

=

∫
dp̂
[
−ca(p̂)e−ip̂x + ba,+(p̂)eip̂x

]
∈ Dist1(Du).

(3.48)

Then we get for the anti-ommutators of the ghosts

{
ua(x), ũb(y)

}
+
= −iδabD(x− y).

{
ua(x), ub(y)

}
+
=
{
ũa(x), ũb(y)

}
+
= 0.

(3.49)

The Krein operator for the ghosts was expliitely determined by Krahe [Kra95℄ and

reads

Ju = exp

(
iπ

2

∫
dp̂
[
b+(p̂)b(p̂)− b+(p̂)c(p̂) + c+(p̂)c(p̂)− c+(p̂)b(p̂)

])
. (3.50)

For us it is only important that this implies for the �eld operators

(ua(x))
∗
= ua(x) and (ũa(x))

∗
= −ũa(x), (3.51)

so the ghosts are pseudo-hermitian and the anti-ghosts are anti-pseudo-hermitian.

Now we introdue the pseudo-unitary representation of the proper Poinaré group

P
↑
+ in the individual Fok spaes. It reads for salar �elds like the ghosts

[U(p)φ](0) = φ(0), p = (a,Λ) ∈ P
↑
+

[U(p)φ]
(n)
(a1...an)

(q̂1, . . . , q̂n) = exp (−i(q̂1 + · · ·+ q̂n) · a)×

×φ(n)(a1...an)
(Λq̂1, . . . ,Λq̂n).

(3.52)

For vetor �elds like the vetor bosons it reads

[U(p)φ](0) = φ(0), p = (a,Λ) ∈ P
↑
+

(
[U(p)φ](n)

)(µ1...µn)

(a1...an)
(q̂1, . . . , q̂n) = exp (−i(q̂1 + · · ·+ q̂n) · a)×

× (Λ)µ1
ν1
· · · (Λ)µn

νn

(
φ(n)

)(ν1...νn)
(a1...an)

(Λq̂1, . . . ,Λq̂n)

(3.53)
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where the Lorentz indies µi have been separated from the other indies ai and
summation over repeated indies is understood. The matries (Λ) are the repre-

sentatives of Λ in the de�ning representation of L
↑
+ ⊂ P

↑
+, like above. For the

spinors an analogous de�nition holds. The vauum vetor |ωϕi
〉 is learly Poinaré

invariant. As was pointed out by Krahe [Kra95℄, it is also yli w.r.t. the �eld

operators de�ned above.

The �eld operators transform aording to

U(p)ua(x)U−1(p) = ua(Λ−1x− a), U(p)ũa(x)U−1(p) = ũa(Λ−1x− a)
U(p)Aaµ(x)U

−1(p) = (Λ)
ν
µA

a
ν(Λ

−1x− a).
(3.54)

With the Fok spaes for the individual �elds the Fok spae of the entire theory

F , its dense subspae D and the Krein operator J ating on F are de�ned as

F def

=
⊗

i

Fϕi
D

def

=
⊗

i

Dϕi
J

def

=
⊗

i

Jϕi
. (3.55)

The vauum vetor of the Fok spae F is denoted by |ω〉. We introdue the

notation ω0 (A) for 〈ω|A |ω〉 for every A ∈ End(D). Here End(D) is the algebra

of endomorphisms of D. An important fat onerning this algebra is that it has

trivial entre. Even more, for an arbitrary element A ∈ End(D) the following

equivalene holds:

[A, T (ϕi) (x)]∓ = 0 ∀ϕi ∈ Gb,
⇐⇒ A = a · 1l, a ∈ C.

(3.56)

For the proof of this assertion see Sharf [Sh95℄, for example.

In hapter (6) it will turn out that spaetime must be ompati�ed in spaelike di-

retions for the BRS harge to be a well de�ned operator. Therefore it is important

to onstrut the Fok spae and the operators ating on it also for a quantum �eld

theory in the ompati�ed spaetime. This has been done by Dütsh and Freden-

hagen in [DF99, appendix A℄. We refer to their results, espeially onerning the

hoie of boundary onditions, but we do not go here into details.

3.3. The linear representation of P. In this setion we de�ne the C-linear rep-
resentation T of the polynomials in P as operator valued distributions

T : P→ Dist1(D). (3.57)

Linear representation means that the linear struture of P is preserved, but not

its struture as an algebra. This omes from the fat that a pointwise produt of

distributions is in general no well de�ned operation.

The preise de�nition of T will take three steps: at �rst it is de�ned for the basi

generators, then for the higher generators and �nally for omposed elements of P.

The �rst end has already been ahieved with the de�nition of an operator valued

distribution ϕi(x) ∈ Dist1(D) for eah basi generator ϕi ∈ Gb. The representative
of the basi generator is de�ned as:

T (ϕi) (x)
def

= ϕi(x), ϕi ∈ Gb, ϕi(x) ∈ Dist1(D). (3.58)

This de�nition an work only for the basi generators sine for the higher ones there

are no orresponding free �eld operators.

For these generators we de�ne

T
(
(ϕi)

(n,ν1...νn)
)
(x)

def

= ∂ν1x · · · ∂νnx ϕi(x), (ϕi)
(... ) ∈ G. (3.59)
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We remind the reader that there are no relations between the basi generators and

the higher generators in P, and that there are no �eld equations in P. But with

the de�nition above there is a relation established between the representatives of

the basi and those of the higher generators, and the former learly satisfy �eld

equations. So the linear representation is not faithful.

For the representation of the omposed elements in P we de�ne at �rst the om-

mutator funtion

i∆ij(x − y) = [T (ϕi)(x), T (ϕj)(y)]∓ , ϕi, ϕj ∈ G. (3.60)

Here i and j take on values also for the higher generators. With this ommutator

funtion we give an impliit de�nition of the representation of monomials in P,

namely

[T (W )(x), T (ϕi)(y)]∓ = i
∑

j

T

(
∂W

∂ϕj

)
(x)∆ij(x− y)

ω0

(
T (W )(x)

)
= 0 W ∈ P.

(3.61)

The existene of a solution is guaranteed by the observation that the normal prod-

uts solve both equations. Suppose A =
∏
i ϕi ∈ P, ϕi ∈ G, then the normal

produt :
∏
i T (ϕi) (x) : ∈ Dist1(D) is indeed a searhed for solution.

The uniqueness of this solution an be seen indutively. Suppose, the representa-

tion for all monomials ontaining at most k − 1 generators is de�ned. Then the

ommutator ondition determines the solution for monomials of k generators up to

a C-number distribution � this is due to eqn. (3.56). The C-number part is deter-
mined by the seond ondition � it is zero. So the equations above give indeed a

de�nition for the representation of monomials in P. This ompletes the de�nition

of the representation.

As for the Pauli-Jordan funtion D(x) we an �nd a positive and a negative fre-

queny solution for the ommutator funtion ∆ij(x). The two point funtion � or

positive frequeny part of ∆ � is denoted as ∆+
and de�ned as

i∆+
ij(x− y)

def

= ω0 (T (ϕi) (x) T (ϕj) (y)) , (3.62)

the negative frequeny part of ∆ is de�ned as

∆−
ij(x)

def

= ∆ij(x)−∆+
ij(x). (3.63)

3.4. The propagator funtions. In this setion we de�ne propagator funtions

∆R
ij(x),∆

A
ij(x) analogous to D

R(x) and DA(x) that are restritions of ∆ij(x) to the

past and future light one, suh that ∆R
ij(x)−∆A

ij(x) = ∆ij(x). Simultaneously we

searh for a di�erential operator Dx
ij that takes over the part of the Klein-Gordon

operator, i.e. that ful�lls the equations

∑

j

Dx
ij∆

R,A
jk (x) = δikδ(x) =⇒

∑

j

Dx
ij∆jk(x) = 0. (3.64)

This means in partiular that the propagators must be invertible with Dx
ij as their

inverse.

To see what form the propagators might have we take a loser look at the om-

mutator funtion. If G ontains r generators, this is an r × r-matrix. It has the
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following blok diagonal struture:

∆(x) =




∆ϕ1(x) 0 0 . . .

0 ∆ϕ2(x) 0 . . .

0 0 ∆ϕ3(x) . . .

.

.

.

.

.

.

.

.

.

.

.

.




. (3.65)

Here the matries ∆ϕi
are of two di�erent types. The �rst type orresponds to �eld

operators that have no distint onjugate �eld like the unharged vetor bosons.

Then the index ϕi orresponds to the �eld, e.g. ϕi = Aµ. The other type or-

responds to �eld operators ϕi that do have suh a distint onjugate �eld ϕ̃i like
ghosts with the anti-ghosts. In this ase the �eld and the onjugated �eld form

one ommon blok in the matrix and the index ϕi orresponds to the �eld and its

onjugated �eld, e.g. ϕi = u, ũ. All bloks inlude also the ommutators of the

derivatives as far as higher generators exist in G that orrespond to these deriva-

tives. In our standard example it has the form

∆(x) =




∆A(x) 0 0

0 ∆u,ũ(x) 0

0 0 ∆ψ,ψ(x)




(3.66)

if QED is treated where no internal indies appear. In Yang-Mills theory, where in-

ternal indies do appear, there is an individual blok for eah index on the diagonal.

From now on we will disregard internal indies for their inlusion is straightforward.

The vetor boson part has the form

∆A(x)
def

= gµν




D(x) −∂ν1x D(x) ∂ν1x ∂
ν2
x D(x)

∂ρ1x D(x) −∂ν1x ∂ρ1x D(x) ∂ν1x ∂
ρ1
x ∂

ν2
x D(x)

∂ρ2x ∂
ρ1
x D(x) −∂ν1x ∂ρ2x ∂ρ1x D(x) ∂ν1x ∂

ρ2
x ∂

ρ1
x ∂

ν2
x D(x)



, (3.67)

the ghost part

∆u,ũ(x)
def

=




0 0 −D(x) ∂ν1x D(x)

0 0 −∂ρ1x D(x) ∂ρ1x ∂
ν1
x D(x)

D(x) −∂ν1x D(x) 0 0

∂ρ1x D(x) −∂ρ1x ∂ν1x D(x) 0 0




(3.68)

and the spinor part

∆ψ,ψ(x)
def

=




0 −i(i∂/+m)Dm(x)

i(i∂/−m)Dm(x) 0


 . (3.69)
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The distribution Dm is the Pauli-Jordan funtion for mass m. The matries are

given here in the basis

(
(Aµ)

(0), (Aµ)
(1,ν1), (Aµ)

(2,ν1ν2)
)t

(3.70)

for the vetor bosons,

(
(u)(0), (u)(1,ν1), (ũ)(0), (ũ)(1,ν1)

)t
(3.71)

for the ghosts and anti-ghosts and

(
(ψ)(0), (ψ)(0)

)t
, (3.72)

for the spinors, where

t
denotes transposition.

The natural attempt would be to replae the Pauli-Jordan funtion D(x) by its

retarded, DR(x), or advaned, DA(x), propagator in eah entry to de�ne the ma-

tries ∆R
ij(x) and ∆A

ij(x). These would learly be well de�ned distributions with the

desired support properties, but they would not be invertible. This omes from the

fat that with this de�nition eah row would be the derivative of the row above, and

therefore the determinant � w.r.t. onvolution � of these matries would vanish.

To improve the de�nition above we observe that the matries ∆R,A
ij (x) are de�ned

by their desired support properties � supp∆R
ij(x) ⊂ V + and supp∆A

ij(x) ⊂ V − �

and their relation to the ommutator funtion everywhere but in the origin. That

means that we may alter the propagator funtions only at the origin, i.e. by delta

distributions or its derivatives at the individual entries. As a further restrition of

possible propagators we demand that this modi�ation does not inrease the saling

degree (see below) of the individual entries and that it does not hange the Lorentz

transformation property of that entry.

Saling degree means the following: For every numerial distribution d one an

de�ne a dilated distribution

dλ(x) = d(λx) λ ∈ IR+ \ {0} . (3.73)

Clearly dλ is a numerial distribution, too. Then the saling degree sd(d) of d w.r.t.
the origin is de�ned, aording to Steinmann [Ste71℄, as

sd(d)
def

= inf

{
β ∈ IR : lim

λց0
λβdλ = 0

}
, (3.74)

where the equation in the braket holds in the sense of distributions.

The restrition on the saling degree �xes some entries uniquely, e.g. ∆R
ij(x) =

DR(x) if ϕi = u and ϕj = ũ. For others there remains a ertain ambiguity, e.g.

∆R
ij(x) = −gµν∂ρ∂σDR(x) − Cgµνgρσδ(x) (3.75)

if ϕi = (Aµ)
(1,ρ)

and ϕj = (Aν)
(1,σ)

. The numerial onstant C is then arbitrary.

In the following we de�ne propagator funtions with an inverse that is a di�erential

operator and we will give later the expliit form of these di�erential operators.
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The propagators have the same blok diagonal struture as the ommutator fun-

tion:

∆R,A(x) =




∆ϕ1

R,A(x) 0 0 . . .

0 ∆ϕ2

R,A(x) 0 . . .

0 0 ∆ϕ3

R,A(x) . . .

.

.

.

.

.

.

.

.

.

.

.

.




. (3.76)

In the following we will onsider only the onstrution of the retarded propagator.

The advaned propagator is de�ned as ∆A = ∆R−∆. For the determination of the

individual bloks we notie that usually the (0, 0)-omponent

14
of the ommutator

funtion has a saling degree smaller than the spaetime dimension, so that its

retarded solution is uniquely determined by the following ondition:

∆R,ϕi

00 (x) = ∆ϕi

00(x) x 6∈ V +, supp∆R
00 ∈ V +. (3.77)

With this the general matrix element of a blok ∆ϕi

R of the retarded propagator

an be written as

∆R,ϕi

jk (x) = (−1)k∂µ1 · · · ∂µk∂ν1 · · · ∂νj∆R,ϕi

00 (x) + (−1)kδjkCϕi,k δ(x). (3.78)

(no summation over k in the last term). The onstants Cϕi,k are non zero real

numbers, Cϕi,k ∈ IR \ {0}. As these onstants will determine the normalization of

higher order time ordered produts (.f. next hapter), they will be alled normal-

ization onstants.

In our standard example the propagator has the form

∆R(x) =




∆A
R(x) 0 0

0 ∆u,ũ
R (x) 0

0 0 ∆ψ,ψ
R (x)



. (3.79)

For the vetor boson blok of the retarded propagator, ∆A
R, we omit all spaetime

arguments beause it otherwise would not �t into the line. Then it reads

∆A
R = gµν




DR −∂νDR ∂ν∂ρDR

∂σDR −∂ν∂σDR − CA,1gνσδ ∂ν∂ρ∂σDR

∂σ∂τDR −∂ν∂σ∂τDR ∂ν∂ρ∂σ∂τDR − CA,2gνσgρτδ



,

(3.80)

For the ghosts we get the ontribution,

∆u,ũ
R (x) =

(
0 −duR(x)

duR(x) 0

)
(3.81)

14
We start the numbering of olumns and rows with zero, suh that the index of a olumn or

row agrees with the degree of the orresponding generator
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with the 2× 2-matries

duR(x) =




DR(x) −∂ν1x DR(x)

∂ρ1x D
R(x) −∂ν1x ∂ρ1x DR(x)− Cu,1gν1ρ1δ(x)


 . (3.82)

The spinors �nally give

∆ψ,ψ
R (x) =




0 −(i∂/+m)DR
m(x)

(i∂/−m)DR
m(x) 0.


 (3.83)

DR
m is the retarded part of Dm. All the matries are given in the same basis as for

the ommutator funtion. The retarded propagator funtion has obviously retarded

support and agrees with the ommutator funtion outside the forward light one.

The advaned propagator ∆A = ∆R−∆ has advaned support and agrees with the

ommutator funtion outside the bakward light one. In the example above the

respetive advaned propagators an be derived from the retarded propagators by

a substitution of DR
with DA

.

We de�ne also a Feynman propagator

∆F : ∆F
ij(x)

def

= ∆R
ij(x) −∆−

ij(x). (3.84)

Now we ome to the di�erential operator valued matrix Dx
that inverts the prop-

agators de�ned above, i.e. for whih the equation

∑

j

Dx
ij∆

R,A,F
jk (x) = δikδ(x) (3.85)

holds. It is an r× r matrix, where r was the number of generators in G. It has the
usual blok diagonal form:

Dx =




Dϕ1,x 0 0 . . .

0 Dϕ2,x 0 . . .

0 0 Dϕ3,x . . .

.

.

.

.

.

.

.

.

.

.

.

.




(3.86)

or, in our standard example,

Dx =




DA,x 0 0

0 Du,ũ,x 0

0 0 Dψ,ψ,x



. (3.87)

Like for the propagators the individual bloks orrespond to �eld operators or pairs

of onjugated �elds. We de�ne the bloks for single �elds as (s+1)×(s+1)-matries

if higher generators up to degree s are inluded in G for that �eld. Let Kϕi,x
be

the di�erential operator that de�nes the �eld equation for ϕi(x), i.e. whih ful�lls

the equation

Kϕi,x∆ϕi

R (x) = δ(x), (3.88)
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e.g. KA,x = �x. Then the orresponding blok is written in the basis

(
(ϕi)

(0), (ϕi)
(1,ν1), . . . , (ϕi)

(s,ν1...νs)
)t

(3.89)

as the matrix with the omponents

Dϕi,x
00 =

(
Kϕi,x −

n∑

k=1

(−1)kC−1
ϕi,k

�k
)

Dϕi,x
0k = (−1)kC−1

ϕi,k
(∂ν1 · · · ∂νk)

Dϕi,x
j0 = C−1

ϕi,j
(∂σ1 · · · ∂σj )

Dϕi,x
kk = −C−1

ϕi,k
(gν1σ1 · · · gνkσk)

Dϕi,x
jk = 0 otherwise.

(3.90)

where the onstants Cϕi,k are those determined in the propagator funtions.

Again we exemplify the de�nition above for our standard example. The only un-

harged �elds there are the vetor bosons. In the same basis as for the ommutator

funtion, the blok DA,x
has the form

DA def

=




(1 + C−1
A,1)� − C−1

A,2�
2 −C−1

A,1∂
ν1 C−1

A,2∂
ν1∂ν2

C−1
A,1∂

ρ1 −C−1
A,1g

ρ1ν1 0

C−1
A,2∂

ρ1∂ρ2 0 −C−1
A,2g

ρ1ν1gρ2ν2



. (3.91)

For the harged �elds we onstrut aording to the rules above one blok Dϕi,x

for the �elds ϕi and one blok Dϕ̃i,x
for the onjugated �elds ϕ̃i. Like for the

propagators, the ombined blok for the �elds and onjugated �elds reads then

Dϕi,ϕ̃i,x def

=




0 Dϕ̃i,x

−Dϕi,x 0


 (3.92)

in the basis

(
(ϕi)

(0), . . . , (ϕi)
(s,ν1...νs), (ϕ̃i)

(0), . . . , (ϕ̃i)
(s,ν1...νs)

)t
, (3.93)

if higher generators up to degree s are inluded. The expressions for our standard
example, i.e. for the ghosts and the spinors, read then

Du,ũ def

=
1

Cu,1




0 0 (1 + Cu,1)� −∂ν1

0 0 ∂ρ1 −gν1ρ1

−(1 + Cu,1)� ∂ν1 0 0

−∂ρ1 gν1ρ1 0 0




. (3.94)
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For the spinors no higher generators are inluded in our example, so they ontribute

the expression

Dψ def

=




0 −(i∂/+m)

(i∂/−m) 0


 . (3.95)

where the operator in the seond line ats from the right.

It is easily veri�ed by diret alulation that this di�erential operator really inverts

the propagators. Furthermore, the representatives of the generators satisfy the

following free �eld equations:

∑

j

Dx
ijT (ϕj)(x) = 0. (3.96)

Here the sum runs over all generators. This equation holds independently of the

hoie of the normalization onstants Cϕi,k. From its de�nition it is already lear

that the ommutator funtion is annihilated by Dx
:

∑

j

Dx
ij∆jk(x) = 0. (3.97)

If Dx
is determined, the propagator funtions ∆R,∆A

and ∆F
are uniquely deter-

mined by the following onditions:

• ∆R,A,F (x) must ful�l eqn. (3.85)
• ∆R(x) = ∆(x) ∀x 6∈ V − and ∆R(x) = 0 ∀x ∈ V − \ {0}
• ∆A(x) = ∆R(x)−∆(x)
• ∆F (x) = ∆R(x) −∆+(x) .

So Dx
is a relativistially ovariant, hyperboli di�erential operator with a unique

solution for the Cauhy problem. In partiular the normalization onstants Cϕi,k

that appear in the propagators are uniquely determined by their hoie in the

di�erential operator Dx
.

We do not laim that our hoie for the operator Dx
or the propagators is the most

general one. But we point out that there are serious restritions to the hoie of

the propagators. As we already saw, the apparently easiest hoie is not invertible,

and all other hoies we tried proved to be invertible, but with pseudodi�erential

operators as their inverse instead of di�erential operators. We do not examine

the question whether �eld equations with pseudodi�erential operators are suitable

hoies within the general framework of quantum �eld theory. Instead we stik to

di�erential operators as one is used to, the more so as the propagators we have

de�ned above are ompletely su�ient for our purposes.

3.5. The free BRS theory. We examine in this setion the free theory that

inludes vetor bosons, spinors and ghosts. This is the theory that served as an

example throughout the onsiderations above. The generators for the algebra P are

in this model Aaµ, (A
a
µ)

(1,ν)
and (Aaµ)

(2,νρ)
for the Lie algebra valued vetor bosons,

ua, ũa, (ua)(1,µ) and (ũa)(1,µ) for the respetive ghosts and anti-ghosts and ψr and

ψ
r
for the oloured spinors. The �eld operators that orrespond to the generators

Aaµ, u
a, ũa, ψ

r
and ψ

r
are already onstruted as operators in the Fok spae F with

a ommon dense domain D. As we already mentioned when we onstruted the

Fok spae, the inner produt 〈·, ·〉 is inde�nite. To perform the BRS onstrution,

we must de�ne a BRS harge and a ghost harge and prove that the state spae is
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positive.

At �rst we de�ne the ghost urrent

kµ
def

= i
∑

a

[
(ua)(0)(ũa)(1,µ) − (ua)(1,µ)(ũa)(0)

]
∈ P. (3.98)

and the BRS urrent

jµB
def

=
∑

a

[
(ua)(1,µ)(Aaν)

(1,ν) − (ua)(0)(Aaν)
(2,νµ)

]
∈ P. (3.99)

as elements of P. Then their de�nitions as operators in the Fok spae follow

immediately as

kµ(x) = T (kµ) (x) and jµB(x) = T (jµB) (x). (3.100)

Taking into aount the �eld equations, we note that both operators are onserved,

∂xµk
µ(x) = ∂xµj

µ
B(x) = 0. (3.101)

Now it is possible to de�ne the orresponding harges, the ghost harge Qc and the

BRS harge QB, as

Qc
def

= lim
λց0

∫
d4xhλ(x) k

0(x) and QB
def

= lim
λց0

∫
d4xhλ(x) j

0
B(x). (3.102)

Here hλ ∈ D(M), λ ∈ IR+ \ {0} is a test funtion that has the following struture:

hλ(x) = λht(λ · x0)b(λx), ht ∈ D(IR) b ∈ D(IR3),
∫
dx0 h

t(x0) = 1,
(3.103)

with b = 1 on an open domain inluding the origin of IR3
. Due to a general

argument of Requardt [Req76℄ the limit λ ց 0 exists and it is independent of the

hoie of hλ. So the harges de�ne well posed operators in the Fok spae. The

harges have no ounterpart in the symboli algebra, beause the integrals would

make no sense there.

The ghost transformation and the BRS transformation are (anti-) derivations on

the algebra End(D):

sc(A)
def

= [Qc, A]− , and s0(A)
def

= [QB, A]∓ ∀A ∈ End(D). (3.104)

The derivations give for the basi �elds the following results:

sc(u
a(x)) = ua(x), sc(ũ

a(x)) = −ũa(x),
sc(ϕi(x)) = 0 otherwise,

s0(A
a
µ(x)) = i∂xµu

a(x), s0(ũ
a(x)) = −i∂µxAaµ(x),

s0(ϕi(x)) = 0 otherwise.

(3.105)

Finally we must prove that for the physial state spae, de�ned as the state o-

homology of F w.r.t. the BRS harge QB above, the positivity assumption holds.

This has already been done by Kugo and Ojima [KO79℄, but we present here a

modern version that is due to Razumov and Rybkin [RR90℄. We ollet here only

the essential points of their proof.

At �rst they note that the entire spae D an be deomposed as

F = imQB ⊕
(
imQB ∩ imQ+

B

)
⊕ imQ+

B (3.106)
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with

imQB ⊕
(
imQB ∩ imQ+

B

)
= kerQB

and

(
imQB ∩ imQ+

B

)
⊕ imQ+

B = kerQ+
B.

(3.107)

Then they propose an alternative de�nition of the physial (pre-) Hilbert spae

aording to

Hphys =
(
imQB ∩ imQ+

B

)
(3.108)

or, whih is the same,

Hphys = ker
({
QB, Q

+
B

}
+

)
. (3.109)

This de�nition of the physial (pre-) Hilbert spae deviates from the original one in

the way that it selets from eah equivalene lass there exatly one representative.

Now a diret alulation of the operator

{
QB, Q

+
B

}
+
reveals

{
QB, Q

+
B

}
+
= N0 +NL +Ng (3.110)

whereN0 is the number operator of salar vetor bosons introdued above,NL is the

orresponding operator for the longitudinal vetor bosons and Ng the operator that
ounts the total number ghosts and anti-ghosts. Comparison with the de�nition of

the Krein operator

J = (−1)N0 ⊗ 1l⊗ Jg (3.111)

reveals that J = 1l on Hphys = ker
({
QB, Q

+
B

}
+

)
. Therefore the inner produt

must be positive on Hphys sine the original salar produt was. It is not neessary

to restrit the physial Hilbert spae to the kernel of Qc sine this Hilbert spae is
already ontained in kerNg ⊂ kerQc.
The result ensuring positivity holds also for our de�nition of Hphys as

Hphys = (kerQB,D)/(imQB,D)
‖·‖
, (3.112)

sine in this de�nition eah equivalene lass modulo (imQB) orresponds to exatly

one element of ker
({
QB, Q

+
B

}
+

)
, and the inner produt does not depend on the

hoie of the representative within the equivalene lass.

Then the algebra of observables is de�ned as usual,

Aph
def

=
(
(ker s,End(D)) ∩ (ker sc,End(D))

)
/(im s,End(D)). (3.113)

As was pointed out by Dütsh and Fredenhagen, the algebra is faithfully represented

in the physial Hilbert spae.
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4. Time ordered produts and their normalization

In this hapter the onstrution of time ordered produts, antihronologial prod-

uts and their respetive properties are presented. Sine the onstrution is in

general not unique, normalization onditions are postulated that restrit the am-

biguity. The onstrution of time ordered produts is the entral point for ausal

perturbation theory, whih is presented in the next hapter. In partiular this is

the point where renormalization takes plae in this framework.

The time ordering of n arbitrary Wik polynomials W1(x1), . . . ,Wn(xn), Wi ∈
Dist1(D), an be done by the following presription

T (W1(x1) · · ·Wn(xn))
def

=(−1)f(π)+g(π)
∑

π∈Pn

θ(x0π(1) − x0π(2)) · · ·

· · · θ(x0π(n−1) − x0π(n))Wπ(1)(xπ(1)) · · ·Wπ(n)(xπ(n))

(4.1)

if all the points xi are di�erent. Here Pn is the set of permutations of n
def

=
{1, . . . , n}, f(π) is the number of transpositions in π ∈ Pn that involve arguments

with an odd fermion number and g(π) is the number of those that involve arguments

with odd ghost number. θ is the Heaviside step funtion,

θ(x) =

{
1 if x0 > 0

0 otherwise.

(4.2)

The ruial point is that this presription is not de�ned for oiniding points, be-

ause the Wik polynomials Wi are distributions that �do not like to be multiplied

by disontinuous funtions� [Sto93℄. This is the origin of the ultraviolet divergenes

of quantum �eld theories. The presription above gives, as it stands, well de�ned

distributions only on a smaller spae of test funtions than D(Mn). This is the

spae of test funtions in D(Mn) that vanish with all their derivatives if two or

more of their spaetime arguments oinide. To form time ordered produts these

distributions on the smaller spae of test funtions must be extended to elements

of Distn(D).
The time ordering of n arguments is usually regarded as a mapping of n operator

valued distributions in Dist1(D) to an operator valued distribution in Distn(D).
We however de�ne the time ordering of n arguments as a mapping of n polyno-

mials in P to an operator valued distribution in Distn(D). As already mentioned

this has the advantage that the normalization onditions an be formulated also

for derivated �elds. Beside that tehnial point the extension of the distributions

follows the method of Epstein and Glaser [EG73℄. The extension exists always but

is in general not unique. Therefore for eah ombination of arguments one element

in Distn(D) must be hosen as the time ordered produt of these arguments. This

hoie is alled the normalization of that time ordered produt aording to Sharf

[Sh95℄.

The normalization onditions implement various properties of the time ordered

produts that are desired from the physial point of view. The postulation of the

normalization onditions restrits the number of possible normalizations, but the

extension is in general still not unique.

This hapter is organized as follows: The �rst setion presents the properties of

time ordered produts that are required for their onstrution. In the next setion

this onstrution is performed. Antihronologial produts are de�ned in the third
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setion. The hapter onludes with a setion in whih the normalization onditions

are formulated.

4.1. Properties of time ordered produts. The onstrution of time ordered

produts proeeds by indution. The time ordered produts of a number of ar-

guments are built out of the time ordered produts with fewer arguments. This

onstrution works only if the time ordered produts with fewer arguments have

ertain properties. These properties are presented here. They are

P1 (Well posedness): The time ordering operator for n arguments, Tn, is a multi

linear mapping of n polynomials in P to the operator valued distributions of order

n on the dense subspae D ⊂ F :
Tn : P× · · · × P︸ ︷︷ ︸

n times

→ Distn(D). (4.3)

If the arguments are expliitely given, the index n indiating the number of argu-

ments will be omitted.

From the physial interpretation of time ordering we would expet that the time

ordering operator must have at least two arguments, for otherwise there is nothing

to be put in order. But it turns out to be useful to extend the mapping de�ned

above formally also to the ases n = 0 and n = 1. This is ahieved by the following

de�nitions:

T0
def

= 1l, 1l ∈ End(D) (4.4)

and

T1(W )(x)
def

= T (W )(x), ∀W ∈ P. (4.5)

Here T on the right hand side is the linear representation de�ned in the last hapter.

The operator valued distributions obtained by the time ordering are alled time

ordered produts or T - produts. The time ordered produt of the polynomials

W1, . . . ,Wn is written as

T (W1, . . . ,Wn) (x1, . . . , xn). (4.6)

The de�nition above implies that the tensor produt of two time ordered prod-

uts with m and n arguments is a well de�ned operator valued distribution in

Distm+n(D). Arguments that are multiples of the identity an be removed aord-

ing to

T (W1, . . . ,Wn, a · 1l) (x1, . . . , xn, y) = a · T (W1, . . . ,Wn) (x1, . . . , xn) ∀a ∈ C.
(4.7)

P2 (Graded symmetry): Time ordered produts are totally graded symmetri under

permutations of their indies. That means

T
(
Wπ(1), . . . ,Wπ(n)

)
(xπ(1), . . . , xπ(n))

= (−1)f(π)+g(π)T (W1, . . . ,Wn) (x1, . . . , xn) ∀π ∈ Pn,
(4.8)

where the integers f(π), g(π) were de�ned in eqn. (4.1).

P3 (Causality): Time ordered produts are ausal, that means they ful�ll eqn.

(4.1) for non oiniding points. Even more, outside the total diagonal Diagn (see

below) the time ordered produt of n arguments is ompletely determined by those
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that have fewer arguments. The total diagonal Diagn ⊂ Mn
is the set where all

points oinide:

Diagn = {(x1, . . . , xn) ∈Mn : x1 = · · · = xn} . (4.9)

If not all points xi oinide there exists a spaelike surfae Σ ⊂ M that separates

the points X = {x1, . . . , xn} into a future subset Z and a past subset Zc = X \ Z
suh that

Σ ∩X = ∅, Z ⊂ (Σ + V +), Y ⊂ (Σ + V −). (4.10)

This situation will be denoted as Z & Zc. Furthermore we introdue the abbrevi-

ation

T (WZ) (xZ )
def

= T (W1, . . . ,Wk) (x1, . . . xk) if Z = {x1, . . . xk} . (4.11)

Causality means that the time ordered produt T (WX) (xX) is required to satisfy

ausal fatorization:

T (WX) (xX) = T (WZ) (xZ)T (WZc) (xZc) if Z & Zc. (4.12)

It provides a reursive de�nition of the time ordered produts up to the diago-

nal Diagn. There the separation into future and past subsets is impossible and

therefore no ausal fatorization exists. Validity of ausal fatorization for every

number of arguments implies that spaelike separated time ordered produts (anti-)

ommute

15
:

[T (WZ) (xZ), T (WZc) (xZc)]∓ = 0 if Z 〉〈Zc. (4.13)

P4 (Translational invariane): Time ordered produts are translationally invariant,

that means that for every a ∈M the following equation holds:

(Ad U(p))T
(
W1, . . . ,Wn

)
(x1, . . . , xn) =

= T
(
W1, . . . ,Wn

)
(x1 − a, . . . , xn − a) ∀ p = (a, 1l) ∈ P↑

+.
(4.14)

Here U is the representation of the Poinaré group in the Fok spae introdued in

the last hapter.

4.2. Indutive onstrution of time ordered produts. In this setion the

indutive onstrution of the time ordered produts is outlined. It goes bak to

Epstein and Glaser [EG73℄. We use a formulation of their proedure proposed by

Stora [Sto93℄ and reently elaborated by Brunetti and Fredenhagen in [BF99℄. This

setion will not ontain the proofs of the theorems. For them we refer to the latter

artile.

Formally the time ordering is also de�ned for a single argument by the linear rep-

resentation T . The latter is uniquely de�ned for all W ∈ P. This will serve as a

starting point for the indution. Obviously the representation satis�es properties

P1 - P4.

We suppose that all T -produts for up to n− 1 arguments are already onstruted

and satisfy properties P1 - P4. Due to property P3 the time ordered produts for

n arguments are therefore ompletely determined on Mn \ Diagn, i.e. for all test

15
The notation Z 〉〈Zc

means that Z and Zc
are spaelike separated, i.e. Z & Zc

and Zc & Z.
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funtions in D(Mn \ Diagn). To onstrut the distributions o� the diagonal we

introdue at �rst a partition of Mn \Diagn into the spaes

∁Z
def

=
{
(x1, . . . , xn) ∈Mn : xi 6∈ (xj + V −), ∀ i ∈ Z, j ∈ Zc

}

for every Z 6= ∅, Z 6= X.
(4.15)

It is easy to see (and has been proven in [BF99, Lemma 4.1℄) that

⋃

Z 6=∅,

Z 6=X

∁Z =Mn \Diagn. (4.16)

Furthermore we de�ne

TZ(WX)(xX)
def

=

{
T (WZ) (xZ )T (WZc) (xZc) if (x1, . . . , xn) ∈ ∁Z ,

0 otherwise.
(4.17)

TZ(WX)(xX ) is a well de�ned operator valued distribution in Distn(D). Finally we

hoose an arbitrary loally �nite C∞
-partition of unity for Mn \Diagn,

{fZ} :
∑

Z

fZ = 1 on Mn \Diagn,

supp fZ ∈ ∁Z , fZ ∈ C∞(Mn \Diagn).

(4.18)

The restrition of T (WX) (xX) to Mn \Diagn
16

an now be de�ned as

T 0 (WX) (xX)
def

=
∑

Z

fZ(xX) · TZ(WX)(xX). (4.19)

This de�nition does not depend on the hoie of {fZ} beause we assumed that

eqns. (4.12) and (4.13) hold for the T -produts with fewer arguments. This makes

the T 0
-produts well de�ned operator valued distributions on test funtions in

D(Mn \Diagn) that satisfy the properties P1 - P4. For the proofs see [BF99℄.

For the onstrution of the time ordered produts with n arguments the T 0
-produts

must be extended to the diagonal. They are linear ombinations of produts of

numerial distributions t 0 with Wik produts : W1(x1) · · ·Wn(xn) :, where the

Wi(xi) are Wik monomials in Dist1(D). It is not trivial that these produts exist,
beause distributions are multiplied at the same spaetime point, but it was shown

by Epstein and Glaser that translational invariane implies that this produt is

indeed well de�ned � this result is referred to as �Theorem 0� in [EG73, p. 229℄.

From the modern point of view the produt exists beause the wave front sets of the

distributions do not linearly ombine to zero in the otangent spaes, see [BF99℄.

For the extension of the operator valued distributions to the diagonal it su�es to

extend eah numerial distribution t 0 and to prove that the resulting produt is

well de�ned. The latter is no problem here beause the �Theorem 0� applies also

to the extended distributions.

Translational invariane (P4) implies that the numerial distributions t 0 depend

only on the relative oordinates (y1, . . . , yn−1)
def

= (x1 − xn, . . . , xn−1 − xn) suh

that Diagn is the origin in the spae of the y's. This allows us to give a further

restrition to the extension of the numerial distributions to the diagonal: Eah

distribution t 0 is regarded as a distribution in the spae of relative oordinates.

Then the saling degree of the extended distribution t must not exeed that of the

original distribution t 0 in relative oordinates. Brunetti and Fredenhagen [BF99℄

16
That means T 0 (WX) (xX) : D(Mn \Diagn) → End(D)
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prove that suh an extension always exists as a well de�ned distribution for test

funtions in D(Mn−1) � or in D(Mn) if one returns to the original oordinates. It
is unique only if the original distribution has a saling degree sd(t 0) that satis�es
the following inequality:

sd(t 0) < (n− 1)× d (4.20)

where n − 1 is the number of relative oordinates and d the spaetime dimension.

This an be seen as follows: The distribution t is already determined up to the

diagonal Diagn. In other words, two extensions may di�er only by a delta distri-

bution with support at the origin of the relative oordinates or by a derivative of

it. If the saling degree of t 0 satis�es the inequality above, it is not possible to

add a delta distribution or a derivative of it without violating the restrition on the

saling degree. Therefore the solution is unique then. In general the inequality does

not hold and the extension is therefore ambiguous, orresponding to the freedom

of �nite renormalization in other renormalization proedures.

4.3. Antihronologial produts. In this setion we de�ne antihronologial

produts. This de�nition an be given reursively as T 0 = 1l and17

T (WX) (xX)
def

=

= −
∑

Y⊂X,Y 6=∅

(−1)|Y |T (WY ) (xY )T (WY c) (xY c)

= −
∑

Y⊂X,Y 6=X

(−1)|Y c|T (WY ) (xY )T (WY c) (xY c)

(4.21)

for n ≥ 1. Here possible signs that ome from hanges in the order of the arguments

are negleted for simpliity. They an be easily reovered using P2, whih holds

for the T -produts, too (see below).

Iterating the reursive de�nition above one �nds the following expliit expression

for the T -produts:

T (WX) (xX) =
∑

P

(−1)|P |+|X|
∏

p∈P

T (Wp) (xp). (4.22)

Here the sum runs over all partitions P of X into |P | nonempty subsets. With

this de�nition the antihronologial produts beome for non oiniding points, i.e.

xi 6= xj ∀i 6= j,

T (WX) (xX) =
∑

π∈Pn

θ(x0π(1) − x0π(2)) · · ·

· · · θ(x0π(n−1) − x0π(n))T
(
Wπ(n)

)
(xπ(n)) · · ·T

(
Wπ(1)

)
(xπ(1)).

(4.23)

The antihronologial produts satisfy properties P1, P2 and P4. Property P3

holds for them in the reverse order. That means that under the same onditions

and with the same notation as in P3 antihronologial produts satisfy

T
(
WX

)
(xX) = T

(
WZc

)
(xZc )T

(
WZ

)
(xZ), Z & Zc (P3')

justifying their name sine they are de�ned like the time ordered produts but with

the opposite order.

17
The notation is the same as in eqn. (4.11)
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4.4. Normalization onditions. In this setion we formulate the normalization

onditions that restrit the ambiguity in the extension of the T -produts to the

diagonal. They implement Poinaré ovariane (N1) and unitarity (N2). They de-

�ne the time ordered produts up to a C-number distribution (N3) and determine

them uniquely if at least one argument is a generator from G (N4). Finally they

determine Ward identities for the ghost urrent (N5) and the BRS urrent (N6).

It is proven that the onditions (N1) - (N5) have ommon solutions. For ondition

(N6) this must be done for the individual models.

The �rst normalization ondition establishes Poinaré ovariane w.r.t. the repre-

sentation U of the Poinaré group P↑
+ introdued in hapter (3). It reads

(Ad U(p)) T
(
W1, . . . ,Wn

)
(x1, . . . , xn) =

= T (RΛ(W1), . . . ,RΛ(Wn)) (Λ
−1x1 − a, . . . ,Λ−1xn − a)

(N1)

for every p = (a,Λ) ∈ P↑
+ and all monomialsWi ∈ P. Here RΛ is the representation

of the Lorentz group on P introdued in setion (3.1). Property P4 is in view of

(N1) only the speial ase with p = (a, 1l).
Popineau and Stora [PS82℄ have proven that this ondition has always a solution,

but their artile is unfortunately not published. So we refer the reader to Sharf

[Sh95, p. 282℄ for the proof. Reently Prange, Bresser and Pinter, [BPP99℄ and

[Pra99℄, have found even a general onstrution presription for ovariant normal-

izations.

The seond normalization ondition establishes pseudo-unitarity by means of

T (W1, . . . ,Wn)
∗
(x1, . . . , xn) = T (W ∗

n , . . . ,W
∗
1 ) (xn, . . . , x1) ∀Wi ∈ P, (N2)

where the

∗
-involution on the left hand side is the Krein adjoint on End(D), while

the

∗
-involution on the right hand side is the adjoint operation in P de�ned in se-

tion (3.1). Note that the order of the arguments is reversed. It an of be put into

the original order by means of P2.

It was already shown by Epstein and Glaser [EG73℄ that eqn. (N2) an always be

aomplished. Their argument and the ompatibility of (N2) with (N1) an be

easily understood: Suppose, (N2) holds for all integers m < n simultaneously with

eqn. (N1). Then for every normalization T ′ = T (W1, . . . ,Wn) that is ompatible

with eqn. (N1) the distribution T = 1
2 (T

′ + T ′∗) satis�es eqn. (N2) and will also

be an extension of T 0
beause (N2) holds for the T 0

-produts by indution. It will

automatially be a solution of eqn. (N1) sine the representation U was hosen to

be pseudo-unitary, i.e. U(p)∗ = U(p)−1
.

To formulate the third normalization ondition we remind the reader of the om-

mutator funtion ∆jk(x), eqn. (3.60) in setion [3.3℄. The normalization ondition

reads:[
T (W1, . . . ,Wn) (x1, . . . , xn), ϕi(y)

]

∓
=

= i

n∑

k=1

∑

j

∆ij(xk − y) · T
(
W1, . . . ,

∂Wk

∂ϕj
, . . . ,Wn

)
(x1, . . . , xn),

(N3)

for every Wi ∈ P, ϕi(y) = T (ϕi) (y), ϕi ∈ G. The seond sum runs over all

generators in G, not only the basi generators.

Sine an element of End(D) is a multiple of the identity if it (anti-) ommutes

with all the ϕi(y) � see eqn. (3.56) in setion (3.2) �, this ondition determines
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the time ordered produts uniquely up to a C-number, provided the time ordered

produts that involve the sub monomials are known. This an be expliitly seen in

an equivalent equation, the ausal Wik expansion

T
(
W1, . . . ,Wn

)
(x1, . . . , xn) =

∑

γ1,...,γn

ω0

(
T
(
W

(γ1)
1 , . . . ,W (γn)

n

)
(x1, . . . , xn)

)

× : ϕγ1(x1) · · ·ϕγn(xn) :
γ1! · · · γn!

.

(4.24)

Here the γi ∈ INr are multi indies, vetors with one entry for eah of the r gener-
ators in G, i.e.

γi = ((γi)1, . . . , (γi)r) ∈ INr (4.25)

The W (γi)
are derivatives,

W (γi) def

=
∂|γi|W

∂(γi)1ϕ1 · · · ∂(γi)rϕr
, (4.26)

where |γi| =
∑r

k=1(γi)k. The ϕ
γi

are de�ned as

ϕγi(x)
def

= T

(
r∏

k=1

ϕ
(γi)k
k

)
(x). (4.27)

Finally

(γi)!
def

=

r∏

k=1

(γi)k!. (4.28)

It is shown in the appendix, setion A.1, that the ausal Wik expansion is indeed

equivalent with (N3). Compatibility with eqn. (N1) is easily veri�ed sine (N3)

respets the Poinaré transformation properties. With the same onstrution as

after eqn. (N2) one an show that for every ommon solution of (N1) and (N3) a

normalization an be onstruted that is also a solution of (N2).

In partiular in the formulation (4.24) of (N3) it is immediately lear that only

ω0 (T (W1, . . . ,Wn) (x1, . . . , xn)) � the term with γ1 = · · · = γn = 0 in (4.24) � is

left open to be normalized, sine all other terms are determined by the time ordered

produts for the sub monomials. These distributions orrespond to the vauum di-

agrams of the respetive time ordered produt in the Feynman graph piture. So

ondition (N3) has the onsequene that only vauum diagrams need to be (re-)

normalized, a fat that is well known from other renormalization proedures.

The fourth normalization ondition is a di�erential equation that uniquely deter-

mines time ordered produts with at least one generator ϕi ∈ G among its argu-

ments. This assertion holds under the assumption that the time ordered produts

for fewer arguments are already known. The ondition reads:

∑

j

Dy
ijT

(
W1, . . . ,Wn, ϕj

)
(x1, . . . , xn, y) =

= i

n∑

k=1

T

(
W1, . . . ,

∂Wk

∂ϕi
, . . . ,Wn

)
(x1, . . . , xn) δ(xk − y),

(N4)

where Wi ∈ P, ϕj ∈ G. It is proven in the appendix, setion A.2, that ondition

(N4) has ommon solutions with ondition (N3). Compatibility with ondition
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(N1) is again immediate sine (N4) is Poinaré ovariant. A solution of (N1),

(N3) and (N4) that satis�es also (N2) an be found by the same proedure as

above.

In the hapter onerning the interating theory we will see that eqn. (N4) already

implies the interating �eld equations.

Condition (N4) possesses an alternative formulation, like (N3). Its integrated

version reads

T
(
W1, . . . ,Wn, ϕi

)
(x1, . . . , xn, y) =

= i

n∑

k=1

∑

j

∆F
ij(y − xk)T

(
W1, . . . ,

∂Wk

∂ϕj
, . . . ,Wn

)
(x1, . . . , xn)

+
∑

γ1···γn

ω0

(
T
(
W

(γ1)
1 , · · · ,W (γn)

n

)
(x1, . . . , xn)

) : ϕγ1(x1) · · ·ϕγn(xn)ϕi(y) :
γ1! · · · γn!

.

(4.29)

The sum over j runs again over all generators inluding the higher ones.

This formulation shows expliitely that with eqn. (N4) the time ordered produts

with at least one generator among its arguments are already determined. In ap-

pendix (A.2) the equivalene of the two formulations is proven.

Eqn. (N4) uniquely �xes the Feynman propagators for derivated �elds. These in

turn determine all tree level diagrams. Comparing (N4) with results from other

renormalization proedures shows an important di�erene between the ausal ap-

proah and other approahes: The de�nition of the propagators for the derivated

�elds di�er between the ausal approah and other approahes. Therefore also the

Green's funtions at tree level are di�erent. The di�erene between the onven-

tional propagators and our presription is labelled by the normalization onstants

Cϕi,k. Only if all these onstants are set to zero the di�erene disappears. But we

saw already that the propagators are then no longer invertible. For example, in the

onventional renormalization proedures we have

ω0

(
T
(
∂µxAν(x), ∂

ν
yAρ(y)

))
= −i∂xρ∂µxDF (x− y), (4.30)

while the orresponding propagator in our ausal theory reads

ω0

(
T
(
(Aν)

1,µ, (Aρ)
1,ν
)
(x, y)

)
= −i∂xρ∂µxDF (x− y)− iCA,1δµρ δ(x − y). (4.31)

Now we ome to the Ward identities for the ghost urrent. This is a normalization

ondition for time ordered produts that ontain a ghost urrent kµ � see setion

(3.5) � as an argument. It reads

∂yµT (W1, . . . ,Wn, k
µ) (x1, . . . , xn, y) =

=
n∑

k=1

g(Wk) δ(y − xk)T (W1, . . . ,Wn) (x1, . . . , xn)
(N5)

for all monomials Wi ∈ P. It holds if none of the arguments ontains a generator

(ua)(α) or (ũa)(α) with |α| ≥ 2.
The proof that this normalization ondition has ommon solutions with the ondi-

tions (N1) - (N4) is given in appendix (B.1). For a tehnial reason that will be

explained there this normalization ondition an only be proven for arguments Wi

that do not ontain kµ as a sub monomial � in partiular kµ itself is exluded. In

the examples where (N5) is applied in the following hapters this limitation will
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not be relevant.

We state here one partiular fat that will ome out in the proof: There exists

exatly one hoie for the normalization onstant Cu,1 suh that ondition (N5)

has ommon solutions with (N1) - (N4). This hoie is Cu,1 = −1.
Following Dütsh and Fredenhagen [DF99℄ who made the alulation for the Ward

identities for the eletri urrent (see below) we prove in appendix (B.1) that there

exists an integrated version of (N5), namely

scT (W1, . . . ,Wn) (x1, . . . , xn) =

=

(
n∑

k=1

g(Wk)

)
T (W1, . . . ,Wn) (x1, . . . , xn).

(4.32)

So as a onsequene of (N5) the ghost number of a time ordered produt is simply

the sum of the ghost numbers of its arguments.

Eqn. (N5) and (4.32) are equivalent in the following sense: If (N5) holds then

(4.32) is automatially valid, too. If (4.32) holds, then a normalization an be

found that is ompatible with (N5). For details see appendix (B.1).

Dütsh and Fredenhagen [DF99℄ proved an analogous Ward identity for the ele-

tri urrent jµel = ψγµψ. Here ψ and ψ are the eletron and the positron �eld,

respetively. Their Ward identity reads in our language

∂yµT (W1, . . . ,Wn, j
µ
el) (x1, . . . , xn, y) =

= i

(
n∑

k=1

f(Wk) δ(y − xk)
)
T (W1, . . . ,Wn) (x1, . . . , xn).

(N5')

It holds if the monomials Wi do not ontain generators ψ(α)
or ψ

(α)
with |α| ≥ 1.

The existene of ommon solutions of (N5') with the other normalization onditions

an be proven along the same lines as for the ghost urrent Ward identities, provided

that either none of the argumentsWi ontains j
µ
el as a sub monomial or that all the

Wi are the QED Lagrangian LQED = Aµj
µ
el or sub monomials of it.

To formulate the Ward identity for the BRS urrent we antiipate here a ondition

for the Lagrangian that will be illuminated more losely in setion (5.4). In QED

and Yang-Mills theory there exist so alledQ(n)-verties for the Lagrangians. These
are polynomials Lµ1 ,Lµρ2 , · · · ∈ P totally antisymmetri in their Lorentz-indies for

whih the following identities hold:

scT (Lµ1,...,µi

i ) (x) = i∂xρT
(
Lµ1,...,µi,ρ
i+1

)
(x). (4.33)

We admit only polynomials L as Lagrangians if there exist suh Q(n)-verties and
in addition so alled R(n)-verties M1,M2, . . . that are polynomials in P whih

satisfy the following ondition: There exists a normalization of T (Lµ1,...,µi

i , jµ)
that is ompatible with the normalization onditions (N1) - (N4) and for whih

the equation

∂yµT (Lµ1,...,µi

i , jµ) (x, y) = i∂xν

(
δ(x− y)Lµ1,...,µi,ν

i+1 (x)
)

+ i
(
∂xν δ(x − y)

)
Mµ1,...,µi,ν

i+1 (x)
(4.34)

holds. The series of equations terminates at a ertain point i.e. there exists an

m ∈ IN with Lm = 0, Mm = 0. This is the ondition (C4) in setion (5.4). The

R(n)-verties are totally antisymmetri in their Lorentz indies, too.
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With the notion of Q(n)-verties and the R(n)-verties we an give the next nor-

malization ondition, the Ward identities for the BRS urrent:

∂yµT
(
Li1 , . . . ,Lin , jµ

)
(x1, . . . , xn, y) =

= i

n∑

k=1

∂kν

(
δ(y − xk)T

(
Li1 , . . . ,Lνik+1, . . . ,Lin

)
(x1, . . . , xn)

)

+ i

n∑

k=1

(
∂kν δ(y − xk)

)
T
(
Li1 , . . . ,Mν

ik+1, . . . ,Lin
)
(x1, . . . , xn)

(N6)

where i ∈ IN and we de�ne L0 = L.
The same alulation leading to eqn. (4.32) an also be applied to ondition (N6)

and gives the generalized operator gauge invariane

s0T (Li1 , . . . ,Lin) (x1, . . . , xn) =

= i

n∑

k=1

∂kνT
(
Li1 , . . . ,Lνik+1, . . . ,Lin

)
(x1, . . . , xn).

(4.35)

Dütsh, Hurth, Krahe and Sharf, [DHKS94a℄ - [DHS95b℄, found that for eqn.

(4.35) to hold in Yang-Mills theory for two arguments the normalization onstant

CA,1 in eqn. (3.91) must be CA,1 = − 1
2 .

Unfortunately there exists no general proof that ondition (N6) an always be a-

omplished or that it is ompatible with (N3) and (N4)

18
. But we an show that

the generalized operator gauge invariane together with (N5) is already su�ient

for (N6). For the onstrution of solutions of (N6) under the assumption that

generalized operator gauge invariane holds see appendix (B.2).

The proof that either the eqn. (N6) or eqn. (4.35) have ommon solutions with

the other normalization onditions must be done in individual models.

As far as we know QED is the only example where this is done � for the proof

see setion (7.1). The existene of solutions for eqn. (4.35) is in QED a diret

onsequene of the existene of solutions for the eletri urrent Ward identities

(N5').

In Yang-Mills theories the solutions for eqn. (4.35) an be expliitely given in �rst

order, see setion (7.2). A detailed study of (4.35) with i1 = · · · = in = 0 for

Yang-Mills theory without matter �elds an be found in [DHKS94a℄ - [DHS95b℄

� this equation is alled operator gauge invariane. This result has been gener-

alized to Yang-Mills theory with matter �elds by Dütsh [Düt96℄. They ome to

the result that operator gauge invariane holds in that theory provided a weak

assumption onerning the infrared behaviour is satis�ed. Loosely speaking the

infrared behaviour must not be too bad. It is usually assumed that this assumption

is satis�ed, otherwise not even o� shell Green's funtions would exist.

It should be possible to prove the generalized version of operator gauge invariane

under the same assumption and along the same lines as in their alulation, but

this has not been done up to now � and it is probably a long winded work, the

18
At a �rst sight it may seem that (N4) has nothing to do with (N6) sine there is no

generator in the time ordered produts whose normalization (N6) determines. The point is that

ompatibility with (N3) requires a set of relations among whih are also some that involve time

ordered produts that ontain a generator. Then (N4) ould �x their normalization in a way that

ompatibility between (N3) and (N6) is inhibited. In this sense we think that (N4) and (N6)

shall be ompatible.
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original alulation took a series of four artiles.

Another promising strategy to prove generalized operator gauge invariane is to

translate the results of algebrai renormalization [PS95℄ to ausal perturbation the-

ory. The desent equations an be viewed as the generalized operator gauge in-

variane version of that framework. It has been proven in [PS95℄ that they an be

aomplished for Yang-Mills theories. Unlike our ausal approah algebrai renor-

malization is a loop expansion, i.e. an expansion in the parameter ~ and not in the

oupling onstant. Furthermore it is a funtional approah, in ontrast to ausal

perturbation theory whih is an operator approah. So in order to make the results

ited above available to the ausal theory some translational work has to be per-

formed. This has not been done up to now.

For the equations (N6) with

∑
in ≥ 5 the ompatibility of normalization onditions

is easy to prove: These T -produts omply automatially with (N3) and (N4) sine

their ghost number, whih is the minimal number of �eld operators in the Wik

produts in the ausal Wik expansion, exeeds the spaetime dimension, so we are

in the situation of the inequality (4.20) and therefore the extension is unique and

omplies with (N3), (N4) and (N5).

We have stated altogether six normalization onditions for the time ordered prod-

uts (where for the last it remains open whether it an always be aomplished).

One ould ask whether these onditions su�e to make the extension of the T 0
-

produts to the diagonal unique. Unfortunately this is not true. There remains a

ertain ambiguity, even though alulations in �rst order show that the normaliza-

tion onditions restrit the freedom of the extensions severely � in fat there are

many examples where the above onditions su�e to make the extension unique.

The deisive point is that the normalization onditions su�e to prove a lot of

relations in the interating theory like �eld equations, nilpoteny of the interating

BRS harge and others, notwithstanding the remaining ambiguity.

Another interesting feature of these normalization onditions is that a subsequent

enlargement of the algebra P � by the introdution of new basi �elds or by in-

lusion of generators for higher derivatives of the basi �elds than before � does

not hange the normalization of the time ordered produts with arguments in the

original, smaller algebra. Moreover these normalizations do not depend on the

model with regard to whih they are onsidered. For example there are ertain

time ordered produts that our both in QED and in Yang-Mills theory, but due

to our onstrution their normalization is the same in both ases, provided the

normalization onstants Cϕi,k are hosen equal. This is of ourse a onsequene

of the fat that the normalizations are ompletely independent of the Lagrangian.

The latter is in this ontext a polynomial in P not outstanding from the others. So

the idea behind the whole onstrution is to determine all time ordered produts a

priori, store them in a big library and feth them if they are needed for a ertain

alulation. The remaining ambiguity of the time ordered produts is ertainly a

handiap. Ambiguous time ordered produts should be laid down in this library

with an endorsement that they are ambiguous and what the allowed normalizations

are.
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5. Loal ausal perturbation theory

This hapter is devoted to the formulation of loal ausal perturbation theory.

It will establish the onnetion of time ordered produts with interating quantum

�eld theory. In the framework of ausal perturbation theory the S-matrix and the

interating �eld operators are de�ned in terms of time ordered produts, see below.

As usual the interation will be de�ned by the S-matrix. But as we investigate loal

theories, there will be no interpretation of the S-matrix available as an operator

mapping in-states onto out-states. These asymptoti states are a global onept

that looses its meaning in a loal framework. Nevertheless the S-matrix is the

entral objet of the interating theory. It determines the theory sine the loal

interating �eld operators are de�ned in terms of it.

In the ausal approah infrared divergenes are ompletely independent of the ul-

traviolet divergenes � in partiular there annot be a anellation of infrared with

ultraviolet divergenes. We irumvent the problem of infrared divergenes by on-

sidering only loal theories. By a loal theory we mean the following situation: We

hoose an open, bounded domain O ⊂M in Minkowski spae � usually suh that

it is ausally omplete � in whih the interating �elds are loalized and onsider

the �eld algebra generated by these �elds.

The ruial observation that makes it possible to abandon the adiabati limit and

therefore to avoid infrared divergenes is due to Brunetti and Fredenhagen [BF97℄.

They found that a modi�ation of the interation outside the domain O indues

only a unitary transformation of the �eld algebra. Sine this does not touh the

physial ontent of the theory, it is in partiular possible to swith o� the inter-

ation outside O. With the oupling being a test funtion, infrared divergenes

annot our.

The hapter gives a short presentation of ausal perturbation theory in the formula-

tion of Epstein and Glaser [EG73℄. For the reader interested in details of the ausal

approah we refer to the textbook of Sharf [Sh95℄. We use here the notation of

Epstein and Glaser whih is di�erent from that in the book of Sharf.

At �rst we onstrut the S-matrix by means of time ordered produts. In the

seond setion we de�ne interating �eld operators in terms of retarded produts.

Advaned and ausal produts are de�ned in the third setion. The model we

onsider is determined by an interation Lagrangian. It is a polynomial in P, but

not every polynomial in P an serve as a Lagrangian. We postulate in the fourth

setion �ve onditions suh a polynomial must satisfy in order to de�ne a possible

Lagrangian.

5.1. The S-matrix. The S-matrix is de�ned as a formal power series in terms of

time ordered produts of the Lagrangian as

S(gL) def

=
∞∑

n=0

in

n!

∫
d4x1 · · · d4xn g(x1) · · · g(xn)T

(
L, . . . ,L

)
(x1, . . . , xn) (5.1)

Here g is the oupling �onstant�, i.e. in our approah a real test funtion in D(M).
The notation (gL) in the argument of S is of ause only symboli, sine the produt

of a test funtion in D(M) with a symbol in P is not de�ned. It means that the

polynomials are the arguments of the time ordering whih are smeared out with
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the test funtions. For sums the symboli notation means e.g.

S(g1W1 + g2W2)
def

= 1l + i

∫
d4x1 [g1(x1)T (W1) (x1) + g2(x1)T (W2) (x1)] + . . . .

(5.2)

The S-matrix is an element in C̃ · EndD, i.e. the set of formal power series whose

elements are endomorphisms on D. This is true beause T (L, . . . ,L) (x1, . . . , xn) ∈
Distn(D) and g(x1) · · · g(xn) ∈ D(Mn).
The S-matrix is also the generating funtional of the time ordered produts, i.e.

the time ordered produts an be reovered from the S-matrix by means of

T
(
W1, . . . ,Wn

)
(x1, . . . , xn) =

δn

inδg1(x1) · · · δgn(xn)
S

(
n∑

k=1

gkWk

)∣∣∣∣∣
g1=···gn=0

.

(5.3)

The inverse S-matrix S−1(gL) is also a formal power series. From eqn. (4.21) we

onlude

S−1(gL) =
∞∑

n=0

(−i)n
n!

∫
d4x1 · · · d4xn g(x1) · · · g(xn)T

(
L, · · · L

)
(x1, . . . , xn).

(5.4)

The S-matrix is also pseudo unitary, S(gL)∗ = S−1(gL), by means of normalization

ondition (N2).

5.2. Interating �elds and retarded produts. The interating �elds are on-

struted aording to Bogoliubov as operator valued distributions by

(Wi)
gL
int (y)

def

= S(gL)−1 δ

iδh(y)
S(gL+ hWi)

∣∣∣
h=0

. (5.5)

Here h is a test funtion in D(M). The orresponding loalized �eld operators are

(Wi)
gL
int (f)

def

=

∫
d4yf(y) (Wi)

gL
int (y) (5.6)

where f is a test funtion with support in the domain O as. The algebra of �eld

operators that are loalized in O is denoted as F̃(O).
Inserting the de�nition of the S-matrix the distributional �eld operators an be

written as

(Wi)
gL
int (y) =

∞∑

n=0

in

n!

∫
d4x1 · · · d4xn g(x1) · · · g(xn)

×R
(
L, · · · ,L;Wi

)
(x1, . . . , xn; y).

(5.7)

This expression ontains the so alled retarded or R-produts whose de�nition in

terms of T - and T -produts reads

R
(
W1, . . . ,Wn;Wi

)
(x1, . . . , xn; y)

def

=
∑

Y⊂X

(−1)|Y |T (WY ) (xY )T (WY c ,Wi) (xY c , y).
(5.8)
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Here X = {x1, . . . , xn}. For the notation we refer to eqn. (4.11).

Aording to eqn. (4.21) the retarded produts an be alternatively expressed as

R (W1, . . . ,Wn;Wi) (x1, . . . , xn; y)

=
∑

Y ∈X

(−1)|Y |T (WY ,Wi) (xY , y)T (WY c) (xY c). (5.9)

Causality (4.13) implies that the retarded produts have retarded support (justify-

ing their name), i.e.

suppR (WX ;Wi) (xX , y)

⊂
{
(x1, · · · , xn, y) ∈Mn+1 : xi ∈

(
y + V −

)
∀xi ∈ X

}
.

(5.10)

The interating �elds in F̃(O) therefore depend only on the interation in the

past of O. From the de�nition of the interating �eld distributions Dütsh and

Fredenhagen derive in [DF99℄ the ommutator relation:

[(
W 1
)gL
int

(x) ,
(
W 2
)gL
int

(y)
]

∓
= −

∞∑

n=0

in

n!

∫
d4x1 · · · d4xn g(x1) · · · g(xn)×

{
R
(
L, . . . ,L,W 1;W 2

)
(x1, . . . , xn, x; y)

∓R
(
L, . . . ,L,W 2;W 1

)
(x1, . . . , xn, y;x)

}
.

(5.11)

5.3. The advaned and the ausal produt. The advaned produt is de�ned

as

A
(
W1, . . . ,Wn;Wi

)
(x1, . . . , xn; y)

def

=
∑

Y⊂X

(−1)|Y |T
(
WY c

)
(xY c)T

(
WY ,Wi

)
(xY , y)

(5.12)

or, with the alternative expression analogous to eqn. (5.9),

A
(
W1, . . . ,Wn;Wi

)
(x1, . . . , xn; y)

=
∑

Y ∈X

(−1)|Y |T (WY c ,Wi) (xY c , y)T
(
WY

)
(xY ).

(5.13)

They have advaned support,

suppA
(
WX ;Wi

)
(xX , y)

⊂
{
(x1, . . . , xn, y) ∈Mn+1 : xi ∈

(
y + V +

)
∀xi ∈ X

}
.

(5.14)

The interating �elds an also be de�ned in terms of advaned produts instead of

retarded produts without hanging the loal �eld algebra if we de�ne

(Wi)
gL
int (f) =

∫
d4y f(y)

δ

iδh(y)
S(gL+ hWi)

∣∣∣
h=0
× S(gL)−1. (5.15)

This would only result in a unitary transformation on F̃(O) with S(gL) as the

unitary operator.



46

Finally we de�ne the ausal produt as

D
(
W1, . . . ,Wn;Wi

)
(x1, . . . , xn; y)

def

= R
(
W1, . . . ,Wn;Wi

)
(x1, . . . , xn; y)−A

(
W1, . . . ,Wn;Wi

)
(x1, . . . , xn; y)

(5.16)

whih has obviously ausal support:

suppD
(
WX ;Wi

)
(xX , y)

⊂
{
(x1, . . . , xn, y) ∈Mn+1 : xi ∈

(
y + V

)
∀xi ∈ X

}
.

(5.17)

5.4. Conditions on the interation Lagrangian. Up to now the Lagrangian

density L that de�nes the model via the S-matrix ould have been an arbitrary

polynomial in P. There is a number of restritions that suh a polynomial must

satisfy before it an de�ne a reasonable physial model. In this setion we will

ollet these restritions.

At �rst, it must be Lorentz invariant:

(Ad U(p))T (L) (x) = T (L) (Λ−1x) ∀ p = (0,Λ) ∈ P↑
+. (C1)

The seond ondition it must satisfy is pseudo-unitarity:

(T (L))∗ (x) = T (L) (x). (C2)

Furthermore it must have vanishing ghost number,

scT (L) (x) = 0. (C3)

A Lagrangian with non vanishing ghost number would de�ne a strange theory. The

individual orders in perturbation theory of an interating �eld would have a ghost

number inreasing (or dereasing) with the order. Suh a theory would be super-

renormalizable, provided it is power ounting renormalizable, see below.

Sine the S-matrix should also be BRS-invariant, one ould also expet an equation

like

s0T (L) (x) = 0 (5.18)

to hold. Unfortunately it is in general � and spei�ally in QED and Yang-Mills-

theory � impossible to �nd a Lagrangian for whih eqn. (5.18) holds. So we must

weaken the ondition a little. Therefore we demand that there exist polynomials

Lµ1...µn
n in P, the so alled Q(n)-verties, suh that the following equations hold:

s0T (Lµ1,...,µn
n ) (x) = i∂xρT

(
Lµ1,...,µn,ρ
n+1

)
(x). (C4)

The Q(n)-verties must be totally antisymmetri in their Lorentz indies. The

other index indiates the ghost number

g (Ln) = nLn. (5.19)

In (C4) there will be only a �nite number of nontrivial equations, i.e. there exists

an m ∈ IN suh that Lm = 0. The Q(n)-verties have always the same anon-

ial dimension as the original vertex L, and they also ontain the same number

of generators. Therefore L5 = 0 for power ounting renormalizable theories (see

below) sine L5 must have ghost number �ve and it is impossible to onstrut a

polynomial with ghost number �ve and a anonial dimension not exeeding four.

If the original vertex ontains only three generators as it is usually the ase then

already L4 = 0. In Yang-Mills theory � with or without matter � even L3 = 0
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and in QED L2 = 0. These results an be derived by expliit alulation.

The last ondition on the Lagrangian we want to impose is power ounting renor-

malizability. Perturbation theories an be divided into three groups aording to

the anonial dimension of their Lagrangian: Those with a anonial dimension

less than the spaetime dimension are super renormalizable, that means the num-

ber of free normalization parameters dereases with the order and �nally vanishes,

so the theory is ompletely determined by a �nite number of suh parameters.

Power ounting renormalizable theories are those where the anonial dimension

equals the spae time dimension. For those theories there exists for all orders in

perturbation theory a ommon upper bound for the number of free parameters

in the extension. Non renormalizable theories have Lagrangians whose anonial

dimension exeeds the spaetime dimension, and this leads to a number of free

normalization parameters that may inrease with the order. Although the predi-

tive power of suh theories � perturbative gravitation is an example of those � is

rather poor, it is nevertheless possible to deal with them in the framework of ausal

perturbation theory.

For our onsiderations non renormalizable Lagrangians play no role and therefore

we exlude them expliitely. As we always work in four spaetime dimensions, the

ondition for renormalizability reads

degL ≤ 4, (C5)

where deg means the anonial dimension.
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6. The interating theory

In this hapter we ome bak to the program for the onstrution of interating

gauge theories outlined in hapter (2). We formulated at the end of setion (2.3)

four requirements for an interating gauge theory. With the onstrution of lo-

al interating �eld theories in the last hapter and the normalization onditions in

hapter (4) we are now able to determine under whih onditions these requirements

an be aomplished. The �rst ondition � the ondition that suitable ghost and

BRS harges an be found in the free model � must be veri�ed for the individual

model. This has been done for the free models underlying QED and Yang-Mills

theory in setion (3.5). In this hapter we will see that the other three onditions

hold if all normalization onditions (N1) - (N6) are satis�ed and if the onditions

(C1) - (C5) are valid for the Lagrangian L whih de�nes the model. We assume

throughout this hapter that these preonditions hold.

In the �rst setion we ollet a number of properties all interating �elds share from

their very de�nition. Among them are e.g. ovariane and loality. In addition we

derive a relation between the interating �eld operators for the higher generators

and those for the basi generators.

In the seond setion we formulate �eld equations for the interating �eld operators.

These equations are determined by normalization ondition (N4).

In the third setion we ome to interating operators that are of partiular impor-

tane in gauge theories. In this setion we de�ne the interating ghost urrent, the

interating ghost harge and the ghost number of interating �elds. We prove that

the interating ghost urrent is onserved and that the higher order ontributions

of the ghost harge vanish. As a onsequene every interating �eld has the same

ghost number as the orresponding free �eld.

In the fourth setion we de�ne the most essential operators in an interating gauge

theory: the interating BRS urrent, the interating BRS harge and the interat-

ing BRS transformation. We �nd that the interating BRS urrent is onserved

only where the test funtion g that de�nes the oupling is onstant. The BRS

harge is onstruted only for spaetimes that are ompati�ed in spaelike dire-

tions. Otherwise its de�nition would not be well posed. We prove also that with

our de�nitions the BRS algebra holds. This means in partiular that the interating

BRS harge is nilpotent.

In the last setion we examine the relation between the quantum �eld theory de-

�ned above and its orresponding lassial theory and formulate a orrespondene

law for these theories.

6.1. General properties of interating �elds. We begin our onsiderations

with

C-numbers: From the de�nition of the retarded produts, eqn. (5.8), we an �nd

that they vanish if at least one of their arguments is a multiple of the identity �

provided the total number of arguments is at least two, see [DF99℄. This implies

immediately for interating �elds that are generated by C-numbers that they possess
no higher order terms:

(α · 1l)gLint (x) = α · 1l, α ∈ C. (6.1)

Lorentz ovariane: The fat that the Lagrangian is a Lorentz salar implies, to-

gether with ondition (N1), the Lorentz transformation properties of the interating
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�eld operators:

(Ad U(p)) (Wi)
gL
int (x) = (RΛ (Wi))

gpL
int (x− a) , ∀p = (a,Λ) ∈ P

↑
+ (6.2)

where R is the representation of the Lorentz group (or its overing group) de�ned

in setion (3.1) and gp = g(Λ−1x− a).
Pseudo-hermitiity: Due to the onditions (C2) and (N2) the Krein adjoint of the

interating �elds is given by

(
(Wi)

gL
int (x)

)∗
=
(
W ∗
i

)gL
int

(x) ∀Wi ∈ P. (6.3)

The

∗
-involution on the right hand side is the one introdued in setion (3.1).

Loality: A very important property of interating �elds is their loality. This

means that two interating �eld operators (anti-) ommute with eah other if they

are loalized in spaelike separated regions. This an immediately be derived from

eqn. (5.11):

[(
W 1
)gL
int

(x) ,
(
W 2
)gL
int

(y)
]

∓
= 0 if x 〉〈 y. (6.4)

Primary interating �elds: Due to normalization ondition (N4) the interating

�elds for the higher generators may be expressed by those for the basi generators

as:

(
(ϕi)

(n,ν1...νn)
)gL
int

(x) = ∂ν1x · · · ∂νnx
(
(ϕi)

(0)
)gL
int

(x)

+ Cϕi,ng(x)

(
∂L

∂ϕ̃
(n,ν1...νn)
i

)gL

int

(x) ,

(6.5)

where ϕ̃i is the �eld onjugated to ϕi.

6.2. The interating �eld equations. Now we state �eld equations for the in-

terating �eld theory. They are again already determined by ondition (N4) and

read

∑

j

Dx
ij (ϕj)

gL
int (x) = −g(x)

(
∂L
∂ϕi

)gL

int

(x) . (6.6)

Inserting here the de�nition of Dx
� eqn. (3.86) and the following ones � we �nd

that this implies in partiular

Kϕi,x
(
(ϕi)

(0)
)gL
int

(x) = −
∞∑

n=0

(−1)n∂ν1x · · · ∂νnx

(
g(x)

(
∂L

∂(ϕ̃i)(n,ν1...νn)

)gL

int

(x)

)
,

(6.7)

where Kϕi,x
was de�ned in eqn. (3.88). These are exatly the �eld equations

that are derived as the Euler-Lagrange equations for a lassial �eld theory with

a Lagrangian L0 + L, where L is the interation Lagrangian and L0 is the free

Lagrangian that implies the free �eld equations

Kϕi,xϕi(x) = 0, ϕi(x) a lassial �eld. (6.8)

But there is one important di�erene between the �eld equations in the lassial

theory and those in the quantum theory. While the lassial �eld equations gov-

ern the dynamis of the system, this in not true for the quantum �eld equations.

The reason is that the lassial theory has fewer independent variables. The �eld



50

equations determine the time evolution of the basi �elds on the left hand side.

Therefore the time evolution of the entire lassial theory is determined by the

�eld equations, sine all variables are basi �elds or produts thereof. This is not

true in the quantum theory, beause the interating �elds for omposed elements

in the algebra P are not produts of those for the generators

19
. Therefore the time

evolution of the interating �elds for omposed elements of P is left open by the

equations above.

The quantum �eld equations are ompletely independent of the normalization on-

stants Cϕi,k in eqn. (3.78). They are also independent of the normalization of time

ordered produts, provided ondition (N4) applies.

6.3. The interating ghost urrent and the ghost harge. The interating

ghost urrent is de�ned as the interating �eld operator that is generated by the

free ghost urrent kµ, see setion (3.5):

k̃µ(x)
def

= (kµ)
gL
int (x) . (6.9)

This urrent is onserved as is easily derived by means of (N5) and (C3):

∂xµk̃
µ(x) = 0. (6.10)

From eqn. (6.3) and the fat that the free ghost urrent is anti-pseudo-hermitian

we �nd that the interating ghost urrent is anti-pseudo-hermitian, too:

(
k̃µ(x)

)∗
= −k̃µ(x). (6.11)

The interating ghost harge is de�ned as

Q̃c
def

= lim
λց0

∫
d4y hλ(y)k̃

0(y), (6.12)

where hλ(x
0,x) = λht(λx0)b(λx), see eqn. (3.103). Here the oordinate frame is

hosen suh that the origin 0 is in the domain O where the �elds are loalized. We

restrit the admissible spatial test funtions b: At �rst the temporal test funtion

ht is seleted suh that 0 ∈ suppht and the following equation holds:

(
supp(∂g) ∩

[
O + V +

])
&
(
suppht × IR3

)
&
(
supp(∂g) ∩

[
O + V −

])
. (6.13)

Then only test funtions b are admitted with the following properties: b(x) = 1 for

all x ∈ IR3
for whih an x0 ∈ suppht exists suh that

(x0,x) ∈
(
supp g + V +

)
. (6.14)

The question arises whether the limit in the de�nition of Q̃c exists. We will show

that this is indeed true.

The zeroth order of the interating ghost urrent is simply the free ghost urrent.

For the free urrent we know already that the limit exists, so we on�ne our atten-

tion to the higher orders.

We will prove that the higher orders of the ghost harge do not depend on λ. For
this purpose we alulate for the nth

order of the ghost harge, n ≥ 1 and λ ≤ 1:

Qnc,λ −Qnc,1 =

∫
d4x

(
hλ(x)− h1(x)

)
k̃0,n(x). (6.15)

19
A produt of distributional �eld operators is not de�ned a priori. It an be examined in

the framework of operator produt expansions [Wil69, Wil71, Zim73℄, but we will not disuss this

here.
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Here k̃µ,n is the nth
order of the ghost urrent. We have for all n ≥ 1 that

supp k̃µ,n ⊂
(
supp g + V +

)
due to the support properties of the retarded prod-

uts.

With our onventions for the test funtions we an substitute in eqn. (6.15) on the

right hand side ht(x0)b(λx) for h1(x) = ht(x0)b(x) beause ht(x0) (b(λx)− b(x))
vanishes on the support of k̃µ,n, n ≥ 1. Then eqn. (6.15) beomes

Qnc,λ −Qnc,1 =

∫
d4x

(
λht(λx0)− ht(x0)

)
b(λx)k̃0,n(x). (6.16)

There exists a test funtion Hλ ∈ D(IR) suh that

∂x0Hλ(x
0) =

(
λht(λx0)− ht(x0)

)
. (6.17)

Inserting this into (6.15) we get

Qnc,λ −Qnc,1 =

∫
d4x

(
∂x0Hλ(x

0)
)
b(λx)k̃0,n(x)

= −
∫
d4xHλ(x

0)
(
∂xi b(λx)

)
k̃i,n(x),

(6.18)

where we have partially integrated and used the fat that k̃µ is onserved. By

onstrution we have

supp
(
Hλ(x

0) (∂xi b(λx))
)
∩
(
supp g + V +

)
= ∅. (6.19)

Comparing this with the support of k̃µ,n, we see that the integral vanishes. There-

fore the higher orders of Q̃c do not depend on λ. Even more, beause of urrent

onservation, eqn. (6.10), one an hoose ht suh that the support of h1 is entirely

in the past of supp g. Then the higher order terms vanish due to the support prop-

erties of the retarded produts, so the interating ghost harge oinides with the

free ghost harge or, stritly speaking sine Q̃c is a formal power series,

Q̃c = (Qc, 0, 0, · · · ). (6.20)

Sine the ghost urrent is anti-pseudo-hermitian, the ghost harge is it, too:

Q̃∗
c = −Q̃c. (6.21)

The interating ghost number of a loalized �eld operator is measured by the fol-

lowing derivation:

s̃c

(
(Wi)

gL
int (x)

)
def

=
[
Q̃c, (Wi)

gL
int (x)

]

−
. (6.22)

As the interating ghost harge oinides with the free one, we have

s̃c

(
(Wi)

gL
int (x)

)
= sc

(
(Wi)

gL
int (x)

)
. (6.23)

This implies immediately, due to (N5) and (C3), that the interating �eld operators

have the same ghost number as the orresponding free �elds:

s̃c

(
(Wi)

gL
int (x)

)
= g(Wi) (Wi)

gL
int (x) , g(Wi) ∈ ZZ. (6.24)
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6.4. The interating BRS urrent, BRS harge and BRS transformation.

The natural hoie for the BRS urrent,

̃µB(x) = (jµB)
gL
int (x) , (6.25)

is not onserved in general, so this annot be the orret interating BRS urrent.

The situation is even worse: Expliit alulations in �rst order QED and Yang-Mills

theory shows that there exists no normalization of the time ordered produts suh

that this urrent is onserved even in �rst order, irrespetive of our normalization

onditions. The best one an ahieve is that the urrent is onserved where the

oupling is onstant, and even this seemingly liberal ondition �xes the normaliza-

tion in �rst order uniquely.

A diret alulation reveals that this normalization is not ompatible with the nor-

malization onditions (N3) and (N4). But there is an expression for the interating

BRS urrent that is ompatible with the normalization onditions in �rst order and

that is onserved in the sense above, not only for Yang-Mills theories but for every

theory. Adopting this expression as the de�nition of the interating BRS urrent

we have

̃µB(x)
def

= (jµB)
gL
int (x)− g(x) (M

µ
1 )
gL
int (x) , (6.26)

where Mµ
1 is the R(1)-vertex, see ondition (C4). Normalization ondition (N6)

implies that this urrent is indeed onserved where the oupling g is onstant:

∂xµ ̃
µ
B(x) = (∂νg)(x) (Lν1)gLint (x) . (6.27)

The fat that the interating BRS urrent is not everywhere onserved is a severe

drawbak, sine it ompliates the de�nition of the BRS harge, see below. So the

question arises whether a more lever hoie for the BRS urrent ould have yielded

one that is everywhere onserved. But this turns out to be impossible in general.

Conretely, in QED as well as in Yang-Mills theory the expliit alulation shows

already in �rst order that no suh hoie exists. So in general this result annot be

improved.

By the same reasoning as for eqn. (6.11) one derives that ̃µB is pseudo-hermitian

(̃µ(x))∗ = ̃µ(x). (6.28)

Now we ome to the de�nition of the BRS harge. As already mentioned this

de�nition is more di�ult than that of the ghost harge was, sine the BRS urrent

is not everywhere onserved. The problem an be seen as follows: The natural

hoie for the BRS harge would be

Q̃B = lim
λց0

∫
d4y hλ(y)̃

0
B(y), (6.29)

with hλ like above. Unfortunately this expression would depend on the hoie of

hλ, unlike for Q̃c, and the higher orders would depend on λ, both beause the BRS

urrent is not onserved. If the higher orders depend on λ the limit is no longer

under ontrol.

In order to make Q̃B independent of hλ, the support of hλ must be for every λ in

a region where g is onstant. This would mean that g is everywhere onstant, i.e.

the adiabati limit must be performed, and this limit does not exist in general.

Another possibility would be not to perform the limit and hoose e.g. h1 as a

test funtion in the de�nition of the BRS harge. In this ase the BRS harge

would learly beome well de�ned, but it would also be a loal operator, and suh
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an operator ould not annihilate states with �nite energy due to the theorem of

Reeh and Shlieder. It is unlikely that the ohomology de�ned with it has good

properties, and therefore we exlude this possibility.

The way out of this seemingly pitfall was found by Dütsh and Fredenhagen [DF99℄.

In order to allow funtions that are onstant in spaelike diretions as test funtions,

they embed the double one O isometrially into the ylinder IR× CL with IR the

time axis and CL a ube of length L su�iently big to ontain O. This spatial

ompati�ation does not hange the properties of the loal algebra F̃(O). This is
why the quantization of free �elds in a box, mentioned in hapter (3), is important

for us. For the details of the onstrution we refer to [DF99℄.

In the ompati�ed spae h and g an be hosen to be test funtions suh that g is
onstant on supph with the same value as on O.
With these test funtions we are able to give a de�nition of the interating BRS

urrent in a spatially ompati�ed spaetime. At �rst, we hoose the test funtion

h to be

h(x) = ht(x0), ht like in (3.103), =⇒ h ∈ D(IR × CL), (6.30)

and the oupling g suh that

g|supph = g|O = onstant, g ∈ D(IR× CL). (6.31)

With g and h now both being a test funtion � on IR×CL � the BRS harge an

be de�ned as

Q̃B
def

=

∫

IR×CL

d4y h(y)̃ 0B(y). (6.32)

It is easy to see by an analogous reasoning as for the ghost harge that this BRS

harge is independent of h.
The zeroth order of this BRS harge agrees with the free BRS harge in the IR×CL
spaetime, Q̃B,0 = QB, if hλ is replaed there by h. Of ourse the limit is then

not performed beause it would be void. Unlike the interating ghost harge the

interating BRS harge has also non vanishing higher order ontributions. The rea-

soning whih showed that the higher ontributions of Q̃c vanish annot be applied

here, sine supph may not be (not even partly) in the past of supp g from its very

de�nition.

Like the BRS urrent the BRS harge is pseudo-hermitian:

Q̃∗
B = Q̃B. (6.33)

Sine scQB = QB in the free theory, we �nd with eqn. (4.32)

[
Q̃c, Q̃B

]

−
= s̃c

(
Q̃B

)
= Q̃B. (6.34)

So the �rst part of the BRS algebra holds. The most important property of the

BRS harge is its nilpoteny, the seond part of the BRS algebra. This will be

proven next.

To this end we write at �rst Q̃B in a di�erent form that is more adequate for

the proof. We use for the interating �eld (jµ)gLint (x) in the de�nition of ̃µ the

equation (B.25) from the appendix and the identity Q̃c = Qc, eqn. (6.20). With it
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the interating BRS harge an be written as

Q̃B = QB +

∞∑

n=0

in

n!

∫
d4yd4zd4x1 · · · d4xnh(y)(∂νg)(z)×

× g(x1) · · · g(xn)R
(
L, . . . ,L,Lν1 ; k0

)
(x1, . . . xn, z; y).

(6.35)

The �rst term in the sum on the right hand side is the free BRS harge. Sine its

properties are already known, we on�ne our attention to the higher order terms.

From the form of these terms one an see immediately that the interating BRS

harge beomes the free one in the adiabati limit, if this limit exists. We are here

partiularly interested in theories where the adiabati limit does not neessarily

exist.

We introdue a test funtion H ∈ D(IR× CL) with the property

∂yµH(y) = −δ0µh(y), H ∈ D(IR× CL), (6.36)

suh that H(x) = 1 for all x in the past of supp g and H(x) = 0 for all x in

the future of supp g. Inserting this into the expression above, we �nd by partial

integration and with the help of eqn. (N5) the following alternative formulation

for the nth
order of Q̃B, n ≥ 1:

Q̃
(n)
B =

in−1

(n− 1)!

∫
d4zd4x1 · · · d4xn−1H(z)(∂νg)(z)×

× g(x1) · · · g(xn−1)R
(
L, . . . ,L;Lν1

)
(x1, . . . , xn−1; z).

(6.37)

The nth order of (Q̃B)
2
deomposes aording to

(
(Q̃B)

2
)(n)

=

n∑

k=0

(Q̃B)
(k)(Q̃B)

(n−k) = s0

(
(Q̃B)

(n)
)
+

n−1∑

k=1

(Q̃B)
(k)(Q̃B)

(n−k).

(6.38)

At �rst we will alulate s0

(
(Q̃B)

(n)
)
. With the help of the generalized operator

gauge invariane, eqn. (4.35), with i1 = 1 and ik = 0 otherwise, we get

s0(Q̃B)
(n) =

=
in−2

(n− 2)!

∫
d4x1 · · · d4xn−2 d

4y d4z g(x1) · · · g(xn−2)

× (∂ρg)(y)H(y) (∂µg)(z)H(z)R
(
L, . . . ,L,Lρ1;Lµ1

)
(x1, . . . , xn−2, y; z)

+
in

(n− 1)!

∫
d4x1 · · · d4xn−1 d

4z g(x1) · · · g(xn−1)

×
(
∂zρ [(∂µg)(z)H(z)]

)
R
(
L, . . . ,L;Lµρ2

)
(x1, . . . , xn−1; z).

(6.39)

Here an additional fator H(y) has been inserted in the �rst integral. This fator

does not hange the result due to the retarded support of the distribution.

Let us at �rst onsider the seond integral on the right hand side. Calulating

the derivative of the square braket in the last line, we get (∂µ∂ρg)(z)H(z) +
(∂µg)(z)(∂ρ)H(z). The seond term vanishes sine the supports of ∂g and ∂H
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are disjoint. The �rst term is symmetri in µ and ρ while the retarded produt is

antisymmetri in these indies, due to the antisymmetry of the Q(2)-vertex. There-
fore the entire seond integral vanishes.

Now we ome to the �rst integral. Here the test funtions are also symmetri un-

der permutation of (z, µ) and (y, ρ). If we look at the de�nition of the retarded

produts, eqn. (5.8), we see that there are terms where both Lµ1 and Lρ1 appear as

arguments in the same time ordered produt or antihronologial produt. These

ontributions vanish, beause the distributions are antisymmetri in (z, µ) and (y, ρ)
due to graded symmetry (P2). The only ontributions that remain lead to our �nal

expression for s0(Q̃B)
(n)

:

s0(Q̃B)
(n) =

= − in−2

(n− 2)!

∫
d4x1 · · · d4xn−2 d

4y d4z g(x1) · · · g(xn−2) (∂ρg)(y)H(y)

× (∂µg)(z)H(z)
∑

Y⊂X

(−1)|Y |T (L, . . . ,L,Lρ1) (xY , y)T (L, . . . ,L,Lµ1 ) (xY c , z)

(6.40)

with X = {x1, . . . , xn−2}.
To alulate

∑n−1
k=1 (Q̃B)

(k)(Q̃B)
(n−k)

we make use of the two ways to express R-

produts in terms of T - and T -produts, that means we use eqn. (6.37) for the

individual orders of the BRS harge, inserting eqn. (5.9) for the retarded produts

on the left hand side and eqn. (5.8) for those on the right hand side. Then we get

after a little ombinatorial analysis

n−1∑

k=1

(Q̃B)
(k)(Q̃B)

(n−k) =

=
in−2

(n− 2)!

∫
d4x1 · · · d4xn−2 d

4y d4z g(x1) · · · g(xn−2) (∂ρg)(y)H(y) (∂µg)(z)

×H(z)




∑

Y,Z,U,V

(−1)|Z|+|V |
(
T
(
L, . . . ,L,Lµ1

)
(xZ , z)T

(
L, . . . ,L

)
(xY )

)

×
(
T
(
L, . . . ,L

)
(xV )T

(
L, . . . ,L,Lρ1

)
(xU , y)

)


 ,

(6.41)

where the sum in the square brakets runs over all disjoint partitions of X into

four subsets U, V, Y, Z. These subsets may be empty. This set of partitions an

be divided into two subsets, namely the set of those partitions where Y and V are

empty and its omplement. This omplement an in turn be divided in subsets

with U and Z �xed, yielding terms proportional to

∑

W⊂X\U\Z

(−1)|W |T (L, . . . ,L) (xW )T (L, . . . ,L) (xX\U\Z\W ). (6.42)

This expression vanishes due to eqn. (4.21) beause X \ U \ Z 6= ∅ aording to

our assumption. So there remains only a ontribution from the partitions with
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Y = V = ∅, and sine T0 = T 0 = 1l, there remains only

n−1∑

k=1

(Q̃B)
(k)(Q̃B)

(n−k) =

=
in−2

(n− 2)!

∫
d4x1 · · · d4xn−2 d

4y d4z g(x1) · · · g(xn−2) (∂ρg)(y)H(y)

× (∂µg)(z)H(z)
∑

Y⊂X

(−1)|Y |T (L, . . . ,L,Lρ1) (xY , y)T (L, . . . ,L,Lµ1 ) (xY c , z).

(6.43)

Obviously this is just the negative of eqn. (6.40), yielding

(
(Q̃B)

2
)(n)

= s0

(
(Q̃B)

(n)
)
+

n−1∑

k=1

(Q̃B)
(k)(Q̃B)

(n−k) !
= 0. (6.44)

Reviewing our preonditions, we have proven that with our de�nition the BRS

harge is nilpotent � and therefore the omplete BRS algebra holds �, provided

our normalization ondition (N6) is valid.

At the end of this setion we ome to the interating BRS transformation s̃. It

ould be de�ned as

s̃
(
(W )

gL
int (x)

)
=
[
Q̃B, (W )

gL
int (x)

]

∓
. (6.45)

But it turns out to be more lever to permute ommutation and integration, and

we de�ne

s̃
(
(W )

gL
int (x)

)
def

=

∫

IR×CL

d4y h(y)
[
̃0B(y), (W )

gL
int (x)

]

∓
(6.46)

with h and g as in the de�nition of Q̃B. The advantage of this de�nition is that

it remains well de�ned for s̃ ating on loal �elds in F̃(O) even if the spaetime

is not ompati�ed and h has ompat support only in timelike diretions being

onstant in spaelike diretions. This is well de�ned beause loality, eqn. (6.4),

holds � both ̃0B and (W )gLint (f) are loal �elds. Therefore the ommutator has

ausal support, so the integrand vanishes in the ausal omplement of O.

s̃
(
(W )

gL
int (f)

)
def

=

∫
d4y h(y)

[
̃0B(y), (W )

gL
int (f)

]

∓
(6.47)

is a well de�ned expression in Minkowski spae, if h is hosen suh that

h(x) = ht(x0), ht ∈ D(IR) as in eqn. (3.103),

g is onstant on
(
O + V −

)
∩
(
supph+ V +

)
.

(6.48)

This expression is independent of h. The BRS transformation is nilpotent. This

an be seen by diret omputation � the alulation is then ompletely analogous

to that for (Q̃B)
2 = 0 in the ompati�ed spaetime. A di�erent way to prove that

s̃ is nilpotent is to onsider s̃ in a ompati�ed spaetime � where s̃2 = 0 follows

diretly from (Q̃B)
2 = 0. Then let the ompati�ation length L tend to in�nity.

The resultant spae will be the Minkowski spae and s̃2 = 0 still holds sine the

algebra does not depend on the ompati�ation length. Therefore

s̃2A = 0 ∀A ∈ F̃(O). (6.49)
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It is important to note that this reasoning holds only for loal operators. In par-

tiular the argument of Nakanishi and Ojima [NO90℄ that a nilpotent BRS trans-

formation de�nes a nilpotent BRS harge an not be applied here. Their argument

is as follows:

Q̃B
def

= −s̃Q̃c and 0 = s̃2(Q̃c) = −s̃(Q̃B) = −2Q̃2
B, (6.50)

but sine Q̃c is not a loal operator it is not in the domain of s̃ in the framework

of ordinary spaetime.

So we arrive at the following result: For all investigations onerning the state spae

it is neessary to ompatify spaetime, sine we need the BRS harge to de�ne the

physial state spae, and this is only de�ned in a ompati�ed spaetime. But

for investigations onerning only the algebra of loal observables there is no need

for a ompati�ation beause the de�nition of observables requires only the BRS

transformation, not the BRS harge, and the former an also be de�ned in an

ordinary spaetime.

Summarizing the results of this and the preeeding hapter we see that all the

preonditions that we postulated at the end of setion (2.3) are satis�ed. The only

restrition is that the BRS urrent is onserved only loally, but this is su�ient

for the onstrution of the loal interating gauge theory.

This result was derived under the assumption that the normalization onditions

(N1) - (N6) and the onditions on the Lagrangian are satis�ed. We proved in

hapter (4) that the �rst �ve normalization onditions have simultaneous solutions.

So the essential point is whether ondition (N6) an be satis�ed for a model. If this

is the ase, the onstrution of the physial state spae (in the spatially ompati�ed

spaetime) and of the loal observable algebra an be performed.

6.5. The orrespondene between quantum and lassial theory. We have

seen in setion (4.4) that in our approah the propagators for the higher generators

are di�erent from the orresponding propagators for the derivated �elds in other

renormalization proedures. The propagators determine the tree diagrams, and

these in turn are known to determine the lassial limit of the theory. Therefore

the question arises whether the lassial limit of our theory is di�erent from what

one would expet from other approahes. We will see that this is indeed the ase.

The lassial �elds are funtions on a manifold, in this ase the Minkowski spae.

Unlike the distributional �eld operators they may be multiplied at the same spae-

time point. We take advantage of this property and de�ne a representation C of

the algebra P by lassial �elds. Unlike the representation T of P in setion (3.3)

this is not only a linear representation but also an algebra homomorphism. We

de�ne

C : P→ C∞(M), C(a ·A) = a · C(A) ∀ a ∈ C, A ∈ P,

C

(
∏

i

ϕi

)
(x) =

∏

i

C (ϕi) (x), ϕi ∈ G.
(6.51)

The representatives of the basi generators are the basi lassial �elds, i.e. we

suppose that there exists for eah ϕi ∈ Gb a lassial �eld ϕcl
i (x) suh that

C(ϕi)(x) = ϕcl
i (x). (6.52)

The question arises how the higher generators may be represented. The �rst at-

tempt is to de�ne their representatives as the derivatives of those for the basi
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generators, e.g.

C
(
(ϕi)

(1,µ)
)
(x) = ∂µxC

(
(ϕi)

(0)
)
(x). (6.53)

But this de�nition is not onsistent. This an be seen by omparing this equation

with eqn. (6.5),

(
(ϕi)

(n,ν1...νn)
)gL
int

(x) = ∂ν1x · · · ∂νnx
(
(ϕi)

(0)
)gL
int

(x)

+ Cϕi,ng(x)

(
∂L

∂ϕ̃
(n,ν1...νn)
i

)gL

int

(x) .

(6.54)

If we adopted the de�nition above, the left hand side and the right hand side of

this equation would be equal on the quantum level, but they would have di�erent

lassial limits, and this annot be true. We see that the orret presription for

the lassial limit of the higher generators is

C
(
(ϕi)

(n,ν1...νn)
)
(x) = ∂ν1x · · · ∂νnx C

(
(ϕi)

(0)
)
(x)

+ g Cϕi,n C

(
∂L

∂ϕ̃
(n,ν1...νn)
i

)
(x).

(6.55)

Here we have set the oupling g onstant, sine in a lassial theory there is no need

for the interation to be swithed o�. ϕ̃i is the generator of the �eld onjugate to

ϕi.
The �elds that orrespond to the higher generators are labelled by the normalization

onstants Cϕi,n. This is what we expeted when we pointed out the importane of

the propagators for the lassial limit, beause these propagators are also labelled

by the normalization onstants.

With the representation C now de�ned we an formulate the orrespondene law. It

states that the distributional interating �eld operators beome produts of lassial

�elds in the lassial limit aording to

(W )gLint (x)→ C
(
W
)
(x) ∀W ∈ P.

g(x)→ g = onstant.

(6.56)
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7. Two partiular theories

In this hapter we will examine the onsequenes of our general results derived

in the preeeding hapter for two well known models: Quantum eletrodynamis

and Yang-Mills theory.

7.1. Quantum eletrodynamis. The �elds involved in QED are vetor bosons

Aµ � the photons �, ghosts and anti-ghosts u, ũ and harged spinors ψ, ψ � the

eletrons and positrons.

For QED there exists a way to determine the physial state vetor spae without

the BRS formalism � the Gupta-Bleuler proedure. Furthermore the ghosts do

not ouple to the other �elds. Therefore it is not neessary to inlude the ghosts in

the model. Nevertheless we do so beause we investigate QED also as a preparation

for Yang-Mills theory where the ghosts are indispensable.

The orresponding free theory for QED has been treated in setion (3.5).

Therefore we start diretly with the interation. The interation Lagrangian for

QED reads

LQED = Aµj
µ
el ∈ P. (7.1)

Here Aµ is the basi generator orresponding to the photon �eld, and the eletri

urrent jµel is de�ned as

jµel
def

= ψγµψ ∈ P (7.2)

with the basi generators ψ, ψ orresponding to the eletron and the positron �eld.

It an be easily veri�ed that this Lagrangian satis�es our requirements (C1) - (C3)

and (C5). The anonial dimension of the spinors is 3/2 and that of the photons is

1, summing up to a total anonial dimension of 4, so the model is renormalizable.

We will show that also ondition (C4) is aomplished.

In addition we examine an important relation that we were not able to prove in the

general framework: The normalization ondition (N6). We prove that the other

normalization onditions, in partiular the Ward identities for the eletri urrent,

eqn. (N5'), already imply (N6) in QED. The proof will be given below.

To begin with we determine the Q(n)-verties of QED from its Lagrangian. For

ondition (C4) to hold we must �nd Q(n)-verties that satisfy the following equa-

tions:

s0T (L) (x) = i∂xνT (Lν1) (x), s0T (Lν1) (x) = i∂xρT (Lρν2 ) (x), . . . (7.3)

Observing the free BRS transformations introdued in setion (3.5), we �nd that

these Q(n)-verties exist indeed:

Lν1 = ujνel, Li = 0 ∀i ≥ 2. (7.4)

To prove that (N6) is valid we must therefore alulate the following expression

∂yµT
(
Lν11 , . . . ,Lνk1 ,L, . . . ,L, jµB

)
(x1, . . . , xn, y) (7.5)

with L = LQED, L1 like above and jµB as de�ned in setion (3.5). If we insert this

time ordered produt into the ausal Wik expansion, eqn, (4.24), we �nd that it
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an be written as

T
(
Lν11 , . . . ,Lνk1 ,L, . . . ,L, (Aρ)(1,ρ)

)
(x1, . . . , xn, y) · ∂µy u(y)

− T
(
Lν11 , . . . ,Lνk1 ,L, . . . ,L, (Aρ)(2,ρµ)

)
(x1, . . . , xn, y) · u(y).

(7.6)

Sine neither L nor L1 ontain a higher generator, onditions (N4) reveals that

this expression is equal to

(
∂ρyT

(
Lν11 , . . . ,Lνk1 ,L, . . . ,L, (Aρ)(0)

)
(x1, . . . , xn, y)

)
· ∂µy u(y)

−
(
∂ρy∂

µ
y T
(
Lν11 , . . . ,Lνk1 ,L, . . . ,L, (Aρ)(0)

)
(x1, . . . , xn, y)

)
· u(y).

(7.7)

Inserting the derivative and taking into aount the �eld equations of u(y), we �nd

∂yµT (Lν11 , . . . ,Lνk1 ,L, . . . ,L, jµB) (x1, . . . , xn, y)

= −
(
∂µy�

yT
(
Lν11 , . . . ,Lνk1 ,L, . . . ,L, (Aµ)(0)

)
(x1, . . . , xn, y)

)
· u(y).

(7.8)

With ondition (N4) this expression an be rewritten as

− i
(

n∑

m=k+1

(
∂yµδ(y − xm)

)

× T (Lν11 , . . . ,Lνk1 ,L, . . . , jµel, . . . ,L) (x1, . . . , xn)
)
· u(y).

(7.9)

Here the vertex jµel is at the m
th

position. Pulling the derivative out of the braket

we �nally arrive at

i

n∑

m=k+1

∂mµ (δ(y − xm)T (Lν11 , . . . ,Lνk1 ,L, . . . ,Lµ1 , . . . ,L) (x1, . . . , xn))

− i
(

n∑

m=k+1

δ(y − xm)∂mµ T
(
Lν11 , . . . ,Lνk1 ,L, . . . , jµel, . . . ,L

)
(x1, . . . , xn)

)
· u(y).

(7.10)

The verties Lµ1 and jµel are again in the mth
position. Comparing the last line

with the Ward identities for the eletri urrent, eqn. (N5'), we see that this

term vanishes sine f(L) = f(L1) = 0. The remaining expression is exatly what

ondition (N6) predits, provided that all the R(n)-verties vanish, M1 =M2 =
· · · = 0. Condition (N6) was derived using the other normalization onditions, so

it must be ompatible with all these onditions.

Now we ome to the de�nition of interating �elds. Sine the Lagrangian ontains

no higher generators, the following relations hold due to eqn. (6.5)

(
(ϕi)

(n,ν1...νn)
)gLQED

int
(x) = ∂ν1x · · ·∂νnx

(
(ϕi)

(0)
)gLQED

int
(x) . (7.11)

We de�ne Fµν as

Fµν
def

= (Aν)(1,µ) − (Aµ)(1,ν) ∈ P. (7.12)

The easiest examples of interating �elds are the ghosts and the anti-ghosts. They

do not appear in the Lagrangian LQED and therefore do not interat. The ausal
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Wik expansion, eqn. (4.24), implies together with the de�nition of the retarded

produts, eqn. (5.8),

(u)
gLQED

int (x) = u(x) and (ũ)
gLQED

int (x) = ũ(x). (7.13)

Due to relation (7.11) we an establish the usual relation for the interating photon

�eld and the �eld strength tensor in QED:

(Fµν)
gLQED

int (x) = ∂µx (Aν)
gLQED

int (x)− ∂νx (Aµ)gLQED

int (x) . (7.14)

The �eld equations for QED are also the usual ones:

�x (Aµ)
gLQED

int (x) = −g(x) (jµel)
gLQED

int (x)

and (i∂/−m) (ψ)
gLQED

int (x) = −g(x) (γµAµψ)gLQED

int (x) .
(7.15)

Furthermore we �nd that the interating ghost urrent and BRS urrent have a

partiularly easy form beause the ghosts and anti-ghosts do not interat:

(kµ)
gLQED

int (x) = kµ(x)

and (jµB)
gLQED

int (x) =
(
∂ρx (Aρ)

gLQED

int (x)
)
∂µxu(x)

−
(
∂ρx∂

µ
x (Aρ)

gLQED

int (x)
)
u(x).

(7.16)

Dütsh and Fredenhagen [DF99℄ �nd the following ommutator relations

[
∂µx (Aµ)

gLQED

int (x) , (Aν)
gLQED

int (y)
]

−
= i∂νD(x− y)

and

[
∂µx (Aµ)

gLQED

int (x) , (ψ)
gLQED

int (y)
]

−
= g(x)D(x − y) (ψ)gLint (y)

(7.17)

if x, y ∈ O. We an use the equation for the interating BRS urrent to �nd the

expliit form of the interating BRS transformations, for example

s̃
(
(Aµ)

gLQED

int (x)
)
= i∂xµu(x)

s̃
(
∂µx (Aµ)

gLQED

int (x)
)
= 0

s̃
(
(ψ)

gLQED

int (x)
)
= −g(x) (ψ)gLQED

int (x) u(x)

s̃
((
ψ
)gLQED

int
(x)
)
= g(x)

(
ψ
)gLQED

int
(x) u(x)

s̃ (u(x)) = 0

s̃ (ũ(x)) = −i∂ρx (Aρ)gLQED

int (x)

s̃
(
(Fµν)

gLQED

int (x)
)
= 0

s̃
(
(jµel)

gLQED

int (x)
)
= 0,

(7.18)

for x ∈ O. The interating eletri urrent and the interating �eld strength tensor

are the only nontrivial observable quantities of those. The other two quantities with

vanishing BRS transformation are not observable. The ghost u(x) has non vanishing

ghost number, and ∂µx (Aµ)
gLQED

int (x) is a oboundary and therefore equivalent to

zero.

7.2. Yang-Mills-theory. The basi �elds in Yang-Mills theory

20
are Lie algebra

valued vetor bosons Aµ = Aaµτa, ghosts u = uaτa and anti-ghosts ũ = ũaτa. The
τa form a basis of the Lie algebra. Their Lie-braket gives [τa, τb] = f cabτc. The f

c
ab

are the struture onstants of the Lie-algebra. They satisfy the Jaobi-identity

feabf
d
ec + febcf

d
ea + fecaf

d
eb = 0 (7.19)

20
We onsider here only pure, massless Yang-Mills theory, for simpliity
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and are assumed to be totally antisymmetri.

The free �eld operators that belong to di�erent omponents Aaµ, u
a, ũa of the �elds

Aµ, u and ũ have trivial ommutation relations among eah other, e.g.

{
ua(x), ũb(y)

}
+
= −iδabD(x− y). (7.20)

Therefore the free model underlying Yang-Mills theory is simply a p-fold opy of

free QED if p is the dimension of the Lie algebra. The underlying free model was

onsidered in setion (3.5)

The Lagrangian of Yang-Mills theory in ausal perturbation theory is

LYM =
1

2
f cabA

a
µA

b
νF

νµ
c − f cabAbµua∂µũc. (7.21)

Here Fµνc
def

= (Aνc )
(1,µ) − (Aµc )

(1,ν)
. Note that there is no four-gluon-vertex present.

It is reated in seond order perturbation theory due to CA,1 = − 1
2 , see [DHKS94a℄

- [DHS95b℄ for further details.

For the interating �elds we get

(
Aaµ
)gLY M

int
(x) =

((
Aaµ
)gLY M

int
(x)
)∗

∈ C̃ ·Dist1(D),

(ua)
gLY M

int (x) =
(
(ua)

gLY M

int (x)
)∗

∈ C̃ ·Dist1(D),

(ũa)gLY M

int (x) = −
(
(ũa)gLY M

int (x)
)∗

∈ C̃ ·Dist1(D).

(7.22)

From eqn. (6.5) we get for the higher generators

(
(Aaµ)

(1,ν)
)gLY M

int
(x) = ∂νx

(
Aaµ
)gLY M

int
(x)− 1

2
g(x)

(
fabcA

b
µA

c
ν

)gLY M

int
(x) ,

(
(ua)(1,ν)

)gLY M

int
(x) = ∂νx (u

a)
gLY M

int (x) + g(x)
(
fabcA

b,νuc
)gLY M

int
(x) .

(
(ũa)(1,ν)

)gLY M

int
(x) = ∂νx (ũ

a)
gLY M

int (x) .

(7.23)

The �rst equation implies in partiular

(
F aµν

)gLY M

int
(x) = ∂xµ (A

a
ν)
gLY M

int (x)− ∂xν
(
Aaµ
)gLY M

int
(x) + g(x)

(
fabcA

b
µA

c
ν

)gLY M

int
(x)

(7.24)

and

(
(Aaµ)

(1,µ)
)gLY M

int
(x) = ∂µx

(
Aaµ
)gLY M

int
(x) . (7.25)

The �rst relation reprodues the usual relation between the interating vetor boson

�eld and the �eld strength tensor in Yang-Mills theories. From the Lagrangian we

an also derive the �eld equations using eqn. (6.7):

�x
(
Aaµ
)gLY M

int
(x) =∂νx

[
g(x)

(
fabcA

b
µA

c
ν

)gLY M

int
(x)
]

− g(x)
(
fabcA

ν,bF cνµ
)gLY M

int
(x) + g(x)

(
fabcu

b(ũc)(1,µ)
)gLY M

int
(x) ,

�x (ua)gLY M

int (x) = −∂µx
[
g(x)

(
fabcA

µ,buc
)gLY M

int
(x)
]
,

�x (ũa)gLY M

int (x) = −g(x)
(
fabcA

b
µ(ũ

c)(1,µ)
)gLY M

int
(x) .

(7.26)
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The Lagrangian (7.21) obviously satis�es the onditions (C1), (C2),(C3) and (C5).

It is also possible to �nd Q(n)-verties and R(n)-verties suh that ondition (C4)

is valid. These verties are

Lµ1 = f cabu
aAbνF

νµ
c −

1

2
f cabu

aub(ũc)
(1,µ),

Lµρ2 =
1

2
f cabu

aubFµρc ,

L...i =M...
i = 0 ∀i > 2.

Mµ
1 =

1

2
f cabu

aub(ũc)
(1,µ),

Mµρ
2 =

1

2
f cabu

aubFµρc ,

(7.27)

The verties have been hosen suh that ondition (N6) is ompatible with all other

normalization onditions in �rst order.

We remind the reader that the existene of solutions for ondition (N6) has not

been proven for an arbitrary number of arguments in Yang-Mills theory. Sharf

and ollaborators, [DHKS94a℄ - [DHS95b℄, have proven operator gauge invariane,

i.e. eqn. (4.35) for i1 = · · · = in = 0, see setion (4.4) for further details.

We already mentioned that the free model underlying Yang-Mills theory is a p-
fold opy of free QED if p is the dimension of the Lie-group. The question arises

whether there are other interations besides Yang-Mills theory with the same free

model. Stora [Sto97℄ found out that the number of possible Lagrangians for suh a

model is severely restrited by the onditions (C1) - (C5). Lagrangians T (L) (x)
may di�er from the Yang-Mills Lagrangian only by a oboundary s0T (K) (x) or
a derivative ∂µT (Kµ) (x) where K is a salar polynomial with ghost number −1
and Kµ

is a vetor polynomial with ghost number zero. By Yang-Mills Lagrangian

we mean here an expression like (7.21) with arbitrary onstants fabc that are totally
antisymmetri in their indies and satisfy the Jaobi identity (7.19). In partiular

the Lie-group struture needs not to be put in. The Jaobi identity for the onstants

fabc is a onsequane of operator gauge invariane in seond order, and operator

gauge invariane in �rst order implies that they are totally antisymmetri. Sine

Stora's paper is not published, we refer the reader to the artiles of Aste and Sharf

[AS98℄ and Grigore [Gri98℄.

It is usually argued that the addition of suh oboundary or derivative terms does

not hange the model beause oboundaries are equivalent to zero in ohomology

and derivatives should not give a ontribution in the adiabati limit. Dütsh [Düt96℄

has proven that this is orret also in higher orders for theories where the adiabati

limit an be performed, e.g. in massive theories. But for models where this limit

does not exist the question is still open. Conerning the oboundary terms we

remark that it is not lear whether a oboundary in the free theory, T (A) = s0T (B)

for some B ∈ P, gives a oboundary in the interating theory, suh that (A)
gL
int (x) =

s̃ (C)gLint (x) for some C ∈ P. Diret alulations in �rst order indiate that this is

indeed true for suitable normalizations, but as long as this question is not lari�ed

oboundary terms in the Lagrangian must not be negleted. The same is true for

derivated terms in these theories.

In the rest of the setion we want to ompare our results with those of Nakanishi

and Ojima [NO90℄. Their results have been derived in the ontext of quantum �eld

theory, but they are also lassial in the following sense: They use �eld equations

derived as Euler-Lagrange equations from a lassial ation, and they deliberately

neglet the distributional harater of �eld operators and form produts of �eld

operators at the same spaetime point. Therefore it is possible to ompare their

results with the lassial limit of our results. At �rst we note that Nakanishi and
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Ojima use a di�erent onvention for the anti-ghosts. Their ghosts C and anti-ghosts

C orrespond to ours in the following way:

Ca ←→ ua, C
a ←→ iũa. (7.28)

For the omparison we will always translate their results into our language. To

make the notation shorter we introdue the ovariant derivative of a �eld with

Lie-algebra index, X(x) = Xa(x)τa, as

(DµX)a(x)
def

= ∂xµX
a(x) + fabc

(
Abµ
)
cl
(x)Xc(x). (7.29)

We have the lassial �elds

C(Aaµ)(x) =
(
Aaµ
)
cl
(x) , C(ua)(x) = (ua)cl (x) , C(ũa)(x) = (ũa)cl (x)

(7.30)

and for the higher generators the representation C gives

C
(
(Aaµ)

(1,ν)
)
(x) = ∂νx

(
Aaµ
)
cl
(x)− 1

2
g(x)fabc

(
Abµ
)
cl
(x) (Acν)cl (x) ,

C
(
(ua)(1,ν)

)
(x) = ∂νx (u

a)cl (x) + g(x)fabc
(
Ab,ν

)
cl
(x) (uc)cl (x) .

C
(
(ũa)(1,ν)

)
(x) = ∂νx (ũ

a)cl (x) .

(7.31)

The �eld equations (7.26) beome in the lassial limit

(DµF cl
µν )

a(x) = −∂xν∂µx
(
Aaµ
)
cl
(x)

+ gfabc
(
∂xν
(
ũb
)
cl
(x)
)
· (uc)cl (x) ,

∂µx (Dµ (u)cl)
a(x) = 0,

(Dµ∂
µ (u)cl)

a(x) = 0.

(7.32)

Here F a,clµν is the lassial �eld strength tensor,

F a,clµν = ∂xµ (A
a
ν)cl (x)− ∂xν

(
Aaµ
)
cl
(x) + gfabc

(
Abµ
)
cl
(x)
(
Acµ
)
cl
(x) . (7.33)

The �eld equations are exatly the same as those of Nakanishi and Ojima. For the

ghost urrent we get

C (kµ) (x) = i
∑

a

((ua)cl (x) ∂
µ
x (ũa)cl (x)− (Dµ (u)cl)

a(x) (ũa)cl (x)) . (7.34)

This is −i times the result of Nakanishi and Ojima. The fator −i omes from a

di�erent de�nition of the ghost urrent. They require that the ghost urrent and

-harge be pseudo-hermitian, so that the eigenvalues of the ghost harge are in iZZ.
For the lassial BRS urrent jµB(x) we have aording to de�nition (6.26)

jµB(x) = (jµB)cl (x) − g (M
µ
1 )cl (x) . (7.35)

This reads in terms of the basi �elds

jµB(x) =
∑

a

(
(Dµ (u)cl)

a(x)∂νx (A
a
ν)cl (x)− (ua)cl (x) ∂

µ
x∂

ν
x (A

a
ν)cl (x)

)

− 1

2
f cab (u

a)cl (x)
(
ub
)
cl
(x) ∂µx (ũc)cl (x)

(7.36)

This is again � up to a minus sign whih is pure onvention � the same result

as Nakanishi and Ojima. Therefore we realize a omplete agreement between the

results of Nakanishi and Ojima and ours, apart from di�erent onventions. This

supports both our results at the quantum level and also the orrespondene law.
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The same relations at the quantum level would have given di�erent results if we

had adopted the orrespondene law (6.53), for example.
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8. Conlusions and Outlook

We presented a universal onstrution of loal quantum gauge theories. It gives

an algebra of loal observables that has a Hilbert spae representation. For this on-

strution to work two preonditions must hold: The underlying free theory must be

positive in the sense disussed in hapter (3), and the time ordered produts of free

�eld operators must satisfy the onditions (N1) - (N6). The seond preondition

an only be violated with respet to ondition (N6), all other onditions an always

be aomplished. If all the normalization onditions hold, a loally onserved BRS

urrent and with it a nilpotent BRS transformation on the algebra of loal �elds

an be de�ned. The algebra of loal observables is then de�ned as the ohomology

of the algebra of loal �elds w.r.t. the BRS transformation. If the underlying free

model is positive, the Hilbert spae representation an be onstruted. Therefore

spaetime must be ompati�ed spatially in order to allow a nilpotent BRS harge

to be de�ned. This ompati�ation does not hange the algebra. It is an open

question whether two representations that are onstruted with a di�erent om-

pati�ation length are equivalent or not.

The most ruial point for eah model that is investigated in this framework is

whether normalization ondition (N6) an be aomplished together with the other

normalization onditions. We have proven that this holds fod quantum eletrody-

namis, but for Yang-Mills theory the question is still open. We think that methods

of algebrai renormalization an help to �nd a solution. To redue the problem to

an algebrai one it ould be helpful to de�ne a BRS transformation s on the al-

gebra P, suh that T (sA) = s0T (A) ∀A ∈ P. This requires the introdution of

an additional auxiliary �eld, the salar Nakanishi-Lautrup �eld B ∈ P with the

properties sũ = iB, sB = 0 and T (B)(x) = −∂µAµ(x). With this de�nition the

BRS transformation s on P an be hosen to be nilpotent. These notions ould

make it possible to translate the language of algebrai renormalization into ours.

Normalization ondition (N6) takes on the form of the desent equations in alge-

brai renormalization. Sine they are proven in Yang-Mills theory, this ould also

lead to a proof of (N6) for Yang-Mills theory.

The renormalization sheme underlying our onstrution is the one of Epstein and

Glaser. It is formulated, unlike the other renormalization shemes, in on�guration

spae. Therefore it is suitable for quantum �eld theories on urved spaetimes.

Brunetti and Fredenhagen [BF99℄ have shown that the time ordered produts an

also be de�ned in globally hyperboli spaetimes. To generalize our normalization

onditions to these spaetimes, the propagators and di�erential operators intro-

dued in hapter (3) must be substituted by suitably generalized ones. With the

normalization onditions all relations derived from them arry over to urved spae-

times, in partiular the �eld equations, the onservation of ghost and BRS urrent

and the nilpoteny of the BRS harge and the BRS transformation. So it is possi-

ble to de�ne an algebra of loal observables even in globally hyperboli spaetimes,

provided these spaetimes allow propagators and their orresponding di�erential

operators to be de�ned.
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Appendix A. Proof of (N3) and (N4)

A.1. Proof of (N3). The essential point in the proof that solutions for ondition

(N3) exist is to show that eqn. (N3) is equivalent to the ausal Wik expansion

(4.24). This su�es for a proof beause it was already shown in [BF99℄ that (4.24)

has solutions, see below.

The proof that both onditions are equivalent for a ertain T (W1, · · · ,Wn) proeeds
indutively. The indution hypothesis is that eqn. (N3) and eqn. (4.24) hold and

are equivalent for the following time ordered produts: all time ordered produts

that ontain fewer arguments than n and all that ontain a ombination of sub

monomials of the Wi, if at least one of these sub monomials is a proper one.

At �rst we prove that eqn. (4.24) implies eqn. (N3). With eqn. (4.24) the time

ordered produt on the left hand side of (N3) an be written as

T
(
W1, · · · ,Wn

)
(x1, . . . , xn) =

∑

γ1,...,γn

ω0

(
T
(
W

(γ1)
1 , · · · ,W (γn)

n

)
(x1, . . . , xn)

)

× : ϕγ1(x1) · · ·ϕγn(xn) :
γ1! · · · γn!

,

(A.1)

for the notation see the formulas following (4.24). To alulate the (anti-) om-

mutator with the ϕi(z) in eqn. (N3), we note that the (anti-) ommutator of the

Wik produt with the ϕi(z) gives
[
: ϕγ1(x1) · · ·ϕγn(xn) :

γ1! · · · γn!
, ϕi(z)

]

∓

=

= i

n∑

k=1

∑

j

∆ij(z − xk)
: ϕγ1(x1) · · ·ϕγk−ej (xk) · · ·ϕγn(xn) :

γ1! · · · (γk − ej)! · · · γn!

(A.2)

if the γk 6= 0, otherwise the respetive term vanishes. Here ej is the unit vetor

with an entry 1 at the jth position and the other entries zero. Therefore we get for

the omplete ommutator

i

n∑

k=1

∑

j

∆ij(z − xk)
∑

γ1,...,γn

γk 6=0

ω0

(
T
(
W

(γ1)
1 , · · · ,W (γn)

n

)
(x1, . . . , xn)

)

×
[
: ϕγ1(x1) · · ·ϕγk−ej (xk) · · ·ϕγn(xn) :

γ1! · · · (γk − ej)! · · · γn!

]
.

(A.3)

This beomes after a shifting of indies

i

n∑

k=1

∑

j

∆ij(z − xk)×

×
∑

γ1,...,γn

ω0

(
T
(
W

(γ1)
1 , · · · ,W (γ1+ej)

k , · · · ,W (γn)
n

)
(x1, . . . , xn)

)
×

×
[
: ϕγ1(x1) · · ·ϕγn(xn) :

γ1! · · · γn!

]

= i

n∑

k=1

∑

j

∆ij(z − xk)T
(
W1, . . . ,W

(ej)
k , . . . ,Wn

)
(x1, . . . , xn).

(A.4)
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The last identity is valid beause eqn. (A.1) holds for the sub monomials aording

to our indution hypothesis. This proves that (N3) is a onsequene of (A.1).

To omplete the proof of equivalene we reall that we already saw that eqn. (N3)

determines the time ordered produt up to a C-number distribution. To be preise,
eqn. (N3) determines ompletely

T (W1, . . . ,Wn)− ω0 (T (W1, . . . ,Wn)) 1l (A.5)

and leaves

ω0 (T (W1, . . . ,Wn)) (A.6)

open. This is exatly the same with (A.1). The Wik produts are determined

anyway and the numerial distributions are determined by the T -produts for the
sub monomials if at least one γi 6= 0. Sine both equations determine the same

part of the distribution and leave the same part open, and moreover one of them

is a onsequene of the other, they must be equivalent.

The question arises whether the expression on the right hand side of eqn. (A.1) is

well de�ned, beause there appear produts of distribution. The answer is the same

as in setion (4.2): Epstein and Glaser's �Theorem 0� guarantees that the produt

is well de�ned.

A.2. Proof of (N4). Like for (N3) we do not prove the existene of solutions for

(N4) itself but for its integrated version

T
(
W1, . . . ,Wn, ϕi

)
(x1, . . . , xn, y) =

= i

n∑

k=1

∑

j

∆F
ij(y − xk)T

(
W1, . . . ,

∂Wk

∂ϕj
, . . . ,Wn

)
(x1, . . . , xn)

+
∑

γ1···γn

ω0

(
T
(
W

(γ1)
1 , · · · ,W (γn)

n

)
(x1, . . . , xn)

) : ϕγ1(x1) · · ·ϕγn(xn)ϕi(y) :
γ1! · · · γn!

.

(A.7)

At the end of the setion we will prove that the two onditions are equivalent.

The right hand side of eqn. (A.7) is obviously well de�ned, beause the �rst sum

is a tensor produt of distributions whih is always well de�ned � the argument

y does not appear in the time ordered produt � while the seond sum is simply

part of (A.1) whih was already proven to be well de�ned.

The question is whether this expression has the orret ausal fatorization outside

the diagonal. To show this we proeed again indutively, the indution hypothesis

is that eqn. (A.7) is valid for all time ordered produts of sub monomials of the

Wi.

At �rst we ompare the expression with (A.1), whih reveals in the present ase

T
(
W1, . . . ,Wn, ϕi

)
(x1, . . . , xn, y) =

=
∑

γ1···γn

ω0

(
T
(
W

(γ1)
1 , · · · ,W (γn)

n , ϕi

)
(x1, . . . , xn, y)

) : ϕγ1(x1) · · ·ϕγn(xn) :
γ1! · · · γn!

+
∑

γ1···γn

ω0

(
T
(
W

(γ1)
1 , · · · ,W (γn)

n

)
(x1, . . . , xn)

) : ϕγ1(x1) · · ·ϕγn(xn)ϕi(y) :
γ1! · · · γn!

.

(A.8)
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So the seond sum in eqn. (A.7) is already present and we must only show that

i

n∑

k=1

∑

j

∆F
ij(y − xk)T

(
W1, . . . ,

∂Wk

∂ϕj
, . . . ,Wn

)
(x1, . . . , xn) (A.9)

is a possible extension of

∑

γ1···γn

ω0

(
T 0
(
W

(γ1)
1 , · · · ,W (γn)

n , ϕi

)
(x1, . . . , xn, y)

) : ϕγ1(x1) · · ·ϕγn(xn) :
γ1! · · · γn!

(A.10)

to the diagonal. Inserting eqn. (N3) into expression (A.9) gives

i
n∑

k=1

∑

j

∆F
ij(y − xk)×

[
∑

γ1···γn

ω0

(
T
(
W

(γ1)
1 , · · · ,W (γk+ej)

k , · · · ,W (γn)
n

)
(x1, . . . , xn)

)

× : ϕγ1(x1) · · ·ϕγn(xn) :
γ1! · · · γn!

]
.

(A.11)

The latter is equal to expression (A.10) if

i

n∑

k=1

∑

j

∆F
ij(y − xk)×

[
∑

γ1···γn

ω0

(
T
(
W

(γ1)
1 , · · · ,W (γk+ej)

k , · · · ,W (γn)
n

)
(x1, . . . , xn)

)]

= ω0

(
T 0
(
W

(γ1)
1 , · · · ,W (γn)

n , ϕi

)
(x1, . . . , xn, y)

)

(A.12)

for all γ1, . . . , γn and outside the diagonal. This equation is obviously true if at

least one γi 6= 0 sine eqn. (A.7) is valid for the sub monomials of the Wi aording

to our indution hypothesis. So eqn. (A.7) an be aomplished if

i

n∑

k=1

∑

j

∆F
ij(y − xk)ω0

(
T
(
W1, . . . ,W

(ej)
k , . . . ,Wn

)
(x1, . . . , xn)

)
(A.13)

is a possible extension of

ω0

(
T 0
(
W1, · · · ,Wn, ϕi

)
(x1, . . . , xn, y)

)
. (A.14)

To see this we smear out both expressions with a test funtion η that vanishes with
all its derivatives on the diagonal ∆n+1. Let the test funtion η be �x and reall

the de�nition of the partition of unity in eqn. (4.18). Then we an de�ne for eah

subset Z ⊂ {x1, . . . , xn, y} another test funtion ηZ ∈ D(Mn+1)

ηZ
def

=

{
fZ · η outside ∆n+1

0 otherwise

(A.15)

suh that

supp ηZ ∈ ∁Z and

∑

Z

ηZ = η. (A.16)
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Then the following equation is valid owing to ausal fatorization:

∫
d4yd4x1 · · · d4xnη(x1, . . . , xn, y)T

(
W1, . . . ,Wn, φi

)
(x1, . . . , xn, y) =

=
∑

Z⊂X

∫
d4yd4x1 · · · d4xnηZ(x1, . . . , xn, y)T

(
WZ

)
(xZ )T

(
WZc , ϕi

)
(xZc , y)

+
∑

Z⊂X

∫
d4yd4x1 · · · d4xnηZ(x1, . . . , xn, y)T

(
WZ , ϕi

)
(xZ , y)T

(
WZc

)
(xZc)

(A.17)

beause Z & Zc on supp ηZ . Here X = {x1, . . . , xn}.
Let us investigate T (WZ) (xZ)T (WZc , ϕi) (xZc , y) and assume for simpliity that

Z = {xk+1, . . . , xn} and Zc = {x1, . . . , xk}. Due to the validity of eqn. (A.7) in

lower orders we have

T
(
WZ

)
(xZ)T

(
WZc , ϕi

)
(xZc , y) =

= i

k∑

m=1

∑

j

∆F
ij(y − xk)T

(
WZ

)
(xZ )T

(
W1, . . . ,W

(ej)
m , . . . ,Wk

)
(xZc)

+
∑

γ1···γk

ω0

(
T
(
W

(γ1)
1 , · · · ,W (γk)

k

)
(xZc)

)
T
(
WZ

)
(xZ)×

× : ϕγ1(x1) · · ·ϕγk(xk)ϕi(y) :
γ1! · · · γk!

.

(A.18)

Sine Z & Zc, the produt in the �rst sum reombines to

T
(
WZ

)
(xZ)T

(
W1, . . . ,W

(ej)
m , . . . ,Wk

)
(xZc)

= T
(
W1, . . . ,W

(ej)
m , . . . ,Wn

)
(x1, . . . , xn).

(A.19)

For the produt in the seond sum we get

T
(
WZ

)
(xZ)

: ϕγ1(x1) · · ·ϕγk(xk)ϕi(y) :
γ1! · · · γk!

=

: . . . ϕi(y) : +

n∑

l=k+1

∑

j

T
(
Wk+1, . . . ,W

(ej)
l , . . . ,Wn

)
(xZ)∆

+
ij(y − xl)

× : ϕγ1(x1) · · ·ϕγk(xk) :
γ1! · · · γk!

.

(A.20)

Inserting this into eqn. (A.18) and taking (A.1) into aount, the seond sum

beomes

i

k∑

l=1

∑

j

∆+
ij(y − xk)T

(
Wk+1, . . . ,W

(ej)
l , . . . ,Wn

)
(xZ)T

(
WZc

)
(xZc)

+ : . . . ϕi(y) :.

(A.21)

From the de�nition of the Feynman propagator we �nd

∆+
ij(y − xl) = ∆F

ij(y − xl)−∆A
ij(y − xl) = ∆F

ij(y − xl) (A.22)
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sine (y − xl) 6= V −. Reombining the terms we �nally arrive at

ω0

(
T
(
WZ

)
(xZ)T

(
WZc , ϕi

)
(xZc , y)

)
=

= i

k∑

m=1

∑

j

∆F
ij(y − xk)ω0

(
T
(
W1, . . . ,W

(ej)
m , . . . ,Wn

)
(x1, . . . , xn)

)

+ i

n∑

l=k+1

∑

j

∆F
ij(y − xl)ω0

(
T
(
W1, . . . ,W

(ej)
l , . . . ,Wn

)
(x1, . . . , xn)

)

= i

n∑

m=1

∑

j

∆F
ij(y − xk)ω0

(
T
(
W1, . . . ,W

(ej)
m , . . . ,Wn

)
(x1, . . . , xn)

)
.

(A.23)

With the same argument we an see that

ω0

(
T
(
WZ , ϕi

)
(xZ , y)T

(
WZc

)
(xZc)

)
=

= i

n∑

m=1

∑

j

∆F
ij(y − xk)ω0

(
T
(
W1, . . . ,W

(ej)
m , . . . ,Wn

)
(x1, . . . , xn)

)
.

(A.24)

Taking the vauum expetation value of eqn. (A.17) and inserting the expressions

above, we �nally get

∫
d4yd4x1 · · · d4xnη(x1, . . . , xn, y)ω0

(
T
(
W1, . . . ,Wn, φi

)
(x1, . . . , xn, y)

)

= i

∫
d4yd4x1 · · · d4xnη(x1, . . . , xn, y)×

×
n∑

m=1

∑

j

∆F
ij(y − xk)ω0

(
T
(
W1, . . . ,W

(ej)
m , . . . ,Wn

)
(x1, . . . , xn)

)
.

(A.25)

So we have proven that expression (A.13) is a possible extension of (A.14), and this

implies that eqn. (A.7) has the orret ausal fatorization. From the onstrution

it is lear that (A.7) is ompatible with (4.24) and thus with (N3). It is obvious

that it respets the Poinaré transformation properties and is therefore ompatible

with (N1). The same alulation as for the ompatibility of eqns. (N1) and (N2)

reveals that it is also ompatible with (N2).

Finally we have to prove that (N4) and (A.7) are equivalent. Eqn. (A.7) implies

(N4) immediately: Appliation of the operator Dy
, eqn. (3.86), from the left on

eqn. (A.7) gives the desired result.

On the other hand a solution of (N4) is unique. This an best be seen for the

orresponding equation for the retarded produts,

∑

j

Dy
ijR

(
W1, . . . ,Wn;ϕj

)
(x1, . . . , xn; y) =

= i
n∑

k=1

R

(
W1, . . . , ǩ, . . . ,Wn;

∂Wk

∂ϕi

)
(x1, . . . , ǩ, . . . , xn;xk) δ(xk − y).

(N4)
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The di�erene of two solutions of this di�erential equation is a solution of the

homogeneous di�erential equation. Due to the support properties of the retarded

produts there exists a Cauhy surfae in the y-spae suh that all Cauhy data

are zero. Therefore zero is a solution of that equation, and Dy
is an operator with

a unique solution for the Cauhy problem, see page 29. So the retarded produts

are uniquely determined and with them the time ordered produts. This ompletes

the proof that (N4) and (A.7) are equivalent.



74

Appendix B. Proofs onerning the Ward identities

This appendix ontains in its �rst setion the proof that the ghost number Ward

identities have ommon solutions with the other normalization onditions and that

the ghost number Ward identities imply eqn. (4.32). In the seond setion we prove

that the validity of the generalized operator gauge invariane already implies that

there exists a solution of ondition (N6).

B.1. Proof of the ghost number Ward identities. We begin with the proof

that the equation

scT (W1 · · ·Wn) (x1, . . . , xn) =

=

(
n∑

k=1

g(Wk)

)
T (W1 · · ·Wn) (x1, . . . , xn).

(B.1)

is a diret onsequene of ondition (N5),

∂yµT (W1, . . . ,Wn, k
µ) (x1, . . . , xn, y) =

=

n∑

k=1

g(Wk) δ(y − xk)T (W1, . . . ,Wn) (x1, . . . , xn).
(B.2)

Suppose, O is an open, bounded and ausally omplete region in spaetime suh

that all points x1, . . . , xn in eqn. (N5) lie in O � obviously for every set of points

suh a region an be found. Then we hoose a test funtion f ∈ D(M) suh that

f(x) = 1 ∀x ∈ O′
with O′

another open, bounded and ausally omplete region

suh that O ⊂ O′
. Then we an �nd a Lorentz frame where a C∞

-funtion H(y)
exists with the following properties:

H ∈ C∞(M), ∃Ht ∈ C∞(IR) : H(y) = Ht(y0),

Ht(y0) = 1 ∀ y0 < −ǫ, Ht(y0) = 0 ∀ y0 > ǫ, ǫ ∈ IR, 0 < ǫ≪ 1,

supp(H · ∂µf) ∩ (V + +O) = ∅, supp((1 −H) · ∂µf) ∩ (V − +O) = ∅.
(B.3)

The following alulations will be done in that Lorentz frame. Smearing out the

left hand side of eqn. (N5) with f gives

∫
d4y f(y)∂yµT

(
W1, . . . ,Wn, k

µ
)
(x1, . . . , xn, y) =

= −
∫
d4y (∂µf)(y) ·H(y) · T

(
W1, . . . ,Wn, k

µ
)
(x1, . . . , xn, y)

−
∫
d4y (∂µf)(y) · (1 −H(y)) · T

(
W1, . . . ,Wn, k

µ
)
(x1, . . . , xn, y).

(B.4)

Aording to our assumptions about the supports of the test funtions (∂µf) ·H(y)
and (∂µf) · (1−H(y)) we have in the �rst integral on the right hand side y & xi ∀i
and in the seond integral on the right hand side xi & y ∀i. Owing to ausal fator-
ization the time ordered produt T (W1, . . . ,Wn, k

µ) (x1, . . . , xn, y) deomposes in

the �rst integral aording to T (kµ) (y)T (W1, . . . ,Wn) (x1, . . . , xn) and in the se-

ond one aording to T (W1, . . . ,Wn) (x1, . . . , xn)T (kµ) (y). Therefore the integral
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an be written as

∫
d4y f(y) ∂yµT

(
W1, . . . ,Wn, k

µ
)
(x1, . . . , xn, y) =

=

∫
d4y (∂µf)(y) ·H(y) ·

[
T (kµ) (y), T

(
W1, . . . ,Wn

)
(x1, . . . , xn)

]

∓

−
∫
d4y (∂µf)(y) · T

(
W1, . . . ,Wn

)
(x1, . . . , xn)T (kµ) (y).

(B.5)

Then the seond integral vanishes sine kµ is a onserved urrent. Partial integra-

tion in the �rst integral reveals aording to the properties of H and f

∫
d4y f(y)∂yµT (W1, . . . ,Wn, k

µ) (x1, . . . , xn, y) =

= [Qc, T (W1, . . . ,Wn) (x1, . . . , xn)]∓ = scT (W1, . . . ,Wn) (x1, . . . , xn).

(B.6)

As the smearing of the right hand side of eqn. (N5) with f is trivial sine f = 1 ∀xk,
we �nally arrive at

scT (W1, . . . ,Wn) (x1, . . . , xn) =

=

(
n∑

k=1

g(Wk)

)
T (W1, . . . ,Wn) (x1, . . . , xn).

(B.7)

The proof that the ghost number Ward identities have ommon solution with the

other normalization onditions proeeds along the same lines as the proof of Dütsh

and Fredenhagen [DF99℄ for the eletri urrent. An important di�erene between

the proofs is that for their proof it su�es to have eqn. (N4) for the basi gener-

ators, while it is here important to have it also for the higher generators sine the

ghost urrent kµ ontains also higher generators.

The proof is subdivided into two parts. At �rst we prove that it is possible to

normalize T (W1 · · ·Wn) suh that it satis�es eqn. (B.1). Then we prove the same

statement for ondition (N5). This seems to be a detour beause we just saw that

(B.1) is a onsequene of (N5), but (B.1) will be needed in the proof of (N5).

Like all these proofs this one goes by indution, so we put forward the indution

hypothesis that both (N5) and (B.1) hold for fewer arguments than n and for the

sub monomials of the Wi, provided that at least one sub monomial is a proper one.

Then the ausal Wik expansion � eqn. (4.24) � tells us that eqn. (B.1) an only

be violated by an unsuitable normalization of ω0 (T (W1, . . . ,Wn)). Applying ω0 to

eqn. (B.1) and taking ω0◦sc = 0 into aount, we see that either (
∑n

k=1 g(Wk)) = 0
or ω0 (T (W1, . . . ,Wn)) = 0. In the �rst ase eqn. (B.1) is true for an arbitrary

normalization of ω0 (T (W1, . . . ,Wn)). In the seond ase validity of (B.1) in lower

orders guarantees that ω0 (T (W1, . . . ,Wn)) vanishes outside the diagonal but not

neessarily on the entireMn
. Nevertheless it is always possible to extend a distribu-

tion that vanishes outside the diagonal by a distribution that vanishes everywhere,

and suh an extension is obviously ompatible with all other normalization ondi-

tions. So it is always possible to �nd a normalization of T (W1, . . . ,Wn) that is a
solution of all normalization onditions inluding (B.1).

Now we ome to the seond part, the proof that normalizations an be found for



76

whih the ghost number Ward identities (N5)

∂yµT (W1(x1), . . . ,Wn(xn), k
µ(y)) =

=

n∑

k=1

δ(y − xk) g(Wk)T (W1(x1), . . . ,Wn(xn))
(B.8)

hold suh that the normalization is also in aordane with (N1) - (N4), provided

none of the Wi is equal to k
µ
or ontains it as a sub monomial, and none of them

ontains generators (ua)(α) or (ũa)(α) with |α| ≥ 2.
To this end we de�ne a possible anomaly as

a(x1, . . . , xn, y) = ∂yµT (W1, . . . ,Wn, k
µ) (x1, . . . , xn, y)

−
n∑

k=1

δ(y − xk) g(Wk)T (W1, . . . ,Wn) (x1, . . . , xn)
(B.9)

and show that a normalization an be found � in agreement with eqns. (N1) -

(N4) � suh that the anomaly vanishes. Realling our indution hypothesis we

want to show this under the assumption that all these anomalies vanish for the

time ordered produts of fewer arguments than n and in all equations that involve

the sub monomials of the Wi. The proof will be divided into three steps.

Step 1: At �rst we ommute the anomaly with the basi �elds ϕi(x) in order to

�nd that this ommutator vanishes. Thereby we make repeated use of ondition

(N3) and the fat that aording to our indution hypothesis eqn. (N5) is already

established for the lower orders and for the sub monomials. The result of that

alulation is

[
a(x1, . . . , xn, y), ϕi(z)

]

∓
=

= ig(ϕi)
n∑

k=1

∑

j

∆ij(xk − z)δ(y − xk)T
(
W1, . . . ,

∂Wk

∂ϕj
, . . . ,Wn

)

+i
∑

j

(
∂yµ∆ij(y − z)

)
T

(
W1, . . . ,Wn,

∂kµ

∂ϕj

)

+i
∑

j

∆ij(y − z)∂yµT
(
W1, . . . ,Wn,

∂kµ

∂ϕj

)
,

(B.10)

where we have omitted the spaetime arguments of the time ordered produts

beause the expressions would not �t into the line otherwise. We will do this

throughout this proof. It should not ause onfusion sine it is already lear from

the arguments of the time ordered produts whih the spaetime arguments are.

To show that the expression above vanishes we distinguish three ases:

Case 1: ϕi(z) 6= ua(z), ũa(z). In this ase both

∂kµ

∂ϕi
= 0 and g(ϕi) = 0, so the

ommutator vanishes immediately.

Case 2: ϕi(z) = ua(z). At �rst we note that g(ua) = 1. Furthermore we have

kµ = i(ũa)
(1,µ)ua − iũa(u

a)(1,µ), so we get in partiular

∂kµ

∂ũa
= −i(ua)(1,µ) and

∂kµ

∂(ũa)(1,ν) = iδµν u
a
. Taking this and the de�nition of the ommutator funtion ∆ij
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into aount, we get for the last two lines in (B.10)

(
∂yµD(y − z)

)
T
(
W1, . . . ,Wn, (u

a)(1,µ)
)

+D(y − z)∂yµT
(
W1, . . . ,Wn, (u

a)(1,µ)
)

−
(
∂yµD(y − z)

)
∂µy T

(
W1, . . . ,Wn, u

a
)
.

(B.11)

Aording to (N4) the expression above transforms into

(
∂µyD(y − z)

)
[
−iCu,1

n∑

k=1

δ(y − xk)T
(
W1, . . . ,

∂Wk

∂(ũa)(1,µ)
, . . . ,Wn

)]

+D(y − z)
[
+iCu,1

n∑

k=1

δ(y − xk)T
(
W1, . . . ,

∂Wk

∂ũa
, . . . ,Wn

)

− (1 + Cu,1)�T (W1, . . . ,Wn, u
a)

−iCu,1
Cu,2

∂αy ∂
β
y

[
n∑

k=1

δ(xk − y)T
(
W1, . . . ,

∂Wk

∂(ũa)2,αβ
, . . . ,Wn

)]
+ . . .

]

(B.12)

Sine we required that the Wi do not ontain generators (ua)(α) with |α| ≥ 2, the
last line and the following terms ontaining derivatives w.r.t. higher generators on

the Wi, indiated by the dots, vanish. Then omparing the remaining expression

with the �rst line in (B.10) reveals that these expressions anel eah other if and

only if Cu,1 = −1. So the hoie Cu,1 = −1 is a neessary (and, as it will turn out,

su�ient) ondition for eqn. (N5) to hold.

Case 3: ϕi(z) = ũa(z). The alulation for this ase is ompletely analogous the

the one before and reveals Cu,1 = −1 as a neessary ondition for the ommutator

to vanish, too.

So with Cu = −1 the ommutator of the anomaly with every free �eld vanishes.

Consequently a(x1, . . . , xn, y), smeared with an arbitrary test funtion, is a C-
number distribution.

Step 2: We already know that time ordered produts with at least one generator

as an argument are ompletely determined by the time ordered produts in lower

orders and those for the sub monomials. We will now examine whether this nor-

malization is ompatible with (N5).

Sine the anomaly an at most be a C-number distribution, it is su�ient to al-

ulate its C-number part ω0(a(x1, . . . , xn, y)). So we want to prove that

∂yµω0

(
T
(
W1, . . . ,Wn, ϕi, k

µ
))

=
(

n∑

k=1

δ(y − xk)g(Wk) + δ(y − z)g(ϕi)
)
ω0

(
T
(
W1, . . . ,Wn, ϕi

))
.

(B.13)
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With a repeated use of eqn. (4.29) this an be transformed into

i g(ϕi)

n∑

k=1

∑

j

∆F
ij(z − xk) δ(y − xk)ω0

(
T

(
W1, . . . ,

∂Wk

∂ϕj
, . . . ,Wn

))

+ i
∑

j

(
∂yµ∆

F
ij(z − y)

)
ω0

(
T

(
W1, . . . ,Wn,

∂kµ

∂ϕj

))

+ i
∑

j

∆F
ij(z − y) ∂yµ ω0

(
T

(
W1, . . . ,Wn,

∂kµ

∂ϕj

))

= g(ϕi)δ(y − z)



i
n∑

k=1

∑

j

∆F
ij(z − xk)ω0

(
T

(
W1, . . . ,

∂Wk

∂ϕj
, . . . ,Wn

))

 .

(B.14)

Again we an distinguish di�erent ases here.

In the �rst ase, ϕi 6= (ua)(α), (ũa)(α), we have again both

∂kµ

∂ϕi
= 0 and g(ϕi) = 0,

so the equation holds automatially. The ases ϕi = (ua)(α) or ϕi = (ũa)(α) with
|α| ≥ 2 annot our beause they were expliitely exluded. So there remain

four ases where we have to prove that the equation above is indeed valid: ϕi =
(ua), (ua)(1,µ), (ũa) and (ũa)(1,µ). For simpliity we will treat only ϕi = (ua), the
alulation for the other ases is analogous.

Remembering g(ua) = 1, ∂k
µ

∂ũa
= −i(ua)(1,µ) and ∂kµ

∂(ũa)(1,ν) = iδµν (u
a) from the �rst

step, we see that the sum of the seond and third line on the left hand side of

equation (B.14) give, where eqn. (N4) has been used,

(
∂µyD

F (z − y)
)
[
i

n∑

k=1

δ(y − xk)ω0

(
T

(
W1, . . . ,

∂Wk

∂(ũa)(1,µ)
, . . . ,Wn

))]

+DF (z − y)
[
i

n∑

k=1

δ(y − xk)ω0

(
T

(
W1, . . . ,

∂Wk

∂(ũa)
, . . . ,Wn

))]

− δ(z − y)
[
i
n∑

k=1

DF (y − xk)T
(
W1, . . . ,

∂Wk

∂(ũa)
, . . . ,Wn

)

i

n∑

k=1

(
∂µyD

F (y − xk)
)
T

(
W1, . . . ,

∂Wk

∂(ũa)(1,µ)
, . . . ,Wn

)]
.

(B.15)

Comparing this with the other lines in eqn. (B.14), we see that the last two lines

anel the right hand side of that equation while the �rst two lines anel the �rst

line on the the left hand side. So the equation is indeed satis�ed. As we already

remarked, it an be proven by an analogous alulation that this is also true if

ϕi = (ua)(1,µ), (ũa) or (ũa)(1,µ). With this we have proven that the time ordered

produts with at least one generator among their arguments satisfy ondition (N5)

automatially.

Step 3: We know up to now that eqn. (N5) an only be violated by T -produts
that have no generator among their arguments, and this violation an be at most a

C-number. In addition we know that the anomaly must be loal beause of ausal

fatorization and validity of (N5) in lower orders, so it an be written as

a(x1, . . . , xn, y) = ω0 (a(x1, . . . , xn, y)) = P (∂)δ(y − x1) · · · δ(y − xn) (B.16)
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for some polynomial of spaetime derivatives P (∂). To show that suh an anomaly

an always be removed we notie that

0 =

∫
d4y f(y) a(x1, . . . , xn, y) =

∫
d4y a(x1, . . . , xn, y) (B.17)

where f is a test funtion like in the proof of eqn. (4.32). The �rst identity is an

immediate onsequene of that equation. This is the point in the proof of (N5)

where it is neessary to know in advane that (B.1) holds. The seond identity is

true sine f = 1 in a domain around eah xk.
Let us onsider the Fourier transformation of the anomaly,

â(x1, . . . , xn, y) = (2π)n
∫
d4x1 · · · d4xna(x1, . . . , xn, y)ei(p1x1+···+pnxn)

= (2π)nP (−ip1, . . . ,−ipn)ei(p1+···+pn)y.

(B.18)

For the seond identity we have adopted eqn. (B.16) for the anomaly. Insert-

ing (B.18) bak into eqn. (B.17), we �nd that the polynomial P (−ip1, . . . ,−ipn)
vanishes on the hyperplane p1 + · · ·+ pn = 0:

P (−ip1, . . . ,−ipn)δ (p1 + · · ·+ pn) = 0. (B.19)

Now we de�ne P̃ (q, p1, . . . , pn−1)
def

= P (−ip1, . . . ,−ipn) with q def

= p1 + · · ·+ pn and

onsider its Taylor expansion around the origin:

P̃ (q, p1, . . . , pn−1) =

degreeP̃∑

k=1

∑

|α|+|β|=k

qαpβ

α!β!

(
∂|α|∂|β|

∂qα∂pβ
P̃

)
(0) (B.20)

where p
def

= (p1, . . . , pn−1). So the derivatives

∂|α|

∂qα
desribe a variation orthogonal

to the hyperplane p1+ · · ·+ pn = 0, the derivatives ∂|β|

∂pβ
a variation within it. Sine

P̃ vanishes throughout the entire plane, terms with |α| = 0 must vanish. Therefore

the Taylor expansion an be rewritten as

P̃ (q, p1, . . . , pn−1) = q ·
degreeP̃−1∑

k=0

∑

|α|+|β|=k

qαpβ

α!β!

(
∂|α|∂|β|

∂qα∂pβ
P̃µ1

)
(0) (B.21)

with a new polynomial P̃µ1 . Reversing the Fourier transformation we �nd

P (∂) =

(
n∑

i=1

∂iµ

)
Pµ1 (∂) (B.22)

where the polynomial Pµ1 is the Fourier transform of P̃µ1 . With this expression we

an write the anomaly as

a(x1, . . . , xn, y) = −∂yµ (n · Pµ1 δ(x1 − y) · · · δ(xn − y)) . (B.23)

So the anomaly an be removed by addition of n · Pµ1 δ(x1 − y) · · · δ(xn − y) to the

the previous normalization of T (W1, . . . ,Wn, k
µ) (x1, . . . , xn, y). This is obviously

a valid normalization and so the desired normalization has been found.

The question remains why we had exluded polynomials with kµ as a sub poly-

nomial. The reason is that we an assure that a normalization with the desired

properties exists, but we annot assure that time ordered produts like

T (kµ, kν ,W1, . . . ,Wn) (y, z, x1, . . . , xn) (B.24)
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are symmetri under simultaneous exhange of µ, ν and y, z as they must. There is

indeed a ounterexample for the Ward identities of the axial urrent jµA =: ψγµγ5ψ :,
where it is not possible to �nd a normalization of T (jµA, j

µ
A, j

µ
A) (x, y, z) with the

required symmetries. Exluding the respetive polynomials from the allowed argu-

ments makes sure that this situation does not our.

From the proof above it is lear that the normalization we have found is ompatible

both with (N3) and (N4). But we an also immediately see that (N5) respets

Poinaré transformation properties and therefore (N1). Taking the adjoint of (N5)

�nally reveals that it omplies also with (N2) and therfore eventually with all other

normalization onditions.

B.2. Relation between (N6) and generalized operator gauge invariane.

It is always possible to de�ne an operator valued distribution T (Li1 , . . . ,Lin , jµ)
by

T (Li1 , . . . ,Lin , jµ) (x1, . . . , xn, y)
def

=

def

= −s0T (Li1 , . . . ,Lin , kµ) (x1, . . . , xn, y)

+ i

n∑

m=1

∂mν T
(
Li1 , . . . ,Lνim+1, . . . ,Lin , kµ

)
(x1, . . . , xn, y)

− i
n∑

m=1

δ(xm − y)T
(
Li1 , . . . ,Mµ

im+1, . . . ,Lin
)
(x1, . . . , xn)

+ i

n∑

m=1

δ(xm − y) · im · T
(
Li1 , . . . ,Lµim+1, . . . ,Lin

)
(x1, . . . , xn).

(B.25)

T (Li1 , . . . ,Lin , jµ) is at this point only a name for that distribution, we must still

prove that it is indeed an extension of

0T (Li1 , . . . ,Lin , jµ). Before we do that, we

point out that it impliates (N6) almost immediately. Of ourse the time ordered

produts on the right hand side must satisfy eqn. (N5). Taking the derivative

w.r.t. the y oordinate, we �nd with (N5)

∂yµT
(
Li1 , . . . ,Lin , jµ

)
(x1, . . . , xn, y) =

= −
(

n∑

m=1

δ(xm − y) · im
)
s0T

(
Li1 , . . . ,Lin

)
(x1, . . . , xn)

+i

n∑

l=1

∂lν

[
T
(
Li1 , . . . ,Lνil+1, . . . ,Lin

)
(x1, . . . , xn)×

×
(

n∑

m=1

δ(xm − y) · im + δ(xl − y)
)]

+ i

n∑

m=1

(
∂mν δ(xm − y)

)
T
(
Li1 , . . . ,Mν

im+1, . . . ,Lin
)
(x1, . . . , xn)

− i
n∑

m=1

(
∂mν δ(xm − y) · im

)
T
(
Li1 , . . . ,Lνim+1, . . . ,Lin

)
(x1, . . . , xn).

(B.26)
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Smearing out this equation with a test funtion f like the one de�ned following

eqn. (B.2) gives eqn. (B.1), the alulation is the same as at the beginning of the

last setion. Inserting this result into eqn. (B.26) we get immediately eqn. (N6).

Eqn. (B.25) is obviously a well posed de�nition sine all operations involved in it

are well de�ned � in-partiular the time ordered produt in the last line ontains

no vertex at y, so the produt with the delta distribution is a tensor produt.

The ruial question is whether the operator valued distribution has the orret

ausal fatorization outside the diagonal Diagn+1. Only then it is really a time

ordered produt of its arguments as the notation suggests. Basially we must do

the same onstrution as in the respetive point for (N4), see setion (A.2). We

give here only a simpli�ed version of this proof where the essential point may be

more easily understood. The detailed version an easily be derived from this sketh.

Suppose the points x1, . . . , xn are in a relative position suh that

∅ 6= I = {x1, . . . , xk} & {xk+1, . . . , xn, y} . (B.27)

This is the situation we enounter in eqn. (A.17) in the �rst sum � if I =
{x1, . . . , xk} . {xk+1, . . . , xn, y}, orresponding to the seond sum there, the argu-

ment works as well. Then

T (Li1 , . . . ,Lin , jµ) = T (Li1 , . . . ,Lik)T
(
Lik+1

, . . . ,Lin , jµ
)

(B.28)

where we omitted the spaetime indies for simpliity. Eqn. (B.25) is valid for

T
(
Lik+1

, . . . ,Lin , jµ
)
sine we assumed that eqn. (B.25) holds already for time

ordered produts with fewer arguments. Together with eqn. (B.28) this gives the

following expression

T (Li1 , . . . ,Lin , jµ) =
= −s0

[
T (Li1 , . . . ,Lik)T

(
Lik+1

, . . . ,Lin , kµ
)]

+ [s0T (Li1 , . . . ,Lik)]T
(
Lik+1

, . . . ,Lin , kµ
)

+

n∑

l=k+1

∂lν
[
T (Li1 , . . . ,Lik)T

(
Lik+1

, . . . ,Lνil+1, . . . ,Lin , kµ
)]

− i
n∑

l=k+1

δ(xl − y)
[
T (Li1 , . . . ,Lik)T

(
Lik+1

, . . . ,Mµ
il+1, . . . ,Lin

)]

(B.29)

where we have omitted spaetime arguments for simpliity. For s0T (Li1 , . . . ,Lik)
we may use the generalized operator gauge invariane (4.35) in lower orders as long

as k 6= n. Unfortunately also the ase k = n ours if all the xi oinide and only y
is separated from them. This is the only ase where we must know in advane that

(4.35) holds. If this would not be true then our de�nition (B.25) would be a well

de�ned operator valued distribution, but no an extension of T 0(Li1 , . . . ,Lin , jµ) to
the diagonal � this means that it ould di�er from the T 0

-produt even outside the

diagonal. Hene we need to assume that (4.35) is valid also for k = n. Furthermore

we may add in the last sum the terms with l = 1, . . . , k sine the delta distributions
vanish beause y and the x1, . . . , xk may never oinide. Reombining the produts

of T -produts into a single T -produt aording to eqn. (B.28) one gets imme-

diately (B.25). As already remarked the alulation omes to the same result if

∅ 6= I = {x1, . . . , xk} . {xk+1, . . . , xn, y}. So (B.25) is a well de�ned operator val-

ued distribution that agrees � as long as (4.35) is valid � with T 0(Li1 , . . . ,Lin , jµ)
if smeared with a test funtion that vanishes with all its derivatives on the diagonal,
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so it is an extension of that T 0
-produt to the diagonal and therefore a possible

normalization of T (Li1 , . . . ,Lin , jµ).
So we have just proven that the onditions (N6) and (4.35) are equivalent.
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