Symmetry Groups in Physics: Problems

Problem 22 - Point groups in two dimensions

In two dimensions a point group is a finite subgroup of $O(2)$. Classify all point groups in two dimensions!

Problem 23 - Lattice

Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of the real linear space \mathbb{R}^{n}. The set

$$
\left\{\sum_{k=1}^{n} m_{k} v_{k} \mid m_{1}, \ldots, m_{n} \in \mathbb{Z}\right\}
$$

is the "lattice" generated by the basis.
a) Show that any lattice is a subgroup of $\left(\mathbb{R}^{n},+\right)$!
b) Show that any lattice in \mathbb{R}^{n} is isomorphic to the n-fold direct product of $(\mathbb{Z},+)$ with itself.

Problem 24 - Helmholtz equation

Consider the Helmholtz equation

$$
\Delta f(x)+k^{2} f(x)=0 \quad\left(x \in \mathbb{R}^{3}, k=\omega / c\right) .
$$

The operator $\Delta+k^{2}$ is isotropic and homogeneous $\left(\Delta=\nabla^{2}\right)$. Hence, with f also $D(g) f$ is a solution, where $g=(a, R) \in E(3)$ is an isometry and where

$$
[D(g) f](x):=f\left(g^{-1} x\right)=f\left(R^{-1}(x-a)\right) .
$$

Show that D is an infinite-dimensional representation of the Euclidean group!

