Symmetry Groups in Physics: Problems

Problem 16 - Platonic solids

In three-dimensional space, a Platonic solid is a regular polyhedron. It is constructed by congruent regular polygonal faces with the same number of faces meeting at each vertex. There are five solids: The tetrahedron, the cube, the octahedron, the dodecahedron, and the icosahedron with $4,6,8$, 12, 20 faces, respectively.

Determine the orders of the symmetry groups of the Platonic solids!

Problem 17 - Direct product

Recalling that $G_{1} \triangleleft G, G_{2} \triangleleft G$, and $G_{1} \cap G_{2}=\{e\}$, and $G_{1} G_{2}=G$ implies that $G=G_{1} \times G_{2}$, prove that:

$$
G L(n, \mathbb{R})=S L(n, \mathbb{R}) \times \mathbb{R}^{*}
$$

for the case that n is odd! Here

$$
\mathbb{R}^{*}=\{\lambda \mathbf{1} \mid \lambda \in \mathbb{R}, \lambda \neq 0\} .
$$

Problem 18 - Positive determinant

We define

$$
G L_{+}(n, \mathbb{R})=\{A \in G L(n, \mathbb{R}) \mid \operatorname{det} A>0\} .
$$

Show that this defines a group!
Show that $G L_{+}(n, \mathbb{R})$ is a normal subgroup of $G L(n, \mathbb{R})$!
Show that $G L(n, \mathbb{R}) / G L_{+}(n, \mathbb{R}) \cong Z_{2}$!

