Symmetry Groups in Physics: Problems

Problem 15 - Symplectic matrices

For arbitrary integer n, the set of symplectic matrices is defined as

$$
S p(2 n, \mathbb{R})=\left\{A \in G L(2 n, \mathbb{R}) \mid A^{T} J A=J\right\}
$$

where $J \in G L(2 n, \mathbb{R})$ is a fixed but arbitrary (!) skew symmetric $2 n \times 2 n$ matrix $\left(J_{i j}=-J_{j i}\right)$.
a) Show that $\operatorname{Sp}(2 n, \mathbb{R})$ with the usual matrix multiplication forms a group!
b) Consider $i J$ to show that the eigenvalues of J are purely imaginary and come in pairs, $i \lambda_{j},-i \lambda_{j}$ (λ_{j} real)!
c) With the same idea, show that there is a real orthogonal matrix O such that

$$
O^{T} J O=\operatorname{diag}\left(\left(\begin{array}{cc}
0 & \lambda_{1} \\
-\lambda_{1} & 0
\end{array}\right), \cdots,\left(\begin{array}{cc}
0 & \lambda_{n} \\
-\lambda_{n} & 0
\end{array}\right)\right) \equiv D!
$$

Hint: Consider $y_{j} \equiv\left(x_{j}+x_{j}^{*}\right) / \sqrt{2}$ and $z_{j} \equiv-i\left(x_{j}-x_{j}^{*}\right) / \sqrt{2}$ where x_{j} is the eigenvector of J corresponding to the eigenvalue $i \lambda_{j}$.
d) The symplectic group is unique! Show that

$$
S p_{J}(2 n, \mathbb{R})=\left\{A \in G L(2 n, \mathbb{R}) \mid A^{T} J A=J\right\}
$$

and

$$
S p_{J^{\prime}}(2 n, \mathbb{R})=\left\{A \in G L(2 n, \mathbb{R}) \mid A^{T} J^{\prime} A=J^{\prime}\right\}
$$

are isomorphic for arbitrary real skew-symmetric J and J^{\prime} !
e) Show $\operatorname{det} A=+1$ for $A \in \operatorname{Sp}(2 n, \mathbb{R})$!

Hint: Show that if λ_{0} is an eigenvalue of A with multiplicity k, then $1 / \lambda_{0}$ must be an eigenvalue of A with the same multiplicity!

