Symmetry Groups in Physics: Problems

Problem 8 - Classification of all cyclic groups

Let $G=(g)=\left\{g^{k} \mid k \in \mathbb{Z}\right\}$ be an arbitrary cyclic group.
Assume $|G|=\infty$ and consider the map

$$
\phi: \mathbb{Z} \rightarrow G, \quad k \mapsto g^{k} .
$$

Show that ϕ is an isomorphism!
Assume $|G|<\infty$. Define m as the smallest positive integer with $g^{m}=e$, write $G=\left\{e, g, g^{2}, \ldots g^{m-1}\right\}$ and consider the map

$$
\phi: \mathbb{Z} / m \mathbb{Z} \rightarrow G, \quad k+m \mathbb{Z} \mapsto g^{k}
$$

Show that ϕ is an isomorphism!
Prove the following theorem:
Let G be a cyclic group. Then $G \cong \mathbb{Z}$ if $|G|=\infty$ and $G \cong Z_{m}$ if $|G|=m<\infty$.

Problem 9 - Canonical transformations

Consider a classical system with n degrees of freedom, the dynamics of which is described by a Hamilton function $H(x)=H\left(q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}\right)$ where the $2 n$-dimensional vector $x=\left(q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}\right)$ is the phase, i.e., the state of the system. Show the following propositions:
a) The equation of motion for the system's state can be written as:

$$
\dot{x}=J \nabla H(x),
$$

where

$$
J=\left(\begin{array}{cc}
0 & \mathbf{1} \\
-\mathbf{1} & 0
\end{array}\right)
$$

where and $\mathbf{1}$ is the $n \times n$ unity matrix.
b) The Poisson bracket of two observables $A(x)$ and $B(x)$ takes the form

$$
\{A, B\}=(\nabla A, J \nabla B)
$$

where (\ldots, \ldots) is the usual Euclidean scalar product.
c) An arbitrary (smooth) transformation $y=y(x)$ in the $2 n$-dimensional phase space leaves the form of the equation of motion invariant, i.e.,

$$
\dot{y}=J \nabla_{y} H(x(y)),
$$

if and only if

$$
S J S^{T}=J
$$

where S is the Jacobian of the transformation, i.e,

$$
S_{i j}=\frac{\partial y_{i}}{\partial x_{j}}
$$

and $i, j=1, \ldots, 2 n$.
d) A transformation $y=y(x)$ is canonical, iff

$$
\left\{y_{i}, y_{j}\right\}=J_{i j}
$$

for all $i, j=1, \ldots, 2 n$.

