Symmetry Groups in Physics: Problems

Problem 5 - Sets of left and right cosets

Let H be a subgroup of the finite group G and consider the set of the left cosets G / H and the set of right cosets $H \backslash G$.

Show that the map

$$
\tau: G / H \rightarrow H \backslash G, \quad \tau(a H)=H a^{-1} \quad \text { with } a \in G
$$

is bijective!

Problem 6 - Quaternion group

$G L(n, \mathbb{C})$ is the set of all invertible $n \times n$ matrices over the field of complex numbers. Show that $G L(n, \mathbb{C})$ with the usual matrix multiplication forms a group!

Consider the following elements of $G L(2, \mathbb{C})$:

$$
E=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \quad I=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) \quad J=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad K=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right) .
$$

The quaternion group is the subgroup of $G L(n, \mathbb{C})$ generated by these elements:

$$
Q_{8}=\langle E, I, J, K \mid \varnothing\rangle .
$$

List all elements of Q_{8} ! Is Q_{8} abelian?
Draw the cycle graph!
Show that there are three cyclic subgroups of order 4 and one cyclic subgroup of order 2 !
A subgroup N of a group G is a normal subgroup if $g N=N g$ for all $g \in G$. Which of the cyclic subgroups are normal?

Is Q_{8} a normal subgroup of $G L(n, \mathbb{C})$?
What is the center of Q_{8} ?
Determine $\mathrm{Cen}(I)$ and $\mathrm{Cl}(I)$!
Let \mathbb{H} be the set of all real linear combinations of E, I, J, K. Show that \mathbb{H} with the usual matrix multiplication and addition forms a so-called division ring or skew field, i.e. all field axioms hold except for the commutative property of the multiplication!

For $z \in \mathbb{H}$, compute z^{-1} explicitly! (Hint: How is this done for complex numbers?)

Problem 7 - Orbits

Let X be a non-empty set and G a group which (left) operates on X, i.e. there is a map $G \times X \rightarrow X$ with $(a, x) \mapsto a \cdot x=a x$ with the properties
(i) $a(b x)=(a b) x$ for all $a, b \in G$ and all $x \in X$.
(ii) $e x=x$ for all $x \in X$ (e is the neutral element in G).

For a given $x \in X$, we call $G x=\{a x \mid a \in G\}$ the "orbit" of x under the operation of G. Show that:
a) $x \sim y: \Leftrightarrow \exists a \in G: x=a y$ defines an equivalence relation for the elements of X ! The orbit of x is the equivalence class of x.
b) X is the disjoint union of the orbits of certain $x \in X$!
c) Find 10 examples for groups operating on sets!

