Symmetry Groups in Physics: Problems

Problem 29 - Lie algebra from structure constants

Assume that n^{3} real numbers $f_{i j k}$ (with $i, j, k=1, \ldots, n$) are given and satisfy the properties

$$
\begin{aligned}
f_{i j k} & =-f_{j i k} \\
0 & =\sum_{l}\left(f_{j k l} f_{i l m}+f_{i j l} f_{k l m}+f_{k i l} f_{j l m}\right) .
\end{aligned}
$$

Furthermore, there is an n-dimensional linear space g with basis $\left\{T_{1}, \ldots T_{n}\right\}$.
How can one define a Lie algebra? Verify the according postulates!

Problem 30 - Classical analogue of a Lie algebra

Assume that a Lie algebra is given by the generators T_{1}, \ldots, T_{n} and the commutation relations

$$
\left[T_{i}, T_{j}\right]=\sum_{k} f_{i j k} T_{k}
$$

where $f_{i j k}$ are the structure constants. T_{i} are Hermitian operators in a Hilbert space.
To find the classical counterpart of the corresponding quantum system, we define the Lie-Poisson bracket for arbitrary functions $A=A(X)$ and $B=B(X)$ of $X=\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{R}^{n}$ as

$$
\{A, B\}=\sum_{i j k} \frac{\partial A}{\partial X_{i}} \frac{\partial B}{\partial X_{j}} X_{k} f_{i j k}
$$

Verify that the known general properties of a Poisson bracket are recovered: antisymmetry, bilinearity and the Jacobi identity! Show that this definition satisfies

$$
\left\{X_{i}, X_{j}\right\}=\sum_{k} f_{i j k} X_{k}
$$

Apply this idea to $s u(2)$ (complex and traceless 2×2 matrices) to get the classical analog of the spin- $1 / 2$ algebra!

What form do the classical canonical equations of motion

$$
\dot{A}=\{A, H\}
$$

take in this case if one considers for $A=X_{i}$ and a Hamiltonian of the form $H=H(X)=-\sum_{i} B_{i} X_{i}$, where $B_{i}(i=1,2,3)$ is some external field?

Problem 31 - Orthogonality of irreducible representations

Let $D: G \rightarrow \mathrm{GL}(V)$ and $D^{\prime}: G \rightarrow \mathrm{GL}\left(V^{\prime}\right)$ be two irreducible representations of a finite group G in linear spaces V and V^{\prime}.

Consider an arbitrary linear map $B: V \rightarrow V^{\prime}$, and define a "G-symmetrized" linear map $A: V \rightarrow V^{\prime}$:

$$
A=\frac{1}{|G|} \sum_{a \in G} D^{\prime}\left(a^{-1}\right) B D(a)
$$

and show that
(i) $A=0$ if D and D^{\prime} are inequivalent.
(ii) $A=\operatorname{tr} B / \operatorname{dim} V$ if $D=D^{\prime}$ (and $V=V^{\prime}$)!

Choose bases of V and V^{\prime} and consider the respective matrix representations of D and D^{\prime}. Show that
(iii) $\frac{1}{|G|} \sum_{a \in G} D_{i^{\prime} j^{\prime}}^{\prime}\left(a^{-1}\right) D_{j i}(a)=0$ if D, D^{\prime} are inequivalent.
(iv) $\frac{\operatorname{dim} V}{|G|} \sum_{a \in G} D_{i^{\prime} j^{\prime}}\left(a^{-1}\right) D_{j i}(a)=\delta_{i i^{\prime}} \delta_{j j^{\prime}}$ if $D=D^{\prime}$!

Problem 32 - Characters

The character of a representation $D: G \rightarrow \mathrm{GL}(V)$ is a map

$$
\chi_{D}: G \rightarrow \mathbb{C}, \quad a \mapsto \chi_{D}(a)=\operatorname{tr} D(a) .
$$

Show the following propositions:
a) Equivalent representations have the same character.
b) The character of a direct sum of representations is the sum of their characters.
c) $\chi(a b)=\chi(b a)$.
d) $\chi\left(b a b^{-1}\right)=\chi(b)$, i.e., χ is a "class function" and constant on a conjugacy class.
e) $\chi(e)=\operatorname{dim} V$.

Show that for the characters $\chi^{(\alpha)}$ of irreducible representations $D^{(\alpha)}$:

$$
\frac{1}{|G|} \sum_{a \in G} \chi^{(\alpha)}\left(a^{-1}\right) \chi^{(\beta)}(a)=\delta_{\alpha \beta}
$$

($\alpha=\beta$ means equivalent representations).
Show that the multiplicity n_{α} in a decomposition of a unitary representation

$$
D=n_{1} D^{(1)} \oplus \cdots \oplus n_{r} D^{(r)}
$$

into irreducible representations $D^{(\alpha)}$ is given by:

$$
n_{\alpha}=\left\langle\chi^{(\alpha)} \mid \chi\right\rangle
$$

where $\chi=\chi_{D}$ and where $\chi=\sum_{a \in G} \chi(a) a \in F_{G}$ is an element of the Frobenius algebra.

