Symmetry Groups in Physics: Problems

Problem 27 - Direct sum and direct product

Let V_{1}, V_{2} be subspaces of a linear space V such that $V=V_{1} \oplus V_{2}$. Let $D_{1}: G \rightarrow G L\left(V_{1}\right)$ and $D_{2}: G \rightarrow G L\left(V_{2}\right)$ be two linear representations of a group G in V_{1} and in V_{2}, respectively. Show that $D_{1} \oplus D_{2}$ is a homomorphism!

Let V_{1}, V_{2} be two linear spaces and $D_{1}: G \rightarrow G L\left(V_{1}\right)$ and $D_{2}: G \rightarrow G L\left(V_{2}\right)$ be two linear representations of a group G in V_{1} and in V_{2}, respectively. Show that $D_{1} \otimes D_{2}$ is a homomorphism!

Problem 28 - Frobenius Algebra

Consider a finite group G and the group elements $a_{1}, \ldots, a_{n} \in G$ with $n=|G|$ as a basis of an n-dimensional linear space F_{G} over \mathbb{C} ! A typical element $x \in F_{G}$ has the form:

$$
x=\sum_{i=1}^{n} x_{i} a_{i}
$$

with $x_{i} \in \mathbb{C}$ or

$$
x=\sum_{a \in G} x(a) a,
$$

where $x(a) \in \mathbb{C}$ are the complex coefficients of the expansion of x in the basis. Addition and multiplication with scalars are defined component-by-component.
a) Argue that F_{G} is in fact a linear space!
b) For elements $x, y \in F_{G}$ we can define a product via

$$
x \cdot y=\left(\sum_{a} x(a) a\right)\left(\sum_{b} y(b) b\right)=\sum_{a, b} x(a) y(b) a b .
$$

Show that this product is (i) bilinear, (ii) associative and that (iii) there is a neutral element e such that $e x=x e=x \forall x \in F_{G}$! The linear space with this product is a unitary, associative algebra over \mathbb{C} !
c) Show that

$$
(x y)(a)=\sum_{b} x(b) y\left(b^{-1} a\right)
$$

for the components of $x y, x, y$!
d) For elements $x, y \in F_{G}$ we can define an inner product via

$$
\langle x \mid y\rangle=\frac{1}{|G|} \sum_{a} x(a)^{*} y(a) .
$$

Show that the postulates for an inner product are satisfied!
e) Show that $x \in F_{G}$ can be written as

$$
x=|G| \sum_{a}\langle a \mid x\rangle a!
$$

f) We define the regular (left) representation of G on F_{G},

$$
R: G \rightarrow \mathrm{GL}\left(F_{G}\right), \quad a \mapsto R(a)
$$

by

$$
R(a): F_{G} \rightarrow F_{G}, \quad x \mapsto R(a) x=a x .
$$

For $a \in G, R(a)$ is the left translation!
Show that $R(a)$ is linear!
Show that R is a homomorphism!
Show that

$$
R(a) x=\sum_{b} x\left(a^{-1} b\right) b!
$$

Show that R is unitary, i.e.

$$
\langle R(a) x \mid R(a) y\rangle=\langle x \mid y\rangle!
$$

g) Since the elements of G are a basis of F_{G}, the regular representation can be used to obtain a matrix representation:

$$
G \rightarrow \mathrm{GL}\left(F_{G}\right) \rightarrow \mathrm{GL}(|G|, \mathbb{C}), a \mapsto R(a) \mapsto \underline{R}(a) .
$$

We choose an orthonormal basis as

$$
\{\sqrt{|G|} a \mid a \in G\} .
$$

Show that the elements of the matrix $\underline{R}(a)$ are given by

$$
R_{i j}(a)=|G|\left\langle a_{i} \mid R(a) a_{j}\right\rangle
$$

and that $R_{i j}(a)=1$ if and only if $a_{i}=a a_{j}$ and $R_{i j}(a)=0$ else. This implies

$$
a a_{j}=\sum_{i} R_{i j}(a) a_{i}
$$

