Blatt 2 WS 2004/2005

Übungen zur Quantenmechanik III: Vielteilchenphysik

Aufgabe 8 — Kronecker-Delta

Betrachten Sie ein endliches Gitter, dass in einem Spat eingeschlossen ist, der von den Vektoren $L_1\mathbf{a}_1$, $L_2\mathbf{a}_2$ und $L_3\mathbf{a}_3$ aufgespannt wird. Die \mathbf{a}_s (s=1,2,3) sind dabei die Basisvektoren einer Einheitszelle des Gitters und L_s sind (grosse) natürliche Zahlen. $L=L_1L_2L_3$ ist dann die Anzahl der Einheitszellen des Gitters. Das Systemvolumen ist $V=LV_{\rm EZ}=L\mathbf{a}_1\cdot\mathbf{a}_2\times\mathbf{a}_3$.

a) Betrachten Sie ebene Wellen $\psi_{\mathbf{k}}(\mathbf{r}) = \exp(i\mathbf{k}\mathbf{r})$. Welche erlaubten k-Werte ergeben sich bei periodischen Randbedingungen der Form:

$$\psi_{\mathbf{k}}(\mathbf{r}) \stackrel{!}{=} \psi_{\mathbf{k}}(\mathbf{r} + L_s \mathbf{a}_s) \qquad s = 1, 2, 3 ?$$

Schreiben Sie ${\bf k}$ als Linearkombination von Basisvektoren des reziproken Gitters ${\bf b}_r$, r=1,2,3. Welche Koeffizienten sind erlaubt?

b) Nutzen Sie dieses Ergebnis, um für ein ${\bf k}$ aus der durch ${\bf b}_1$, ${\bf b}_2$ und ${\bf b}_3$ aufgespannten Einheitszelle des reziproken Gitters den Ausdruck

$$\frac{1}{L} \sum_{i} e^{i\mathbf{k}\mathbf{R}_{i}}$$

zu berechnen! $\mathbf{R}_i = \sum_s n_s \mathbf{a}_s$ mit ganzen Zahlen $n_s = 0, ..., L_s - 1$ sind hier die Vektoren des direkten Gitters.

c) Beweisen Sie für zwei (erlaubte) Wellenvektoren \mathbf{k} , \mathbf{k}' aus der Einheitszelle des reziproken Gitters, dass

$$\frac{1}{L} \sum_{i} e^{i(\mathbf{k} - \mathbf{k}')\mathbf{R}_{i}} = \delta_{\mathbf{k}\mathbf{k}'} !$$

d) Beweisen Sie für zwei direkte Gittervektoren \mathbf{R}_i , \mathbf{R}_j , dass

$$\frac{1}{L} \sum_{\mathbf{k}}^{\text{rez.EZ}} e^{i\mathbf{k}(\mathbf{R}_i - \mathbf{R}_j)} = \delta_{ij} !$$