Blatt 4 WS 2003/2004

Übungen zur Quantenmechanik III: Vielteilchenphysik

Aufgabe 17 — Zwei-Platz-Hubbard-Modell

Gegeben ist das Hubbard-Modell für L=2 Plätze:

$$H = \epsilon_0 \sum_{\sigma} (n_{1\sigma} + n_{2\sigma}) + t \sum_{\sigma} (c_{1\sigma}^{\dagger} c_{2\sigma} + c_{2\sigma}^{\dagger} c_{1\sigma}) + U n_{1\sigma} n_{1-\sigma} + U n_{2\sigma} n_{2-\sigma} .$$

- a) Konstruieren Sie die zu H gehörige Matrix in der Besetzungszahldarstellung! Nutzen Sie dabei aus, dass H blockdiagonal bezüglich der Teilchenzahl ist!
- b) Berechnen Sie die Grundzustandsenergie E_0 für N=2 Elektronen! Überprüfen Sie die Grenzfälle U=0 und t=0!
- c) Entwickeln Sie die Grundzustandsenergie $E_0=E_0(U)$ in 1/U und vergleichen Sie das Resultat in führender Ordnung in 1/U mit der Grundzustandsenergie des entsprechenden Zwei-Spin-Heisenberg-Modells!
- d) Berechnen Sie jetzt sämtliche Eigenwerte von $\mathcal{H}=H-\mu\hat{N}$ und bestimmen Sie in Abhängigkeit von μ die Grundzustandsenergie von \mathcal{H} und die jeweilige Teilchenzahl N.
- e) Es sei $\mu=\epsilon_0+U/2$. Bestimmen Sie die niedrigste Anregungsenergie von $\mathcal H$ und vergleichen Sie mit der niedrigsten Anregungsenergie des Zwei-Spin-Heisenberg-Modells für $U\to\infty$!
- f) Welche niedrigste Anregung ergibt sich für $\mu=0$?