Übungen zur

Quantenmechanik

- Blatt 5 -

Prof. Dr. Alexander Lichtenstein zum 28.05.2013

Aufgabe 1) Translationsoperator (3 Punkte)

Zeigen Sie, dass wenn $|x\rangle$ Eigenzustand zu \hat{x} mit Eigenwert x ist, so ist auch

$$|\psi\rangle = e^{i\frac{\hat{p}a}{\hbar}} |x\rangle$$

Eigenzustand zu \hat{x} .

Aufgabe 2) Zweiniveausystem (4 Punkte)

Ein Teilchen habe die Möglichkeit, zwei orthonormale Zustände $|R\rangle$ und $|L\rangle$ mit den Energien V_R und V_L zu besetzen und mit einer reellen Wahrscheinlichkeitsamplitude W zwischen ihnen zu tunneln. Dieses System wird vom Hamiltonoperator

$$H = V_R |R\rangle \langle R| + V_L |L\rangle \langle L| + W(|R\rangle \langle L| + |L\rangle \langle R|) \tag{1}$$

beschrieben.

- a) Geben Sie H als 2×2 -Matrix sowie einen beliebigen Zustand $|\psi(t)\rangle$ in der Basis der Zustände $|R\rangle$ und $|L\rangle$ an. Lösen Sie die Eigenwertgleichung für H.
- b) Zeigen Sie, dass für $V_R=V_L=V$ die zeitabhängige Schrödingergleichung in dieser Darstellung auf die gekoppelten gewöhnlichen Differentialgleichungen

$$i\hbar \frac{d}{dt} \left[c_1(t) + c_2(t) \right] = (V + W) \left[c_1(t) + c_2(t) \right]$$
 (2)

$$i\hbar \frac{d}{dt} \left[c_1(t) - c_2(t) \right] = (V - W) \left[c_1(t) - c_2(t) \right]$$
 (3)

führt, wobei $c_j(t) = \langle j | \psi(t) \rangle$ ist.

- c) Lösen Sie das Differentialgleichungssystem aus b) mit der Anfangsbedingung, dass sich das Teilchen zum Zeitpunkt t=0 im Zustand $|R\rangle$ befindet.
- d) Diskutieren Sie die Zeitabhgigkeit der Wahrscheinlichkeiten $|c_1(t)|^2$, $|c_2(t)|^2$ und $|c_1(t) + c_2(t)|^2$ und ihre physikalische Bedeutung anhand einer Skizze.

Aufgabe 3) δ -Potenzial (3 Punkte)

Bestimmen Sie die normierte Wellenfunktionen und den Energieeigenwert des gebundenen Zustandes in das δ -Potenzial $U(x) = -\alpha \delta(x)$ in einer Dimension.

Hinweis: um die Grenzbedienung für die Ableitungen der Wellenfunktion im Punkt x=0 zu finden, integrieren Sie die Schrödinger Gleichung über eine kleine Umgebung des Null-Punktes.