Übungen zur

Quantenmechanik II

- Blatt 10 -

Prof. Dr. Alexander Lichtenstein zum 07.01.2014

Aufgabe 1) Bewegender δ -Topf

Ein Teilchen befinde sich im Grundzustand des Potentials $U(x) = -\alpha \delta(x)$. Bei t = 0 beginne der Topf die Bewegung mit konstanter Geschwindigkeit V. Finden Sie die Wahrscheinlichkeit, dass das Teilchen von dem Topf mitgetragen wird. Betrachten Sie die Grenzfälle von grosse und kleine V.

Aufgabe 2) Zwei stossende δ -Töpfe

Ein Teilchen befinde sich im Feld von zwei sich einander annähernden delta-Töpfen, so dass

$$U(x,t) = -\alpha[\delta(x - L(t)/2) + \delta(x + L(t)/2)].$$

Bei $t \to -\infty$ seien die Töpfe unendlich weit voneinander entfernt und das Teilchen ist in einem von ihnen gebunden. Der Abstand zwischen den Töpfen verkleinere sich langsam bis sie sich zum Potential $-2\alpha\delta(x)$ vereinigen. Wie groß ist die Wahrscheinlichkeit, dass das Teilchen im gebunden Zustand bleibt?

Aufgabe 3) Thomas-Fermi Model

Zeigen Sie im Rahmen vom Thomas-Fermi Model, dass für die Dichte $n_0(r)$, welche das Energiefunktional E[n(r)] minimiert $U_{enuc} - 7U_{ee}$ und $2T = -(U_{enuc} + U_{ee})$ gilt. Betrachten Sie hierfür die mögliche Variationen der Dichte: $n(r, \lambda) = (1 + \lambda)n_0(r)$ und $n(r, \lambda) = n_0((1 + \lambda)r)$ und variieren Sie das Energiefunktional nach λ .