Control loops and control theory

- I. Feedback loop and transfer function
- II. PI controllers
- III. Stability criteria
- IV. PI controller + fast loop
- V. 1Hz Clock laser example

El 8

Control loop example: driving

Feedback loop

Example: Proportional controller $oldsymbol{eta}(s)$ = A_p

Assumption: no delay, constant gain A_p

System (Strecke) is slow, has delay τ \Rightarrow phase response delayed, by 120° at f_k . For this delay, effective negative feedback becomes impossible.

Hence, total gain $\beta(f_k) \cdot A_p(f_k)$ should be smaller than one, to avoid resonance/introduce damping.

Drawbacks:

Limited the gain at low frequencies. Exponentially slow approach to reference=0. Constant offset $x(\infty) - r \neq 0$ if $r \neq 0$.

Abb. 19.2. Beispiel für das Bode-Diagramm einer Strecke mit P-Regler

El 11 Tietze+ Schenk, Chap 19

Open loop gain $A_s \cdot \beta$ and transfer function F(s)

Response of system to input? Without feedback:

$$x(t) = \int_0^{t'} u(t') \cdot a_s(t - t') dt' \equiv u * a_s$$
 \(\begin{align} \pm \text{Convolution} \]

$$X(s) = U(s) \cdot A_s(s)$$
 Convolution \rightarrow Multiplikation. Solve in frequency domain, final IFT

Closed loop ($r \equiv 0$):

$$X(s) = \underbrace{U(s) \cdot A_s(s)}_{\text{disturbance}} \underbrace{-X(s) \cdot \beta(s) \cdot A_s(s)}_{\text{negative feedback}}$$

$$X(s) = \frac{A_s}{1 + \beta \cdot A_s} \cdot U(s)$$

 $F(s) = \frac{A_s}{1 + \beta \cdot A_s}$ is called transfer function or impulse response, because with δ -impulse

$$u(t) = \delta(t-0) \Rightarrow U(s) = 1;$$

$$X(s) = F(s) \cdot 1 \implies x(t) = f(t)$$

System incl. Feedback: F(s)

Transfer function F(s) and stability

$$F(s) = \frac{A_s \leftarrow System response}{1 + \underbrace{\beta \cdot A_s}}$$

Suppression of disturbances by feedback

The larger $\beta(s)$, the better suppression of disturbances at that frequency s

Stability: $\beta(s) \cdot A_s(s)$ should never become = -1 because then positive feedback, instable

Goals?

El 13

El 14

- Stability, i.e. $\beta(s) \cdot A_s(s) \neq -1 \quad \forall s$
- Large gain β at low frequencies
 - Why: Most disturbances are typically acoustic and hence at frequencies < 2 kHz

Two viewpoints:

- 1. Study $\beta(s) \cdot A_s(s)$ in Bodediagrams, avoid $\varphi(\beta \cdot A_s) = -180^\circ$ AND $|\beta \cdot A| > 1$
 - More intuitive. This lecture.
- 2. Study poles and zeros of F(s) in complex $s = \sigma + i\omega$ plane. Mathematically more powerful (residue theorem).
 - Several stability criteria e.g. poles must be in σ <0 halfplane. Routh-Hurwitz criteria See 2nd lecture.

Laplace transform

Laplace transform = Fourier transform generalised to complex s:

Complex frequency $s \equiv \sigma + i\omega$

$$F(s) = \int_0^\infty e^{-s \cdot t} f(t) \ dt \quad \Leftrightarrow \quad f(t) = \frac{1}{2\pi i} \int_{\gamma - i\infty}^{\gamma + i\infty} e^{s \cdot t} F(s) \ ds$$

Integration & Differentiation \Leftrightarrow Division & Multiplication by s

$$j(t) = \int_0^t f(t') dt' \quad \Leftrightarrow \quad J(s) = \frac{F(s)}{s} \qquad \qquad J(\omega) = \frac{F(\omega)}{i \omega}$$
$$d(t) = \frac{df(t)}{dt} \qquad \Leftrightarrow \quad D(s) = s \cdot F(s) \qquad D(\omega) = i \omega F(\omega)$$

Proof:
$$J(s) = \int_0^\infty \underbrace{e^{-s \cdot t}}_{u'} \underbrace{\int_0^t f(t')dt'}_{j(t)} dt = \underbrace{u \cdot i|_0^\infty}_{=0} - \int_0^\infty \underbrace{u(t)}_{e^{-st}} \cdot J'(t) dt = \frac{F(s)}{s}$$
 Integrate by parts

PI-Controller

Proportional gain at high frequencies

Integral gain at frequencies $f < f_i$

Advantages:

- Much higher gain at low frequencies *f* :
 - Limited by corner frequency f_I : $\frac{A_{PI}}{A_P} = \frac{f_I}{f}$
- Zero offset $x(\infty) r = 0$ from ref. value $r \neq 0$.
- ⇒ PI controller much better than P controller!

But: Extra 90° delay. No problem, only 120° is.

Current $I_1 = U_x/R_1$ charges C_2 , changing U_C . Until deviation from desired reference=x-r= U_x is zero, i.e. perfect lock.

Math: Gain=
$$\frac{Z_2}{Z_1} = \frac{R_2 + (i\omega C_2)^{-1}}{R_1} = \frac{R_2}{R_1} \left(1 + \frac{(R_2 C_2)^{-1}}{i\omega} \right) = A_p \left(1 + \frac{2\pi f_l}{i\omega} \right)$$

 Z_2 is large for low f , where \mathcal{C}_2 is effective block. At large f , \mathcal{C}_2 becomes conducting, and R_2 dominates

 R_3 limits gain at very low frequencies, i.e. allows discharging of \mathcal{C}_2

Tietze Schenk, Chap. 19

PI controller tips

General Guideline: Maximum gain at low, acoustic f's!

- More important than Bandwith f_{BW} as figure of merit. Def.: f_{BW} : $\varphi(\beta(f_{BW})\cdot A_s(f_{BW}))$ =-120°
- But the higher the bandwidth, the higher $f_I\Rightarrow$ higher the gain at low frequencies.
 - Check the delays of each relevant part: System, detector, parts of the controller like preamp, actuator (e.g. piezo, AOM). Optimize limiting one.
 - Increase bandwith by adding second, faster control element, e.g. AOM. →2nd lecture.

Use only I controller without P

- Yes, your bandwith will go down due to extra 90°. But you are taking advantage of the 1/f behaviour always.
- And you will not have to choose f_I correctly

Phase and amplitude linked by causality/FourierTrafo

- Can directly deduce $A \Leftrightarrow \varphi$ ($I \Leftrightarrow -90^{\circ}$; $D \Leftrightarrow +90^{\circ}$)
- provided phase shifts caused by lowpass behaviour and not cable delays

Advanced PI controller tips

Do double integration: PI²

- · More gain at low frequency
- -180° delay at low I²-frequencies is not a problem, as long as $f_{I^2} \lesssim f_K/4$ (proof later)
- Limit double integration at low f, otherwise inital locking hard.
- Integrator is a lowpass \Rightarrow can implement 2nd I passively. However, 1 integrator must be active, to be able to charge capacitor to setpoint. Implement PI² with normal PI-lockbox-90 (corner f_{I^2}) + extra external lowpass with $f_{LP} \sim 100$ Hz.

- cause strong phase delays >120° and hence limit bandwidth
- Sometimes helps to suppress gain at $f_{piezo\;res}$ by (higher order) low pass with $f_{LP} < f_{Piezo\;res}$. Then total gain can be increased. Let Λ
- -> more gain at low frequency

Normally: Do not use differential gain (PID)

- Gain increases , infinitely' for increasing f. But the $\varphi=-120^\circ$ still arise due to system delay, despite +90°. Here A>1 -> instable
- D-part good when cancelling some I-part in the system, e.g. for current feedback on laserdiodes (which are ~capacitors).
 - Good for very slow loops like temperature controllers

El 17

Exercise in circuit diagram reading - PI input amp stage

Integrator + output stage

El 20

Some PI controller models to consider

- PI controller Scheich = Hänsch group electronician: Anton.Scheich@physik.uni-muenchen.de
 - Good, PI part, extra faster P part. You get circuit diagram and can make changes.
 Not very fast (<1MHz). Cheap ~800€.
- Toptica Lockbox. Similar to Scheich. Prize? Circuit diagram?
- Newport LB1005: 10 MHz fast analog PI lockbox. Very good. Price ~1700€?
- Vescent: 10 MHz fast lockbox with Pl²D, good controls, 3500\$
- Toptica FALC. Extremely fast lockbox (45 MHz). One slow PID (for e.g. Laser piezo) and one
 fast (Laser diode current). Ideal for high bandwidth locks: Phase locks with fast feedback to
 laserdiode.
- TEM Noiseeater: Continous lock (no dither). Good for laser power stabilisation
- Toptica Digilock: FPGA or DSP based digital lockbox. 2 slow PID (1 MHz for e.g. laser piezo) and one fast (21 MHz, for Laser diode corrent).
 - All values adjustable via computer: f_I , f_D , several filters, gains, relock, Control value like e.g. cavity transmission on which to switch from dither to lock. Diverse extra functions
 - Internal Pound Drever hall function
 - ~4000€. No Potis!
- TEM Laselock digital: Similar to Digilock. ~3400€
- National Instruments CRIO: FPGA based logic with various Analog/Digital In and out perhiphery. Can e.g. realise up to ~16 PI locks with bandwidth ~10 kHz, 16 bit D/A A/D output.
 - Lots of channels: digital Functionality such as sample + hold, logic, freely programmable
 - Realively slow when many channels: Not cheap either: 16 ch ~10′000€. Digital noise.
 - Good for example for piezo-strain gauge locks, uncritical locks, temperature control, interlocks ...

analog