

tSURFF - Photo-Electron Emission from One-, Two- and Few-Electron Systems

Armin Scrinzi Ludwig Maximilians University, Munich

Quantum Dynamics - Theory Hamburg, March 24-26, 2014

🥑 ViCoM

Vienna Computational Materials Science FWF Special Research Program

Marie Curie ITN

A wealth of measured photo-electron spectra...

in "attosecond physics":

Few-cycle IR pulse

Direct image of a laser pulse

Double emission

Laser-Induced Electron Tunneling and Diffraction

M. Meckel,^{1,2} D. Comtois,³ D. Zeidler,^{1,4} A. Staudte,^{1,2} D. Pavičić,¹ H. C. Bandulet,³ H. Pépin,³ J. C. Kieffer,³ R. Dörner,² D. M. Villeneuve,¹ P. B. Corkum¹*

Details of molecular electronic structure

RABITT spectrogram

Complete diagnosis of sub-fs pulses

Emission from surface

Miniscule (10 as) time differences

...but modelling and calculation are hard

Complexity of quantum chemistry wave function:

→ Integrate quantum chemisty with strong field dynamics

One-electron systems

- Discretization beyond basis sets (high order FEM)
- Control box size by perfect absorption (irECS)
- Determine spectra from truncated calculation (tSURFF)
- Efficiency example: strong field photo-emission

Discretization: why finite elements?

Required basis sizes

d degrees of freedom phase space volume *V*

 $N > V/h^d$

There are no smart tricks to beat this number unless we have additional information

Additional information

E.g. perturbative ionization, i.e. initial state or free motion or SFA: initial state or Volkov wave packet or: we "know" only bound states play a role or ...

Basis sets

Pseudo-spectral (e.g. field-free eigenstates, momentum-space)

Build energy- or momentum-information into ansatz

Local basis sets (B-splines, finite-element, FEM-DVR)

Exploit **locality** of operators (differentiation, multiplication) Numerically robust

High order finite elements

Locally adjustable (→ irECS) Well-defined points of non-analyticity (element boudaries) Rapid convergence due to high order (e.g. 10-20) Parallelization: communication independent of order

Exterior complex scaling (ECS)

General approach for perfect absorbers (PML, ECS) [A.S., H-P. Stimming, N. Mauser, J. Comp. Phys., to appear] Outside some inner region $[0, R_0]$ analytically continue a unitary transformation U_{λ} (e.g. coordinate scaling) to contractive (non-unitary) U_{θ} $i \frac{d}{dt} \Psi = H(t) \Psi \rightarrow i \frac{d}{dt} \Psi_{\theta} = U_{\theta} H(t) U_{\theta}^{-1} \Psi_{\theta}$

Unitarity + analyticity guarantee unchanged solution Ψ_{θ} on $[0, R_0]$!!! Caution: Domain issues for $U_{\theta}H(t)U_{\theta}^{-1}$!!!

Implementation of exterior complex scaling

Important technical complication

Bra and ket functions are not from the same set!!!

Exterior scaled Laplacian $\Delta_{R0,\Theta}$ is defined on discontinuous functions

$$\Psi(R_0 - 0) = e^{3i\theta/2}\Psi(R_0 + 0)$$

Discontinuity because start from unitary transformation

Discontinuity is reversed for the left hand functions

$$\Psi^*(R_0 - 0) = (e^{-3i\theta/2}\Psi)^*(R_0 + 0)$$

Matrix elements of $\Delta_{R0,\Theta}$

are computed by piece-wise integration $[0,R_0] + [R_0,\infty)$

Conditions easy to implement with a local basis set

irECS – a perfect absorber

[A.S., Phys. Rev. A81, 53845 (2010)]

Accuracy inside $R_0 \sim 10^{-7}$

Method $M_A A \theta$ or σ q $\mathcal{E}[-R_0,R_0]$ 2×10^{-15} irECS 21 0.6 ∞ ECS 2×10^{-4} 2010 0.6ECS 20 1×10^{-7} 400.5 10^{-4} CAP10 3×10^{-3} 204 4×10^{-3} CAP $10\ 2 \times 10^{-6}$ 206 CAP $20 \ 4 \times 10^{-6}$ 3×10^{-4} 40 $30 \ 6 \times 10^{-7}$ 1×10^{-5} CAP60

CAP = complex absorbing potential

tSURFF – how to obtain spectra from a finite range wave function

If we solve only on a finite range, exactly the asymptotic information is missing

Solution:

Continue beyond the box using some known solution – Volkov

[Caillat et al., Rev. A 71, 012712 (2005)] [L. Tao and A.S., New. J. Phys. 14, 013021 (2012)]

How we usually calculate spectra from TDSE

Spectrally analyze $\Psi(x,t)$

$$b(\vec{k}) = \langle \psi_{\vec{k}} | \Psi(T) \rangle$$

Spectral density

$$\sigma(\vec{k}) \propto |b^2(\vec{k})|$$

Solve by using additional information

(1) TDSE is a 2nd order PDE

Value and derivative at a surface $r = R_c$ suffice to continue the solution beyond the surface

(2) Beyond distances $R_c \sim 50$ a.u. motion is free

Use Volkov solution for free motion in the field instead of numerically solving

Compare R-matrix theory!

How things are done...

- → for a given pulse, **solve** with irECS absorption (box size ~ 50 a.u., laser-dependent)
- save surface values and derivatives at surface(s) as function of time
- properly time-integrate surface values for asymptotic momenta *p* of your choice (one integration for each *p*, ordinary integrals, very cheap!)
- can zoom in onto areas of interest (important for 2-electron problems)
- → Effort grows only <u>linearly</u> with pulse duration T (cf. T² ~ T⁴ if time <u>and box-size</u> grow)

t-SURFF – time-dependent surface flux method [L. Tao and A.S., New. J. Phys. 14, 013021 (2012)]

Propagate until large T where bound Ψ_{b} and scattering Ψ_{s} parts separate

Beyond distance R_c scattering solutions χ_k are known

Note: need time-dependent bra-solutions ≈ Volkov (or better, if available)

Single photo-electron spectra

Photo-electron spectra – single electron, 3d [L. Tao and A.S., New. J. Phys. 14, 013021 (2012)]

90 radial discretization points, 30 angular momenta

Attoclock – ionization by elliptically polarized IR

Angle-resolved photo-electron spectra

Peak emission direction deviates from Peak field direction

=> deduce delay in release of electron

Solution of the TDSE

Use oppositely handed polarizations to calibrate peak field direction

Tunneling times (?) in IR ionization

Is the offset angle *O* related to a "tunneling time"?

If the time-delay is related to tunneling, expect wider barrier longer tunneling delay?

Numerical result

Laser: 800nm, single cycle, 10¹⁴W/cm², ellipticity as in Pfeiffer et al. Ionization potential: 0.5 a.u. (Hydrogen)

Comparison theory and experiment

Note: calculations are all single-electron...

Multi-electron effects?

Two-electron systems

Extension of tSURFF to multi-channel emission

Extension to double-emission

Technical remarks

✓ Fano-resonances, correlation in double emission

t-SURFF for 2-electron systems

[A. S., New. J. Phys., 14, 085008 (2012)]

- B... $|\mathbf{r}_1|, |\mathbf{r}_2| < \mathsf{R}_c$ "bound" region Numerical solutions on \mathbf{r}_1 and \mathbf{r}_2
- S... $|\mathbf{r}_2| < \mathbf{R}_c$, $|\mathbf{r}_1| > \mathbf{R}_c$ "singly asympttic" region Numerical ionic solution on \mathbf{r}_2 : $\boldsymbol{\Phi}_c(\mathbf{r}_2, t)$ Volkov solution on \mathbf{r}_1
- D... $|\mathbf{r}_1|, |\mathbf{r}_2| > \mathsf{R}_c$ "doubly asymptotic" region Volkov solutions on \mathbf{r}_1 and \mathbf{r}_2

Multi-channel single emssion

If one can neglect double ionzation

Computational tasks for ionic channels reduces to:

- solve full 2-electron problem on B
- for each single ionization channel, solve a single <u>ionic problem</u> in $[0,R_c]$

3d He: shake up photo-electron spectra @ XUV

Ionic channels & partial waves

(Laser: 2 opt.cyc. FWHM @ hv=54eV, perturbative intensity regime)

Note:

Doubly excited content after the end of the pulse can also be obtained by projection / window operator

XUV-IR spectra

Single electron model

XUV photo-electron spectra in presence of IR

Compare experiment by Ott et al. Science 340, 716 (2013)

Double-ionization

t-SURFF for two-electron systems: double ionization

[A. S., New. J. Phys., 14, 085008 (2012)]

Spectrum in D – integrate flux $S \rightarrow D$

Equations on S

$$b(k_1, n, t) \dots \text{ coefficients for ionic basis } |\xi_n > \text{ in } [0, \mathbb{R}_c]$$

$$i \frac{d}{dt} b(\vec{k}_1, n, t) = \sum_m \langle \xi_n | H_{ion}(t) | \xi_m \rangle b(\vec{k}_1, m, t) \dots \text{ ionic time-evolution}$$

$$- \langle \vec{k}_1, t | [H_v(t), \theta_1] \langle \xi_n | \Psi(t) \rangle \rangle \dots \text{ flux } \mathbb{B} \to \mathbb{S}$$

Demonstration in Helium: 2 x 3d @ 42 – 80 eV

Effort for two-electron calculations

Inner region (B)

Meaningful results with box sizes $R_c \times R_c \sim 20 \times 20$ a.u. With total radial discretization points $N_1 \times N_2 \sim 40 \times 40$ Angular momenta: strongly wave-length dependent XUV: $M \times L_1 \times L_2 \sim 2 \times 4 \times 4$ NIR: $M \times L_1 \times L_2 \sim 4 \times 40 \times 40$

Single ionization spectra (S)

For each channel *c*, solve one (hydrogen-like) ionic TDSE

For each momentum *p* in the channel one time-integration over channel surface:

$$i\frac{d}{dt}\Phi_{\boldsymbol{c}}(\vec{r}_{1}) = H_{ion}(\vec{r}_{1})\Phi_{\boldsymbol{c}}(\vec{r}_{1})$$

$$\int dt \ \mathbf{f}[\vec{p}, \Phi_{\boldsymbol{c}}(|\vec{r}_{1}| = R_{c})]$$

Double ionization spectra (D)

For each momentum p_2 , solve one ionic TDSE with source term

For each momentum pair (p_1, p_2) one time-integration over surface:

$$i\frac{d}{dt}\Phi_{\vec{p}_2}(\vec{r}_1) = H_{ion}(\vec{r}_1)\Phi_{\vec{p}_2}(\vec{r}_1) + S_{\vec{p}_2}(\vec{r}_1)$$

$$\int dt \, \mathbf{g}[\vec{p_1}, \Phi_{\vec{p_2}}(|\vec{r_1}| = R_c, t)]$$

Entanglement and correlation

in double emission

Entanglement in double emission

Dependence of double-spectra on pulse duration

@ $\hbar\omega$ = 120 eV, constant pulse energy

Idea: if pulse duration $<< T_{corr} = 2\pi\hbar/E_{corr}$ emitted spectra are uncorrelated

Quantify - "measure of entanglement / correlation"

Measure of entanglement / correlation

"Number of terms needed when expanding into products of single particle factors"

Unique (Schmidt) representation as a sum of products

$$\Psi(\vec{k}_1, \vec{k}_2) = \sum_i c_i \Phi_i(\vec{k}_1) \Phi_i(\vec{k}_2)$$

Single particle density matrix

$$\rho(\vec{k}_1, \vec{k}_2) = \int d^{(3)}k \,\Psi(\vec{k}_1, \vec{k}) \Psi^*(\vec{k}, \vec{k}_2) = \sum_i \Phi_i(\vec{k}_1) |c_i|^2 \Phi_i^*(\vec{k}_2)$$

Yield

$$Y[\Psi] = \sum_{i} |c_{i}|^{2} = \int d^{(3)}k \,\rho(\vec{k},\vec{k}) =: \operatorname{Tr} \hat{\rho}$$

Measure of entanglement $E[\Psi]$

$$E[\Psi] = Y^2[\Psi] / \sum_i |c_i|^4 = \left(\operatorname{Tr} \hat{\rho} \right)^2 / \operatorname{Tr} (\hat{\rho}^* \hat{\rho})$$

Similarly (classical) correlation $C[\sigma]$ in the spectra $\sigma(k_1, k_2)$

Entanglement in double emission

Double ionization at 800 nm

2 x 1d and scaling to 2 x 3d

800 nm: demonstration in "1d-Helium"

[A. S., New. J. Phys., 14, 085008 (2012)]

Quantum Dynamics, Hamburg March 24 – 26, 2014 s. 35

Scaling to 2 electron IR in full dimensionality

All calculations to this point are a few hours on single CPU

2 x 3d @ IR wave length:

Needs parallel code Problem size (2 x 10¹⁴ W/cm² @ 800 nm) Angular: $L_{max} \sim 30$ (dictated by single electron quiver motion) $M_{max} (\phi_1 - \phi_2) \sim 5(?)$ (m conserved by laser, driven by electron interaction)

Radial: same as 2 x 1d

2 x 1d, 2-dimensional problem: $(2)^2 \times (N_r)^2$ (2² for left/right directions) 2 x 3d, 5-dimensional problem: $(L_{max})^2 \times M_{max} \times (N_r)^2$

> Expected computation times for 800 nm in 2 x 3d a few hours on 1000 CPUs

Complex atoms and small molecules

- ✓ Integration with quantum chemistry (COLUMBUS)
- ✓ Technical remarks
- \checkmark Emission from He, H₂, and N₂

Ionic core dynamics (quantum chemical)

Anti aumonatriza

for molecular photo-emission...

Combine complex scaled basis χ_i with ionic CI functions Φ_c (COLUMBUS) Goals: Reliable strong-field ionization rates Accurate photo-electron spectra

$$\psi_{i,c}(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_n) = \mathcal{A}\left[\chi_i(\vec{r}_1) \Phi_c(\vec{r}_2, \dots, \vec{r}_n)\right]$$

$$\Psi = \sum_{c=1}^{N_{core}} \sum_{i} C_{i,c}(t) \psi_{i,c}$$

Difficulties:

Get wave function (solved) Basis size (endless story) Messy matrix elements (solved) Over-completeness issues (solved) Gauge (currently being addressed) Many thanks for access to COLUMBUS <u>wave functions</u> H. Lischka Th. Müller J. Pittner

Gauge dependence of the approach

Idea of the quantum chemistry basis

Bound electron dynamics largely within field free states Ψ_{i}

Length gauge:

x and p have their standard meaning

Functions Ψ_i correspond to field free states also in presence of IR

<u>Velocity gauge:</u>

Corresponds to a time-dependent boost $p \rightarrow p + eA(t)/c$ Functions $e^{-i\vec{r}\cdot\vec{A}(t)}\Psi_i(\vec{r})$ correspond to field free state

At strong IR fields exp[-irA(t)] can strongly differ from 1 across the Ψ_i

(Compare the debate about the "correct" gauge in SFA)

Computations more efficient in velocity gauge => local gauge transform on the bound state range (tricky business)

A flavor of the complexity of matrix elements

Two-particle (electron-electron) interaction: $H_2 = \sum_{i,j,i < j} h_{ij}$ Electron + ion basis function:

$$\psi_{i,I} = \mathcal{A}\left[\chi_i(\vec{r}_1)\Phi_I(\vec{r}_2\dots\vec{r}_n)\right]$$

Matrix element:

$$\begin{split} \left| \psi_{i,I} \right| H_{2} \left| \psi_{j,J} \right\rangle &= (n-1) \sum_{kl} \langle \phi_{k} \chi_{i} | \phi_{l} \chi_{j} \rangle \rho_{kl;IJ}^{(1)} \\ &+ \frac{(n-1)(n-2)}{2} \langle \chi_{i} | \chi_{j} \rangle \sum_{klmn} \langle \phi_{k} \phi_{l} | \phi_{m} \phi_{n} \rangle \rho_{klmn;IJ}^{(2)} \\ &- (n-1) \sum_{kl} \langle \phi_{k} \chi_{i} | \chi_{j} \phi_{l} \rangle \rho_{kl;IJ}^{(1)} \\ &- (n-1)(n-2) \sum_{klmn} \langle \phi_{k} \chi_{i} | \phi_{m} \phi_{n} \rangle \rho_{klmn;IJ}^{(2)} \langle \phi_{l} | \chi_{j} \rangle \\ &- (n-1)(n-2) \sum_{klmn} \langle \phi_{k} \phi_{l} | \chi_{j} \phi_{n} \rangle \rho_{klmn;IJ}^{(2)} \langle \chi_{i} | \phi_{m} \rangle \\ &- \frac{(n-1)(n-2)(n-3)}{2} \sum_{abcdef} \langle \phi_{a} \phi_{b} | \phi_{d} \phi_{c} \rangle \rho_{abcdef;IJ}^{(3)} \chi_{i} | \phi_{f} \rangle \langle \phi_{c} | \chi_{j} \rangle \end{split}$$

Non-standard 3-particle reduced density matrix for ionic states Φ_{I}, Φ_{I}

XUV photo-ionization of Helium

Pulse parameters: $\lambda = 21$ nm, 3-cycle, cos⁸ envelope, linear polarization

1 ionic state

10⁻¹⁵

10⁻¹⁷

10⁻¹⁹

4

0

Energy (a.u.)

LUDWIG-

М

MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Doubly excited states / Fano resonances

State	Literature[a]	Calculation
2s 2p	1.307	1.313
2s 3p	1.436	1.441
2s 4p	1.466	1.474

[a] J Chem. Phys. 139, 104314 (2013)

10

10-9

10⁻¹⁰

10-11

0

1

2

3 Energy (a.u.)

Photo-10 10⁻⁸

Photo-ionization of H₂ and N₂

H₂ XUV photo-ionization

Pulse: 21 nm, 3 cycle FWHM, 10¹⁵W/cm²

Team

Vinay Majety 2-electron & molecules

Mattia Lupetti Solids and surfaces

Alejandro "the convergator" Zielinski 1-e elliptic 2-electron

Jakob Liss Solids and surfaces

Publications

[A.S., Phys. Rev. A81, 53845 (2010)]
[L. Tao and A.S., New. J. Phys. 14, 013021 (2012)]
[A. S., New. J. Phys., 14, 085008 (2012)]
[A.S., HP. Stimming, N. Mauser, J.Comp.Phys, accepted (2014)]

Finances

Munich Advanced Photonics Excellence Cluster

Vienna Computational Materials Science FWF Special Research Program

Marie Curie ITN

Code: tRecs = tSURFF + irECS (working title)

All codes united in a single, C++ code based on recursive structures

General dimensions and coordinate systems

PDEs of the form

(includes e.g. Maxwell's equations)

Preparing for public access Can be made available for collaborations immediately

Screenshots of the Doxygen documentation

•	tRecs: Class Index - Mozilia Rirefox	0 0
e Edit View Higtory Bookmarks Jools Help		
tRecs: Class Index		
S) @ file //forme/cstati/projects/IDSEschar/d/	schtmildarene html	🔿 y 🗗 💽 y graak alababat 🛛 🐴 🥼
• • • 5 • • 5	cynumyciasses.num	G v greek aphabet
Google Maps 🖏 LMU Webmail 🔼 Wetter 🗌 Loretto 🧃	MVV - Fahrplanau 🗌 CAPP 🔹 Verkehr 💓 Frontier	s in Intens 🕅 lackundfarbe24 🔚 QuantumOptics 🗸
Daaa		
Recs		
Main Rago Namospasos Glassos Ellos		Q: Search
wain Page Namespaces Chasses Pries		(seath
Class List Class Index Class Hierarchy Class Mer	ibers	
	1	
lass Index		
A B C D	E F G H K L M N O P Q R S T	U W Z
_	DiagonalOperator	_
A	Discretization	
ActivePlusIonDisc	DiscretizationDerived	Laguerreintegrator
Afield	SpectralDiscretization::DontKeepZeros	LaguerrePolynomial
Afield_tsurff		lapackWrapper
PseudoPotential::Ag100	E	LaserPulse
PseudoPotential::Ag111	SpectralDiscretization::EigenvalueCriterion	LeftLaguerre
PseudoPotential::Al100	emFieldComponent	LegendreAssociated
PseudoPotential::Al111	emFields	Legendreintegrator
SpectralDiscretization::AllUpToMaxEigenvalue	Evector	LegendreIntegrator2
ao		LegendrePolynomial
ApplyOperatorClass	E .	PseudoPotential::Li110
Arnoldi	Fieldslakob	IonicBasisDiscretization::LinearIndex
Arnoldi hev check1	FunctionSet	IonicBasisDiscretization::LinearIndexUpDow
Arnoldi hev sae disc		Lmr_Proj
Arnoldi using root tracing	G	Lmr tsurff
Arnoldi using s0 inverse	Gauge	PotentialBarrierDisc::localInverseOverlap
Arnoldi with extra projectors	GauntCoeffTable	LU
ArrayOperation	GenDisc	
ARrcStdEig	GeneralArnoldiComplex	M
PseudoPotential::Au100	GeneralArnoldiDouble	PseudoPotential::material
PseudoPotential::Au111	GeneralDerivedExtension	MatrixStorage::matrix
Axis	GlobalLowRank_Discretization	MatrixStorage
_	Grid	PseudoPotential::Mg0001
B		MinimalDisc
		mo
BasicDisc		1110
BasicDisc BasisFunctionsSet	HarmonicDistanceInteraction	mo_store
BasicDisc BasisFunctionsSet BasisMat	HarmonicDistanceInteraction HarmonicOscillator	mo_store ModifiedLegendre

