THEORETICAL METHODS TO TREAT CORRELATED ELECTRON AND NUCLEAR DYNAMICS FOR CLOSED AND OPEN QUANTUM SYSTEMS

Peter Saalfrank

I. Andrianov, F. Bouakline, T. Klamroth, S. Klinkusch, P. Krause, U. Lorenz, F. Lüder, M. Nest, J.C. Tremblay

University of Potsdam, Germany

REAL-TIME DYNAMICS: FEMTOCHEMISTRY

Zewail et al., 1990's

femtosecond chemistry: 1 fs = 10^{-15} s

nuclear (atomic) motions

REAL-TIME DYNAMICS: ATTOPHYSICS

Corkum, Krausz, ..., > 2000

attosecond physics: 1 as $= 10^{-18}$ s

electronic motions

THIS TALK IS ABOUT ...

1 Electron dynamics (mostly light-driven)

- Methods
 - -Wavefunction-based: TD-CI, TD-CASSCF (=MCTDHF)
 - Open-system density matrix based: $\rho\text{-}\mathrm{TDCI}$
- Some applications
 - $-\operatorname{Response}$ to laser pulses
 - $-\operatorname{Correlation}$ and its control

2 Nuclear dynamics (mostly for system-bath problems)

- Methods
 - $-\operatorname{Wave-function}$ based: MCTDH
 - $-\operatorname{Open-system}$ density matrix based: Lindblad approach
- Application
 - $-\operatorname{Vibrational}$ dynamics and relaxation

LASER-DRIVEN ELECTRON DYNAMICS

ELECTRON MOTION IN MOLECULES: LASERS

• Electronic wavepackets (and control)

dissociation of D_2^+

• HHG, orbital tomography

HOMO of N_2

Kling et al., Science **312**, 264 (2006)

Corkum *et al.*, Nature **432**, 867 (2004)

LASERS AND ELECTRON DYNAMICS: METHODS

• The N-electron time-dependent Schrödinger equation

$$i\hbar \frac{\partial \Psi(\underline{x}_1, \dots, \underline{x}_N, t)}{\partial t} = \left[\hat{H}_{el}(\underline{x}_1, \dots, \underline{x}_N) - \underline{\hat{\mu}}\underline{E}(t)\right] \Psi(\underline{x}_1, \dots, \underline{x}_N, t)$$

• Solution techniques

- One-electron approaches
- Single-determinant methods
 - TD-HF: $\Psi(t) = \psi_0(t)$
 - TD-DFT: $\Psi(t) = \psi_0^{KS}(t)$
- Multi-determinant methods

- TD-CI: $\Psi(t) = C_0(t)\psi_0 + \sum_{ar} C_a^r(t)\psi_a^r + \sum_{ab,rs} C_{ab}^{rs}(t)\psi_{ab}^{rs} + \cdots$
- TD-CASSCF: $\Psi(t) = C_0(t)\psi_0(t) + \sum_{ar} C_a^r(t)\psi_a^r(t) + \sum_{ab,rs} C_{ab}^{rs}(t)\psi_{ab}^{rs}(t) + \cdots$

TD-CI:TD-CIS, TD-CIS(D), TD-CISD, ... TD-CISD·· N=Full-CI (FCI)TD-CASSCF(N,M):TD-CASSCF (N,N/2) = TD-HF, ..., TD-CASSCF(N,K) =FCI

EXAMPLE: GROUND STATES FROM TD-CASSCF

- Dirac-Frenkel variational principle: C(t), $\phi_n(t)$
- Imaginary-time propagation: TD-CASSCF(6,K)

M. Nest, T. Klamroth, PS, JCP **122**, 124102 (2005)

M. Nest, JTCC 6, 653 (2007)

EXCITED STATES FROM TD-CASSCF

• Excited states by real-time propagation

via FT of autocorrelation function

via FT of dipole moment

LiH molecule, TD-CASSCF $(4,4)/6-31G^*$

M. Nest, R. Padmanaban, PS, JCP 126, 214106 (2007)

EXCITED STATES FROM TD-CASSCF

• Excited states by real-time propagation

M. Nest, R. Padmanaban, PS, JCP **126**, 214106 (2007)

• Also: Pulsed laser-driven real-time dynamics

F. Remacle, M. Nest, R.D. Levine, PRL **99**, 183902 (2007)

RESPONSE TO LASER PULSES

A SIMPLE EXAMPLE: THE H_2 MOLECULE

A SIMPLE EXAMPLE: THE H_2 MOLECULE

LINEAR RESPONSE: POLARIZABILITY OF \mathbf{H}_2

• Strategy:

• Static: $\omega = 0$

	$TD-CISD^a$	Exp.	Stat. QC^b
α_{\parallel}	6.3989	6.303	6.3970
$lpha_{\perp}$	4.5845	4.913	4.5749

 a aug-cc-pVQZ; b FCI/aug-cc-pVQZ

Apply
$$E_q = E_{0q} \sin^2(\pi t/2\sigma) \cos(\omega t)$$

 $\implies \mu_q^{ind} = \alpha_{qq'} E_{q'}$

• **Dynamic:** $\omega \neq 0$

NONLINEAR RESPONSE: HIGHER HARMONICS

$$E(t), \mu^{ind}(t) \longrightarrow \mathrm{FT} \longrightarrow \mu^{ind}(\omega), E(\omega)$$

• H₂: Higher harmonics

1HG: polarizability $\alpha_{zz}(-\omega, \omega)$ 3HG: 2nd hyperpolariz. $\gamma_{zzzz}(-3\omega, \omega, \omega, \omega)$ 5HG: 4th hyperpolarizability ...

crossed fields: elements, e.g. β_{xyz}

P. Krause, T. Klamroth, PS, JCP **127**, 034107 (2007)

NONLINEAR RESPONSE: HIGHER HARMONICS

E. Luppi, M. Head-Gordon, Mol. Phys. **110**, 909 (2012)

INCLUSION OF IONIZATION

• Ionization in TD-CI

$$E_n \to E_n - \frac{i}{2}\Gamma_n$$

• Polarizability H_2 , bound \rightarrow bound/unbound transitions

S. Klinkusch, PS, T. Klamroth, JCP 131, 114304 (2009)

INCLUSION OF DISSIPATION: ρ -TDCI

• Liouville-von Neumann equation for laser-driven electrons

• Lindblad dissipation, CI eigenstate basis: " ρ -TDCI"

Populations: Diagonal elements of system density operator $\hat{\rho}$

$$\frac{d\rho_{nn}}{dt} = \sum_{p}^{N} \left[-\frac{i}{\hbar} \left[V_{np}(t)\rho_{pn} - \rho_{np}V_{pn}(t)\right] + \left(\Gamma_{p \to n}\rho_{pp} - \Gamma_{n \to p}\rho_{nn}\right)\right]$$

dipole coupling $V_{mn}(t) = -\underline{\mu}_{mn}\underline{E}(t)$ energy relaxation rates $\Gamma_{n \to m}$

dephasing enters $\dot{\rho}_{mn}$ via dephasing rates γ_{mn}

INCLUSION OF IONIZATION AND DISSIPATION

• The ρ -TD-CI method, and inclusion of ionization

LvN equation

$$\frac{\partial \hat{\rho}}{\partial t} = -\frac{i}{\hbar} \left[\left(\hat{H}_{el} - i\hat{W} \right) - \underline{\hat{\mu}}\underline{E}(t), \hat{\rho} \right] + \mathcal{L}_{\mathcal{D}}\hat{\rho}$$

• Excitation of H_2 , bound \rightarrow bound transition

J.C. Tremblay, S. Klinkusch, T. Klamroth, PS, JCP **134**, 044311 (2011)

TIME-DEPENDENT ELECTRON CORRELATION

• Time-dependent correlation energy

LiH, TD-CASSCF(4,n)/6-311++G(2df,2p)

 \sin^2 pulse, 3fs, $E_0 = 0.01, \, \omega = 0.15$

$$E_{\rm corr}(t) = E(t) - E_{\rm HF}(t)$$

M. Nest, PS, unpublished

TIME-DEPENDENT CORRELATION

• Time-dependent correlation energy

LiH, TD-CASSCF(4,n)/6-311++G(2df,2p)

 \sin^2 pulse, 3fs, $E_0 = 0.025, \, \omega = 0.15$

Nest, PS, unpublished

ELECTRON CORRELATION: OTHER MEASURES

• One-electron entropy S and "quantum impurity" C

$$S = -k_B \operatorname{Tr}\left(\underline{\gamma} \ln \underline{\gamma}\right)$$

$$C = 1 - \frac{1}{N} \operatorname{Tr}\left(\frac{\gamma^2}{\underline{=}}\right)$$

$$\gamma_{ij} = \int d1 \ d1' \ \chi_i^*(1) \ \gamma(1, 1') \ \chi_j(1')$$

\bullet \mathbf{H}_2 minimal basis, dynamics of a Hartree-Fock state

• Full-CI
$${}^{1}\Sigma_{g}^{+}$$
 states $|0\rangle$, $|1\rangle$ from determinants $\psi_{HF} = |1\bar{1}\rangle$, $|\psi_{1\bar{1}}^{2\bar{2}}\rangle = |2\bar{2}\rangle$

$$|0\rangle = \cos(\beta/2) |1\overline{1}\rangle + \sin(\beta/2) |2\overline{2}\rangle \text{ energy } E_0$$

$$|1\rangle = -\sin(\beta/2) |1\overline{1}\rangle + \cos(\beta/2) |2\overline{2}\rangle \text{ energy } E_1$$

• Dynamics of an initial Hartree-Fock state

$$\psi(0) = \psi_{HF} = \cos(\beta/2)|0\rangle - \sin(\beta/2)|1\rangle$$
$$\psi(t) = e^{-iE_1t/\hbar} \left(\cos(\beta/2)e^{i\omega_{10}t}|0\rangle - \sin(\beta/2)|1\rangle\right)$$
$$\omega_{10} = (E_1 - E_0)/\hbar$$

• H_2 , minimal basis: Dynamics of a HF state

$$S/k_B = -2\left[(k_1 - b(t))\ln(k_1 - b(t)) + (k_2 + b(t))\ln(k_2 + b(t))\right]$$
$$C(t) = 1 - \left((k_1 - b(t))^2 + (k_2 + b(t))^2\right)$$
$$k_1 = \cos^4(\beta/2) + \sin^4(\beta/2) \qquad k_2 = 2\sin^2(\beta/2)\cos^2(\beta/2)$$

 $\mathbf{b}(\mathbf{t}) = k_2 \cos(2\pi \mathbf{t}/T)$

• Example: TD-CID/STO-3G, R=1.4 a_0

oscillation with period

$$T = \frac{2\pi\hbar}{E_1 - E_2}$$

ultrafast buildup of electron correlation

• H_2 molecule: More than two states

TD-CISD/6-31G*: no field, $\psi(0) =$ Hartree-Fock ground state

Klinkusch, Klamroth, PS, unpublished

ultrafast buildup of electron correlation

• Correlation-driven electron dynamics: Other molecules small molecules, TD-CIS/6-31G*: no field, $\psi(0) =$ Hartree-Fock ground state

Beyvers, Nest, Klamroth, Klinkusch, PS, unpublished

attosecond dynamics

creation of HF state?

• Application of Optimal Control Theory

H₂, TD-CISD/cc-pVQZ with field, $\psi(0) = \text{CISD}$ ground state (P_{HF} = 0.982, S=0.23 k_B)

Klamroth, Klinkusch, PS, unpublished

partial success

how to stabilize the low-entropy state?

OPTIMAL CONTROL THEORY

• Time-dependent Schrödinger equation:

 $i\hbar \frac{\partial}{\partial t} |\Psi\rangle = \hat{H}_{el}(t) |\Psi\rangle$ forward from $t = 0, |\Psi(0)\rangle = |\Psi_0\rangle$

 $\hat{H}_{el}(t) = \hat{H}_{el} - \hat{\mu}E(t)$

• Maximize constrained target functional:

$$J = \langle \Psi(t_f) | \hat{O} | \Psi(t_f) \rangle - \alpha \int_0^{t_f} |E(t)|^2 \mathrm{d}t - \int_0^{t_f} \mathrm{d}t \langle \Phi(t) | \frac{\partial}{\partial t} + \frac{i}{\hbar} \hat{H}_{el}(t) \Psi(t) \rangle + c.c.$$

 \hat{O} = target operator; α = penalty

• Lagrange function $\Phi(t)$: Backward propagation

 $i\hbar\frac{\partial}{\partial t}|\Phi(t)\rangle = \left[\hat{H}_{el} - \hat{\mu}E(t)\right]|\Phi(t)\rangle$ backward from $t = t_f$, $|\Phi(t_f)\rangle = \hat{O}|\Psi(t_f)\rangle$

• Calculate field to self-consistency

 $E(t) = -\frac{1}{\hbar \alpha} \operatorname{Im} \langle \Phi(t) | \hat{\mu} | \Psi(t) \rangle$

• He: HF state dynamics

• Control Strategy

make approximate HF state

 $\psi_{HF} \sim \sum_{n=0,5,\dots,25} C_n \psi_n$ from correlated ground state $\psi(0) = \psi_0$

M. Nest, M. Ludwig, I. Ulusoy, T. Klamroth, PS, JCP **138**, 164108 (2013)

M. Nest, M. Ludwig, I. Ulusoy, T. Klamroth, PS, JCP 138, 164108 (2013)

SUMMARY AND OUTLOOK: ELECTRONS

• Summary

- Electron dynamics in real time
- TD-CI, ρ -TD-CI, TD-CASSCF
- Response
- Time-dependent correlation

• Outlook

- \bullet Test of apprpximate methods, e.g. TD-DFT
- Treatment of ionization, nuclear motion
- Time-dependent Coupled Cluster

• Findings

- Ultrafast dynamics (and control)
- WF-based alternatives to TDDFT
 - systematically improvable
 - correct asymptotics
 - multi-determinant effects

NUCLEAR (ATOM) DYNAMICS

FULL SYSTEM-BATH DYNAMICS

• The time-dependent Schrödinger equation

$$\frac{\partial \Psi(s, q_1, \dots, q_M, t)}{\partial t} = -\frac{i}{\hbar} \hat{H} \Psi(s, q_1, \dots, q_M, t)$$

• Methods

standard, MCTDH ("exact"), TDSCF (approximation), ...

REDUCED DYNAMICS

• Open-system density matrix theory

• Lindblad in system eigenstate representation: $\hat{C}_{kl} = \sqrt{\Gamma_{k \to l}} |l\rangle \langle k|$ Populations:

$$\frac{d\rho_{nn}}{dt} = \sum_{p}^{N} \underbrace{-\frac{i}{\hbar} \left[V_{np}(t)\rho_{pn} - \rho_{np}V_{pn}(t) \right]}_{\text{system-field}} + \sum_{p}^{N} \underbrace{\left[\Gamma_{p \to n}\rho_{pp} - \Gamma_{n \to p}\rho_{nn} \right]}_{\text{dissipation}}$$
Coherences:
$$\frac{d\rho_{mn}}{dt} = -\frac{i}{\hbar} \left[(E_m - E_n) + \sum_{p}^{N} \left[V_{mp}(t)\rho_{pn} - \rho_{mp}V_{pn}(t) \right] \right] \underbrace{-\gamma_{mn}\rho_{mn}}_{\text{dephasing}}$$

• Rates Γ , γ : Perturbation theory, non-perturbative

H:Si(100): VIBRATIONAL RELAXATION

• A "system-bath" model for H on Si(100)

¹ force field: D. Brenner, PRB **42**, 9458 (1990); NMA: I. Andrianov, PS, JCP **124**, 034710 (2006)

H:Si(100): GOLDEN RULE AND RDM THEORY

- stretch mode: $\tau_{vib} = \Gamma_{1 \to 0}^{-1} = \mathbf{ns}$
- bending mode: ps

•
$$\Gamma_{n \to m} \approx \tau_{vib}^{-1} n \, \delta_{m,n-1}$$
: $\Delta n = -1$
ideal: HO, bilinear coupling

Lindblad density matrix theory

H:Si(100): NON-PERTURBATIVE, FULL DYNAMICS

• Relaxation of the bending mode: MCTDH and TDSCF

• Half-life times T_{1/2} of (0,1): Golden Rule: 0.94 ps, TDSCF: 0.92 ps CPL 433, 91 (2006), JPC C 111, 5432 (2007)

G.K. Paramonov, PS et al., PRB **75**, 045405 (2007)

F. Lüder, M. Nest, PS, TCA **127**, 183 (2010)

THERMAL WAVEFUNCTIONS AND MCTDH

• "rAvec" method¹: $\Psi(x_1, \dots, x_F) = \sum_{j_1=1}^{n_1} \cdots \sum_{j_F=1}^{n_F} A_{j_1 \cdots j_F} \prod_{k=1}^F \phi_{j_k}^{(k)}(x_k)$

randomize coefficients $A_{j_1\cdots j_F}$ (replace by random phases $e^{i\theta}$ ($\theta \in [0, 2\pi]$)

• "rSPF" method²:

$$\left|\Psi(x_1,\ldots,x_F)=\psi^{(1)}(x_1)\cdots\psi^{(F)}(x_F)\right|$$

randomize single-particle functions $\psi^{(i)}(x_i) = \sum_{n_i} (-1)^{\alpha_{n_i}} \varphi_{n_i}^{(i)}$ (α = random integer)

• Example: Atom sticking at surface³

A SIMPLE 1D SYSTEM-BATH MODEL

• A 1D "system-bath" model vibrational relaxation

- Ohmic bath $\omega_i = i \Delta \omega = i \omega_f / M$
- coupling constant $c_i = i \left(2m_i m_s \Gamma \Delta \omega^3 / \pi \right)^{1/2}$, damping parameter Γ
- non-linear coupling function $f(s) = (1 e^{-\alpha s})/\alpha \longrightarrow s$ for $s \to 0$

• Questions

- resonant vs. non-resonant baths: $\omega_b, \, \omega_s$
- \bullet reduced vs. full dynamics
- \bullet scaling of "vibrational lifetimes" with v

Nest, Meyer, JCP 119, 24 (2003); Bouakline et al., JPC A 116, 11118 (2012)

RESULTS

• Resonant vs. non-resonant bath

MCTDH (full) calculation, M=40, $\Gamma = (500 \text{ fs})^{-1}$

Bouakline, Lüder, Martinazzo, PS, J. Phys. Chem. A 116, 11118 (2012)

• "Half-lifetime" scaling, "full" vs. "reduced" dynamics

MCTDH vs. Golden Rule; M=40, $\Gamma = (500 \text{ fs})^{-1}$; HO system vs. Morse oscillator

Bouakline, Lüder, Martinazzo, PS, J. Phys. Chem. A 116, 11118 (2012)

LARGE BATHS WITH WAVEFUNCTIONS

• MCTDH¹ and variants thereof

$$\Psi(x_1, \dots, x_F) = \sum_{j_1=1}^{n_1} \dots \sum_{j_F=1}^{n_F} A_{j_1 \dots j_F} \prod_{k=1}^F \phi_{j_k}^{(k)}(x_k)$$

Variants: Mode combination, ML-MCTDH (Thoss, Wang), ...

• TDSCF

Ψ

$$(x_1, \dots, x_F, t) = \prod_{k=1}^F \varphi_{\kappa}(x_k, t)$$

single-configuration approximation

• \mathbf{LCSA}^2

Local Coherent State Approximation "diagonal approximation to MCTDH"

• G-MCTDH³, CC-TDSCF⁴, ...

 1 Meyer, Manthe, Cederbaum: CPL **165**, 73 (1990)

² Martinazzo *et al.*, JCP **125**, 194102 (2006)

³ Burghardt *et al.*, JCP **111**, 1927 (1999)

⁴ Zhang *et al.*, JCP **122**, 091101 (2005)

LARGE BATHS, LONG-TIME DYNAMICS

SUMMARY AND OUTLOOK: NUCLEI

• Summary

- \bullet System-bath models
- MCTDH and variants
- Lindblad open-system density matrix
- Vibrational relaxation

• Findings

- "Easy" and "real" Hamiltonians
- Anharmonicity matters

• Outlook

- \bullet Redfield and non-Markovian theories
- Non-Markovian measures
- Light-induced processes

CORRELATION MATTERS

THANKS TO ...

• ... the group:

• ... the sponsors:

Deutsche Forschungsgemeinschaft DFG

SFB 450, SFB 658, SPP 1145, UniCat, Sa 547/7-11

• BMBF 🏶

• Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

