

Cavity QED with Ultracold Gases

Optomechanics

Helmut Ritsch Theoretische Physik Universität Innsbruck

Quantum Dynamics Workshop Hamburg, March 2014

People

Innsbruck Physics Research Center

PD's +PhD's:

Claudiu Genes (Wolfgang Niedenzu Kathrin Sandner)

Tobias Griesser Laurin Ostermann **Raimar Sandner** Matthias Sonnleitner Sebastian Krämer Stefan Ostermann

Master students: Thomas Maier Dominik Winterauer

Collaborations (theory):

Peter Domokos, Andras Vukics, Janos Asboth (Budapest) Giovanna Morigi (Saarbrücken), Aurelian Dantan (Aarhus) Igor Mekhov (Oxford), Maciej Lewenstein (IFCO) Hashem Zoubi (Dresden), M. Holland (JILA) Fancesco Piazza (Munich)

Basic Theme and Physics

Quantum optics: quantized light modes + fixed classical matter Ultracold gases: quantum particle motion + fixed classical optical potential

Quantum optics with quantum gases: full quantum description of light and matter waves

light induces a

dynamic optical lattice with quantized depth

atoms generate a

dynamic refractive index with quantum properties

H. R., P Domokos, F. Brennecke, T. Esslinger, Rev. Mod. Phys., 2013

• Cavity QED and Cavity Cooling

• Ground state cooling and atomic quantum statistics in (multimode) resonators

• *Quantum dynamics of selfordering in multimode cavities*

Light force basics

Two classes of forces on point particles (CCT, JD) :Radiation pressureDipole force

(absorption + spontaneous re-emission)

(absorption + stimulated emission)

coherent transfer of momentum, which **depends on relative phases** of fields

$$\vec{F}_{dip} = \hbar(\omega_l - \omega_a) \frac{\frac{1}{2} (\vec{\nabla} \Omega)^2}{(\omega_l - \omega_a)^2 + \Gamma^2/4 + \frac{1}{2} \Omega^2}$$

- conservative optical potential ~ intensity
- scales as 1/detuning
- optical tweezers,

(mirror reflection = called "radiation pressure")

Lightforces on moving polarizable particles in optical resonators

dispersive regime (= dipol-force) at large laser-atom detuning:

$$\Delta = \omega_{laser} - \omega_{atom} > \gamma, \kappa$$
$$\omega_{laser} \sim \omega_{cavity}$$

dipole force dominates spontaneous emission

Particle position and motion changes resonator field dynamics

Dispersive Cavity QED:

at large atom-cavity detuning $\Delta \gg \gamma$

$$U(x) := \frac{\Delta_a}{\Delta_a^2 + \gamma_0^2} g_0^2 \cos^2(kx)$$

go ... coupling γ ... atomic width κ ... cavity linewidth

$$\gamma(x) := \frac{\gamma_0}{\Delta_a^2 + \gamma_0^2} g_0^2 \cos^2(kx)$$

Dispersive limit $\Delta > \gamma$

- \Rightarrow atom-field interaction via **optical potential U**
- \Rightarrow **dipole force** dominates radiation pressure

Strong coupling re-defined

 $U >> \kappa >> \gamma$

- \Rightarrow single atom shifts cavity in or out of resonance
- \Rightarrow single photon creates an optical trap for an atom

Ultrastrong dispersive coupling

- \Rightarrow single mode picture breaks down
- \Rightarrow nonlinear coupled multi mode model

Point particle in optical resonator

red detuning:

- atoms drawn to field antinodes
- field gets maximal for atom at antinode

particle moving in optical potential along axis

Lewenstein , PRL 95: ions Horak, PRL 97: atoms Vuletic, Chu, PRL 00: atoms Vitali, PRL 02: mirrors

Semiclassical model: Master equation for $\rho => PDE$ for Wignerfunction =>truncate at 2. order => Fokker Planck equation with drift+ diffusion => equivalent Ito-stochastic differential equations

$$egin{aligned} dx &= rac{p}{M} dt, \ dp &= -\hbar U_0 \left(lpha_r^2 + lpha_i^2 - rac{1}{2}
ight)
abla f^2(x) dt + dP, \ dlpha_r &= -\eta dt + \left(U_0 f^2(x) - \Delta_C
ight) lpha_i dt - \left(\kappa + \Gamma_0 f^2(x)
ight) lpha_r dt + dA_r \ dlpha_i &= - \left(U_0 f^2(x) - \Delta_C
ight) lpha_r dt - \left(\kappa + \Gamma_0 f^2(x)
ight) lpha_i dt + dA_i \end{aligned}$$

(quantum)noise forces $(dP, dA) => quantum expectation value \Leftrightarrow$ stochastic average

Analytic solution for slow atoms for friction and diffusion

friction $\overline{\overline{F_{1}}} = -k^{2} \frac{\eta^{2} U_{0}^{2}}{4\kappa^{4}}$ $\overset{diffusion}{\overline{D} = k^{2} \kappa \frac{\eta^{2} U_{0}^{2}}{8\kappa^{4}}}$ temperature $k_{B}T = -\frac{\overline{D}}{\overline{F_{1}}} = \frac{\kappa}{2}$ $Cooling limited by cavity linewidth \kappa !$ Cooling time scale: $\tau_{c} = \frac{m}{2|\overline{F_{1}}|} = \frac{\kappa^{4}}{\eta^{2} U_{0}^{2}} \omega_{R}^{-1}$

First Application: Cavity cooling

Theoretical simulation checked by analytical limits and QMC-Wavefunction Simulations

applications: trap + cool atoms, molecules, nanoparticles analogous: optomechanic cavity cooling of mirrors/membranes ...

Horak, PRL 97

Few particle cavity cooling experiments in classical regime

first proof of principle experiment: MPQ München, Nature 2004

Cavity cooling of a single atom

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse & G. Rempe

Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany

Time after beginning of cooling interval (ms)

Ions: MIT PRL 2009

Cavity Sideband Cooling of a Single Trapped Ion

David R. Leibrandt,* Jaroslaw Labaziewicz, Vladan Vuletić, and Isaac L. Chuang

6 (a)

Atomic ensembles: MIT, Vuletic PRL 2009

Optomechanical Cavity Cooling of an Atomic Ensemble

Monika H. Schleier-Smith, Ian D. Loroux, Hao Zhang, Mackenzie A. Van Camp, and Vladan Vuletič

FIG. 1. (Color online) Ensemble cavity cooling. A probe

- More experiments by other groups : Meschede (EIT-cavity cooling), Stamper-Kurn, Barret, Baden, Barker, Renzoni ,.???
- temperature und cooling rate agree well with theory
- Ions: multiple vibrational modes addressed (Vuletic 2011), Barrett (2012),

micro beads, Vienna 2013

Cavity cooling of an optically levitated nanoparticle

Kiesel, Blaser, Aspelmeyer, (PNAS 2014) ...

Trapping and efficient axial cooling

micro grain particles, Vienna 2013

Cavity cooling of free silicon nanoparticles in high-vacuum

Asenbaum, Arndt, (2014) ...

radial and axial cooling in high vacuum

New results by K.Dholakia (St. Andrews), P. Barker (Imperial)

Scaling of resonator induced cooling

- Is resonator cooling good for larger ensembles ?
- *How far can we go in T ?*

temperature unchanged

Slow cooling for large ensembles ! (Scaling determined from numerics) Quantum limit of cavity cooling: atomic motion + field quantized: very good cavity with width smaller than recoil frequency ($\sim hk^{2/2m}$) $\kappa < \omega_{rec}$

$$H = \frac{p^2}{2m} + \frac{\hbar U_0 a^{\dagger} a \cos^2(kx)}{quantum \text{ potential}} - \hbar \Delta_c a^{\dagger} a - i\hbar \eta \left(a - a^{\dagger}\right)$$

$$\dot{\rho} = \frac{1}{2m} \left[H, \rho\right] + \kappa \left(2a\rho a^{\dagger} - a^{\dagger} a\rho - \rho a^{\dagger} a\right)$$

Strong pump: deep lattice

"blue" vibrational sideband of trapped atoms

vibrational trap states in cavity field

Cavity mode tuned to

iħ

Weak pump: free motion with eff. mass

higher momentum states for a free gas

free space momentum states

Experiment: cavity ground state cooling of ,,free" atoms

4Ak

214

-4Ak

-4/k -2/k

20k 40k

smaller than single photon recoil ? => cooling towards degeneracy ?

600

-4ħk

b

subrecoil width

final distribution !

momentum distribution

 \Rightarrow Cavity cooling with Bose stimulation to replace evaporation \Rightarrow BEC formation without particle loss Cavity cooling dynamics and quantum statistics of two particles (can we ,cavity'-cool down to degeneracy from finite T)

$$H = \sum_{i=1}^{2} \left[\frac{p_i^2}{2m} + \hbar U_0 \left(a_c^{\dagger} a_c \cos^2(kx_i) + a_s^{\dagger} a_s \sin^2(kx_i) \right) \right] + \frac{\hbar U_0}{2} \left(a_c^{\dagger} a_s + a_s^{\dagger} a_c \right) \sum_{i=1}^{2} \sin(2kx_i) - \hbar \Delta_c a_c^{\dagger} a_c - \hbar \Delta_c a_s^{\dagger} a_s - i\hbar \eta \left(a_s - a_s^{\dagger} \right).$$
(1)

Groundstate cooling for $\Delta \sim -4 \omega_{r}$

=> Compress momentum distribution in a multistep cooling sequence

Simulate last three steps:

(1) $\Delta < -12 \omega_r \implies (2) \Delta < -12 \omega_r \implies (3) \Delta < -12 \omega_r$

Efficiency of cooling stages depends on detuning and particle type (symmetric or antisysmetric wavefunction)

Example: time evolution of optimized cooling sequences of two particcles

"bosons"

Fig. 4: (Colour on-line) Single-particle momentum distribution for $\Delta_c/\omega_{\rm R} = -14.75|-12|-7$ (ring cavity bosons).

Fig. 8: Projection onto the fermionic ground state P_g .

Ring cavity much better in final stage

Cooling dynamics at optimal detuning for different particle quantum statistics

Ring cavity cools much better in the final stage towards degeneracy

Momentum space pairing and quantum statistics: optimal cooling

momentum pair correlations

initial conditions:

two fermions: anticorrelations

two **bosons**/distinguishable: correlations

- quantum statistics changes particle momentum correlations
- positive correlations enhanced in ring cavity and for bosons

Two bosonic particles in a ring cavity with dispersive interaction near motional ground state: **momentum pairing**

semiclassical classical point particle simulation

start: random momenta

final: correlated momenta

* Strongly pumped Cos - mode
=> mean field α
* Scattered photons in Sin-mode
=> quantum operator a

center of mass momemtum damps fast + anti correlated pairs decouple from dissipation relative motion: pairing by momentum anti-correlation

Quantum trajectory simulations (C++QED): two trapped bosons

Particles show positive correlations despite zero average center of mass momentum !

This is allowed by quantum mechanics for a momentum entangled state:

$$|\psi\rangle \propto |p,p\rangle \pm |-p,-p\rangle$$

How is this state forming ??

real space distribution: doubled periodicity

Single trajectory analysis shows correlated quantum jumps of particles and field !

Quantum jumps (= photodetection) increase motional entanglement between the particles => strong conditional (heralded) entanglement induced by cavity dissipation / measurement

quantum trajectory simulations

- conditional density matrix exhibitis
 nonclassical correlations and entanglement
- "squeezing" of particle (= mirror) distance !

average density matrix

conditional density matrix after click = jump

Quantum simulations near T~0

$$H = \sum_{i=1}^{N} \left(\frac{p_i^2}{2m} + \hbar U_0 \alpha^2 \cos^2(kx_i) + \frac{\hbar U_0 \alpha}{2} \sin(2kx_i)(a+a^{\dagger}) \right) - \frac{\hbar (\Delta_c - NU_0) a^{\dagger} a}{2}$$

Particles started independent (= product state) in lattice ground state

Figure 2: Momentum correlation. The parameters are the same as in figure 1 and max $\langle p_1 p_2 \rangle / \sqrt{\langle p_1^2 \rangle \langle p_2^2 \rangle} \sim 0.08$.

- * Large entanglement in individual trajectories
- * small average steady state entanglement
- * very slow convergence of negativity with sample number

QMCWF-Simulations show slow convergence on correlations and entanglement !

intermediate summary :

- Light forces in optical resonators:
 - * self trapping and cooling of all particles with sufficient polarizability
 - * subrecoil cooling towards BEC's and atom lasers
 - * idealized implementation of optomechanics with ensemble
 - * "infinite" range interactions perturb cooling and induce correlations and entanglemnet

efficient numerical studies by quantum wave-function simulation framework C++QED available via (<u>http://cppqed.sourceforge.net/</u>)

Part II: Atomic dynamics in cavities beyond 'mean field'

Ultracold gas near T=0in a **quantum** optical lattice potential

Reminder: Bose Hubbard model in fixed optical lattices

Theory:

Experiment:

Fisher *et al.* (1989), Jaksch *et al.* (1998) Zwerger et. al.(2003)

Greiner et. al. (2002) + many more .

Effective many body - Hamiltonian

$$H = -J \sum_{\langle n,m
angle} b_n^{\dagger} b_m + rac{U}{2} \sum_n b_n^{\dagger} b_n \left(b_n^{\dagger} b_n - 1
ight) + \sum_i (arepsilon_n - \mu) b_n^{\dagger} b_n$$

Generalized Bose-Hubbard model in cavity generated fields

One-dimensional optical lattice: $\mathbf{r}_m = x_m \mathbf{e}_x = m d\mathbf{e}_x$ for $m = 1, 2, \dots, M$ Travelling wave cavities: $u_{0,1}(\mathbf{r}_m) = \exp[i(mk_{0,1}d + \phi)]$ Standing wave cavities: $u_{0,1}(\mathbf{r}_m) = \cos(mk_{0,1}d + \phi)$

Bose Hubbard model for a single standing wave mode resonator

effective single atom Hamiltonian

Hubbard model for a quantized single mode

$$\begin{split} H &= E_0 \hat{N} + E \hat{B} + \left(\hbar U_0 a^{\dagger} a + V_{\rm cl} \right) \left(J_0 \hat{N} + J \hat{B} \right) \\ &- \hbar \Delta_c a^{\dagger} a - i \hbar \eta \left(a - a^{\dagger} \right) + \frac{U}{2} \hat{C}. \end{split}$$

$$\hat{N} = \sum_{k} \hat{n_k} = \sum_{k} b_k^{\dagger} b_k \qquad \qquad \hat{B} = \sum_{k} \left(b_{k+1}^{\dagger} b_k + h.c. \right)$$

Looks similar to standard Bose Hubbard model but parameters for lattice dynamics contain field operators (local and infinite range interactions) single field mode as observable for atomic quantum statistics

Heisenberg equation for field amplitude operator **a** :

field amplitude depends of quantum statistics and gets entangled with atomic distribution

Dynamical effects of a quantum potential:

bad cavity limit : effective Hamiltonian with eliminated field

$$a_0^{\dagger} a_0 = \frac{|\eta_0|^2}{(\Delta_{\rm p} - \delta_0 \hat{D}_{00})^2 + \kappa^2}$$

Cavity parameters can be used to effectively tune size and type of interactions !

Thermodynamic limit and phases of cavity generated lattices

Cavity creates extra effective attraction or repulsion: bistable phases => phase superpositions of Mott + Superfluid in principle possible !?

M. Lewenstein, G. Morigi et. al. (PRL 2007, 2008) Phase diagram in thermodynamic limit

Generalization to fermions, Morigi PRA 2008
full quantum dynamics beyond tight binding approximation: numerical solution for strong field and few particles by QMC - wavefunction simulations

efficient numerical studies of full system by quantum wave-function simulation framework C++QED available via (<u>http://cppqed.sourceforge.net/</u>) (Andras Vukics)

stationary solution zoo (two particles)

particle momentum (hk)

- atom field correlation and stationary entanglement !
- *strong atom atom correlations*
- very strange states can form at least for few particles

Part III

Quantum dynamics of self-ordering in cavities

Modified-geometry: transverse pump: direct excitation of atoms from side !

phase of excitation light depends on x - position $\dot{\sigma}_{i} = (i\Delta_{A} - \gamma)\sigma_{i} - g(z_{i})a + \eta + \xi_{A}$ $\dot{a} = (i\Delta_{C} - \kappa)a + \sum_{i=1}^{N} g^{*}(z_{i})\sigma_{i} + \xi_{i}.$

collective pump strength **R**

Field in cavity generated only by atoms *R* = 0 for random atomic distribution *R* ~ Ng for regular lattice (Bragg)

see also: Vuletic, PRL 2001

Numerical simulations of coupled dynamics including atomic motion (classical point start with random distribution)

particles spontaneously form crystalline order

(Niedenzu, EPL 2011)

Atom-field dynamics for very large particle number : => Vlasov equation for particle distribution

Continuous density approximation for cold cloud: single particle distribution function

$$f_{s}(x,p,t) := \frac{1}{N_{s}} \left\langle \sum_{j_{s}=1}^{N_{s}} \delta(x - x_{j_{s}}(t)) \delta(p - p_{j_{s}}(t)) \right\rangle \quad \Phi_{s}(x,\alpha) = \hbar U_{0,s} |\alpha|^{2} \sin^{2}(kx) + \hbar \eta_{s}(\alpha + \alpha^{*}) \sin(kx)$$

Vlasov + *field* equation

$$\frac{\partial f_s}{\partial t} + \frac{p}{m_s} \frac{\partial f_s}{\partial x} - \frac{\partial \Phi_s(x, \langle \alpha \rangle)}{\partial x} \frac{\partial f_s}{\partial p} = 0$$
$$\dot{\alpha} = (i\Delta_c - \kappa) \,\alpha - i \sum_s \int \left(\alpha \, U_{0,s} \sin^2(kx) + \eta_s \sin(kx) \right) f_s \, dx \, dp$$

stability threshold of homogeneous distribution:

$$\frac{N\eta^2}{k_{\rm B}T}\,{\rm vp}\int_{-\infty}^\infty \frac{g'(\xi)}{-2\xi}{\rm d}\xi < \frac{\delta^2+\kappa^2}{\hbar|\delta|}$$

threshold at thermal equilibrium

Numerical simulation of Vlasov equation: cooling limit

periodic boundary conditions - 1 wavelength

time evolution of field intensity above threshold (~ δ_c^2)

FIG. 24 Phase space densities of the particles for negative detuning $\delta_C = -\kappa$ (left) and positive detuning $\delta_C = \kappa$ (right)

instability confirmed but selfordering for negative detuning only !

special case here at CFEL: single side pumped ring (CARL /FEL) Experiment : Zimmermann (Tübingen)

density fluctuations backscatter light and get amplified
 selfconsistent accelerated field

Simplest case: Instability in unidirectional cavity

кt=11

кt=15

Selforganization of a BEC at T ~ 0

$$H = -\Delta_C a^{\dagger} a + \int_0^L \Psi^{\dagger}(x) \left[-\frac{\hbar}{2m} \frac{d^2}{dx^2} + U_0 a^{\dagger} a \cos^2(kx) + i\eta_t \cos kx (a^{\dagger} - a) \right] \Psi(x) dx,$$

Two-mode approximation => Tavis-Cummings model

Nagy, Domokos, PRL (2010), NJP 2011 Fernandez-Vidal, Morigi PRA (2010)

K Baumann *et al. Nature* 464, 1301 (2010) + many more papers since

$$H = -\delta_C a^{\dagger}a + \omega_R \hat{S}_z + iy(a^{\dagger} - a)\hat{S}_x/\sqrt{N} + ua^{\dagger}a\left(\frac{1}{2} + \hat{S}_z/N\right)$$

- "Dicke Superradiant Phase" transition
- Formation of a supersolid ?

More refined theoretical models and numerical studies (tight binding): Keldysh theory: Goldbart, Piazza, Strack, Zwerger, Diehl ... numerical studies: Vukics, Hofstetter, Bakhtiari, Thorwart, Fermionic selfordering: Piazza, Keeling, Very simple toy model for dynamics: "decay of a quantum seesaw"

Two degrees of freedom: tilt angle \phi and particle position x

Note: classical equilibrium point at $x=\phi=0$ but product state of oscillator ground states is not stationary

field phase replaces tilt angle <> occupation difference replaces position

Selfordering of trapped particles within a cavity: a numerical study

Flat box trap without prescribed lattice

cavity field Q-function

several particle modes excited bi-modal Q-function of field

Selfordering with multicolor pump field using several cavity modes: => competitive phase transitions

2 Example: Box Potential $V(x) = \begin{cases} 0 & x \in [-a, a] \\ \infty & else \end{cases}$ $= \begin{cases} \frac{1}{\sqrt{a}} \sin(K_i(x+a)) & x \in [-a, a] \\ 0 & else \end{cases}$ $= \frac{\pi}{2a}i \equiv Ki$ $E_i = \frac{\hbar^2}{2m} \left(\frac{\pi i}{2a}\right)^2 = \frac{\hbar^2}{2m}K_i^2$ Overlap-Integrals 18, 19:

$$\begin{split} A_{nij} &= \frac{1}{a} \int_{-a}^{a} \sin(Ki(x+a)) \sin(Kj(x+a)) \sin^{2}(kn(x+L)) dx \\ B_{nij} &= \frac{1}{a} \int_{-a}^{a} \sin(Ki(x+a)) \sin(Kj(x+a)) \sin(kn(x+L)) dx \end{split}$$

multimode Tavis Cummings model

$$\begin{split} H &= -\sum_{n} \Delta_{p}^{n} \hat{a}_{n}^{\dagger} \hat{a}_{n} + \int dx \hat{\Psi}^{\dagger}(x) (\frac{-\Delta}{2m} + V(x)) \hat{\Psi}(x) \\ &+ \int dx \hat{\Psi}^{\dagger}(x) \sum_{n} T_{0} \omega_{n} \sin^{2}(k_{n}(x+L)) \hat{a}_{n}^{\dagger} \hat{a}_{n} \hat{\Psi}(x) \\ &+ \int dx \hat{\Psi}^{\dagger}(x) \sum_{n} \eta_{n} \sin(k_{n}(x+L)) (\hat{a}_{n}^{\dagger} + \hat{a}_{n}) \hat{\Psi}(x) \end{split}$$

("Hopfield model – associative memory")

Expand particle operators in trap eigenmodes

- $H_{particles}\Psi_k(x) = E_k\Psi_k(x)$
- Field operators: $\hat{\Psi}(x) = \sum_k \Psi_k(x) \hat{c}_k$

Nonlinear coupled oscillator model with tailorable coupling: pump amplitudes + detunings as control

"BEC" - in a box with two pump frequencies

many possible quasi-steady states !

Single trajectory dynamics: particels and field jump between different configurations

formation and melting of order in time realistic scenarios far beyond our computing power ...

Summary and Outlook

- Cavities can be used to confine, cool and control particle motion
- Replace evaporation to reach degeneracy and CW atom lasing
- implement tailorable long range interactions
- dynamic model of crystallisation of quantum systems
- study associative memory and neural network models even in the quantum regime

Thanks for your attention !

Innsbruck University – visitors welcome !

Selfordering beyond mean field

multiparticle quantum description of selforganization in a lattice

- pump creates optical lattice with
- atoms in lowest band
- cavity field from scattered lattice light

Effective Hubbard type Hamiltonian:

$$H = \sum_{k,l} E_{k,l} b_k^{\dagger} b_l + \hbar U_0 \eta' g \sum_{k,l} J_{k,l} b_k^{\dagger} b_l + \hbar \eta' \left(a + a^{\dagger}\right) \sum_{k,l} \tilde{J}_{k,l} b_k^{\dagger} b_l - \hbar \left(\Delta_c - U_0\right) a^{\dagger} a$$

pump amplitude determined by atomic distribution operator

How and when will selforganization happen here?

microscopic dynamics beyond mean field at simple example: two-effective lattice sites (1,2)

Lowest energy states for atoms at two sites ...

$$a = -i\frac{\eta'}{\kappa - i(\Delta_c - U_0)}\tilde{J}_0\left(b_1^{\dagger}b_1 - b_2^{\dagger}b_2\right)$$

$$a^{\dagger}a \sim \left(b_1^{\dagger}b_1 - b_2^{\dagger}b_2\right)^2$$

$$\kappa$$

 $1-\alpha$) $|\alpha$)
 10 $|r$)
 10 $|r$)
 $-r/2$ 0 $r/2$ Kx

$$\frac{1}{\sqrt{2}} \left(|\text{left}\rangle |\alpha\rangle \pm |\text{right}\rangle |-\alpha\rangle \right)$$

... show atom field entanglement

- Note: strongly entangled state
- Symmetry leads to zero field but nonzero intensity (photons)
- How does entanglement and intensity grow ?

real Cavity QED = open system

Gedankenexperiments of Quantum Mechanics realized : e.g. Haroche, Walther, Kimble, Rempe,... + many more recently (circuit QED)

Trapped particle in a ring cavity with symmetric pump

Efficient trapping and cooling towards very low velocities !

Gangl, PRA 99, Exp. by Hemmerich (Hamburg) and Zimmermann (Tübingen)

trapping and cooling to the quantum limit in a ring cavity

ultracold + localized particles => atom-field Hamiltonian for quantized motion:

$$H = \frac{\hat{p}^2}{2m} - \hbar\Delta \left(a_c^{\dagger} a_c + a_s^{\dagger} a_s \right) - \hbar U(\hat{x}) + i\hbar \left(\eta a_c^{\dagger} - \eta^* a_c \right)$$
$$U(\hat{x}) = a_c^{\dagger} a_c U_c(\hat{x}) + a_s^{\dagger} a_s U_s(\hat{x}) + \left(a_c^{\dagger} a_s + a_c a_s^{\dagger} \right) U_{cs}(\hat{x})$$
$$cosine^2 sine^2$$

 $E(x,t) \sim a_c \cos(kx) + a_s \sin kx$

generic setup: strong pump of cosine mode: => deep trap for particle => mode in coherent state α trap frequency of particle proportional cos-field amplitude

$$\omega_m^2 = 4\omega_R U_0 \alpha^2$$

linear coupling '(a⁺_s+a_s) x'
=> "optomechanical cooling"

$$H = \left[\frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega_m^2 \hat{x}^2\right] - \hbar\Delta a^{\dagger}a - \hbar U_0'(a_{\rm s} + a_{\rm s}^{\dagger})\hat{x}$$

quadratic coupling ' $a_c^+a_c^-x^2$ ' => trap + x^2 nonlinearity

Selfordering via a continuum of light modes

trapped particles interact by collective scattering and dipole-dipole exchange

- Iong range phononlike excitations
- self optimized light harvesting structure

T. Griesser, PRL 2013

(see also: Chang et.al, PRL 2013)

Analytic model in the linear regime:

Dynamic equations:

$$\begin{split} \frac{d}{dt} \langle a^{\dagger}a \rangle &= -2\kappa \langle a^{\dagger}a \rangle - i\bar{U}_{0}(\langle aQ \rangle - \langle a^{\dagger}Q \rangle) \\ \frac{d}{dt} \langle Q^{2} \rangle &= \omega_{m} \langle \mathcal{A} \rangle \\ \frac{d}{dt} \langle \mathcal{A} \rangle &= 2\omega_{m}(\langle P^{2} \rangle - \langle Q^{2} \rangle) + \\ &\quad 2\bar{U_{0}}(\langle aQ \rangle + \langle a^{\dagger}Q \rangle) \\ \frac{d}{dt} \langle P^{2} \rangle &= -\omega_{m} \langle \mathcal{A} \rangle + 2\bar{U}_{0}(\langle aP \rangle + \langle a^{\dagger}P \rangle) \\ \frac{d}{dt} \langle aQ \rangle &= \omega_{m} \langle aP \rangle - (\kappa - i\Delta) \langle aQ \rangle + i\bar{U}_{0} \langle Q^{2} \rangle \\ \frac{d}{dt} \langle aP \rangle &= (-\kappa + i\Delta) \langle aP \rangle - \omega_{m} \langle aQ \rangle + \\ &\quad \bar{U}_{0} \left(\langle a^{\dagger}a \rangle + 1/2 + \langle a^{2} \rangle + \frac{i}{2} \langle \mathcal{A} \rangle \right) \\ \frac{d}{dt} \langle a^{2} \rangle &= -2(\kappa - i\Delta) \langle a^{2} \rangle + 2i\bar{U}_{0} \langle aQ \rangle, \end{split}$$

* Ground-state cooling !* acceleration by strong power !

Steady states:

$$\langle a^{\dagger}a\rangle = -\frac{U_0^2(\Delta^2 + \kappa^2)}{4\omega_m\Delta(\kappa^2 + \Delta^2) + 8\bar{U}_0^2\Delta^2},$$

$$\langle Q^2\rangle = -\frac{(\kappa^2 + \omega_m^2 + \Delta^2)(\kappa^2 + \Delta^2) + 2\bar{U}_0^2\omega_m\Delta}{4\omega_m\Delta(\kappa^2 + \Delta^2) + 8\bar{U}_0^2\Delta^2} \quad (10)$$

$$\langle P^2\rangle = -\frac{(\kappa^2 + \omega_m^2 + \Delta^2 + 2\bar{U}_0^2\Delta/\omega_m)(\kappa^2 + \Delta^2) + 2\bar{U}_0^2\omega_m\Delta}{4\omega_m\Delta(\kappa^2 + \Delta^2) + 8\bar{U}_0^2\Delta^2}$$

Examples:

Numerical Monte Carlo wave function simulations beyond linearized potential (C++QED- package)

Single quantum particle in a ring cavity with dispersive interaction: frequency dependence of cooling

ground state cooling when mode is tuned the antistokes line : $\Delta \sim \omega >> \kappa$

Optomechanics: all you need is power !

$$\omega_m^2 = 4\omega_R U_0 \alpha^2$$

any polarizable, nonabsorptive particle can be cooled with sufficient power ! (-> Romero-Isart) (new proposed experiments with beads : P. Barker, M. Raizen, M. Aspelmeyer, J. Kimble) Single trajectory analysis of groundstate cooling : Quantum jumps of particle and field near ground state !

Particle jumps between two lowest states (parity change !)

Two particles in a ring cavity with dispersive interaction: near their ground state: $T \sim 0$

classical point particles

* Strongly pumped Cos(kx) mode => mean field α
* Scattered photons in Sin(kx) mode => quantum operator a
* two particles : classical description of motion

Dynamical effects of a quantum potential:

bad cavity limit : effective Hamiltonian with eliminated field

$$a_0^{\dagger} a_0 = \frac{|\eta_0|^2}{(\Delta_{\rm p} - \delta_0 \hat{D}_{00})^2 + \kappa^2}$$

$$H = \left[E + J \left(V_{cl} - \hbar U_0 \eta^2 \frac{\kappa^2 - {\Delta'_c}^2}{(\kappa^2 + {\Delta'_c}^2)^2} \right) \right] \hat{B}$$
(13)
+ $3\hbar U_0^2 \eta^2 {\Delta'_c} \frac{3\kappa^2 - {\Delta'_c}^2}{(\kappa^2 + {\Delta'_c}^2)^4} J^2 \hat{B}^2 + \frac{U}{2} \sum_k \hat{n}_k (\hat{n}_k - 1)$
rescaled hopping terms
Nonlocal atom-atom interaction via nonlocal correlated hopping

Cavity parameters can be used to effectively tune size and type of interactions !

Simulated single atom dynamics for two wells : photon-assisted or photon blocked tunneling

at t=0 atom prepared at right well:

• effective model contains weighted average of tunnel amplitudes

Generalization to multimode confocal cavity :

S.Gopalakrishnan, B. L.Lev, P. M.Goldbart Nat.Phys. 5, 845 (2009).

"Quantum Brazovskii transition"

P. Strack and S. Sachdev

- Dicke quantum spin glass of atoms and photons
- Exploring models of associative memory via cavity quantum electrodynamics

Numerical simulations of coupled dynamics including atomic motion (start with random distribution at Doppler temperature)

quadratic dependence of cavity photons on atom number => stimulated emission dominates over spontaneous emission for large N => internal state unchanged (no repumper required)

diffusion and temperature : kinetic equation for fluctuations

$$\frac{\partial \langle f_l \rangle}{\partial t} + v \frac{\partial \langle f_l \rangle}{\partial x} - \frac{1}{m_l} \frac{\partial \langle \Phi_l \rangle}{\partial x} \frac{\partial \langle f_l \rangle}{\partial v} = \frac{1}{m_l} \left\langle \frac{\partial \delta \Phi_l}{\partial x} \frac{\partial \delta f_l}{\partial v} \right\rangle$$

Below self consistent threshold:

$$\langle F(v) \rangle \propto \left(1 - (1-q) \frac{mv^2}{2k_{\rm B}T} \right)^{\frac{1}{1-q}} \qquad q_s = 1 + \frac{\omega_{\rm R,s}}{|\delta|}$$

$$k_{\rm B}T = \hbar \frac{\kappa^2 + \delta^2}{4|\delta|} = \frac{\hbar\kappa}{2}$$

Above self consistent threshold:

$$N|U_0|V_{\text{opt}} \stackrel{!}{<} \left(\frac{\kappa^2 + \delta^2}{2|\delta|}\right)^2 \frac{2}{3-q} \stackrel{\delta = -\kappa}{=} \frac{2}{3-q} \kappa^2$$

stationary velocity distribution

time evolution of ,hot' ensemble

spatial average: kinetic equation for velocity distribution

$$\frac{\partial}{\partial t} \left\langle F \right\rangle + \frac{\partial}{\partial v} \left(A[\langle F \rangle] \left\langle F \right\rangle \right) = \frac{\partial}{\partial v} \left(B[\langle F \rangle] \frac{\partial}{\partial v} \left\langle F \right\rangle \right) \qquad \qquad A[\langle F \rangle] := \frac{2\hbar \kappa \delta \kappa \eta^2}{m} \frac{\kappa v}{|D(ikv)|^2} \\ B[\langle F \rangle] := \frac{\hbar^2 k^2 \eta^2 \kappa}{2m^2} \frac{\kappa^2 + \delta^2 + k^2 v^2}{|D(ikv)|^2}$$

2

7

OFIC

numerical solution:

very weak particle number dependenceon selforganization time + cooling !
Eperiment ETH: Observation of the phase transition to new phase with coherence + ordering present ("supersolid phase")

 $\Psi(x) = \frac{1}{\sqrt{L}}c_0 + \sqrt{\frac{2}{L}}c_1\cos kx$

Implementation of "Dicke Superradiant Phase" transition

K Baumann et al. Nature 464, 1301-1306 (2010) doi:10.1038/nature09009

Measurement of phase diagram :

FIG. 40 Phase diagram of the Dicke model, from (Baumann et al., 2010).

in ordered region: coherence + ordering present: "supersolid phase"

0.001

0.01

0.1

1

10

100

 $\omega_{\rm rec} t$

Part III) Quantum dynamics and controlled interactions of few partilces in multimode" cavities

atom phase locks field modes and changes intensity distribution => atom drags node along ist path to stay at intensity maximum = field minimum

Quantum model in a ring cavity

atom-field Hamiltonian for quantized motion: $H = \frac{\hat{p}^2}{2m} - \hbar\Delta \left(a_c^{\dagger} a_c + a_s^{\dagger} a_s \right) - \hbar U(\hat{x}) + i\hbar \left(\eta a_c^{\dagger} - \eta^* a_c \right)$ $U(\hat{x}) = a_c^{\dagger} a_c U_c(\hat{x}) + a_s^{\dagger} a_s U_s(\hat{x}) + \left(a_c^{\dagger} a_s + a_c a_s^{\dagger} \right) U_{cs}(\hat{x})$ $U(\hat{x}) = a_c^{\dagger} a_c U_c(\hat{x}) + a_s^{\dagger} a_s U_s(\hat{x}) + \left(a_c^{\dagger} a_s + a_c a_s^{\dagger} \right) U_{cs}(\hat{x})$ $U(\hat{x}) = a_c^{\dagger} a_c U_c(\hat{x}) + a_s^{\dagger} a_s U_s(\hat{x}) + \left(a_c^{\dagger} a_s + a_c a_s^{\dagger} \right) U_{cs}(\hat{x})$ $U(\hat{x}) = a_c^{\dagger} a_c U_c(\hat{x}) + a_s^{\dagger} a_s U_s(\hat{x}) + \left(a_c^{\dagger} a_s + a_c a_s^{\dagger} \right) U_{cs}(\hat{x})$ $U(\hat{x}) = a_c^{\dagger} a_c U_c(\hat{x}) + a_s^{\dagger} a_s U_s(\hat{x}) + \left(a_c^{\dagger} a_s + a_c a_s^{\dagger} \right) U_{cs}(\hat{x})$ $U(\hat{x}) = a_c^{\dagger} a_c U_c(\hat{x}) + a_s^{\dagger} a_s U_s(\hat{x}) + \left(a_c^{\dagger} a_s + a_c a_s^{\dagger} \right) U_{cs}(\hat{x})$ $U(\hat{x}) = a_c^{\dagger} a_c U_c(\hat{x}) + a_s^{\dagger} a_s U_s(\hat{x}) + \left(a_c^{\dagger} a_s + a_c a_s^{\dagger} \right) U_{cs}(\hat{x})$ $U(\hat{x}) = a_c^{\dagger} a_c U_c(\hat{x}) + a_s^{\dagger} a_s U_s(\hat{x}) + \left(a_c^{\dagger} a_s + a_c a_s^{\dagger} \right) U_{cs}(\hat{x})$ $U(\hat{x}) = a_c^{\dagger} a_c U_c(\hat{x}) + a_s^{\dagger} a_s U_s(\hat{x}) + \left(a_c^{\dagger} a_s + a_c a_s^{\dagger} \right) U_{cs}(\hat{x})$ $U(\hat{x}) = a_c^{\dagger} a_c U_c(\hat{x}) + a_s^{\dagger} a_s U_s(\hat{x}) + \left(a_c^{\dagger} a_s + a_c a_s^{\dagger} \right) U_{cs}(\hat{x})$ $U(\hat{x}) = a_c^{\dagger} a_c U_c(\hat{x}) + a_s^{\dagger} a_s U_s(\hat{x}) + \left(a_c^{\dagger} a_s + a_c a_s^{\dagger} \right) U_{cs}(\hat{x})$

pumped cosine mode:

- \Rightarrow mode in coherent state α
- \Rightarrow deep harmonic trap for particle

$$\omega_m^2 = 4\omega_R U_0 \alpha^2$$

unpumped sine mode:

- => mode near vacuum state
- \Rightarrow linear coupling
- \Rightarrow cooling + measurement

deep trap limit:

$$H = \begin{bmatrix} \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega_m^2 \hat{x}^2 \end{bmatrix} - \hbar \Delta a_s^{\dagger} a_s - \hbar U_0' (a_s + a_s^{\dagger}) \hat{x}$$
quadratic coupling $(a_s^{\dagger} a_c \mathbf{x}^2)$
=> trap + x^2 nonlinearity
$$Iinear coupling (a_s^{\dagger} + a_s) \mathbf{x}^2$$
=> "optomechanical cooling"

CW- operation of atom-photon pair laser: => add *CW* 'hot' atom source or incoherent pump

(a)

$$a^{\dagger}B$$

 $|m+1\rangle$
 $|m\rangle$
 $|m\rangle$

 $\mathcal{H}_{\mathrm{int}} = \eta \left(a^{\dagger} b^{\dagger} c + a \, b \, c^{\dagger}
ight)$

parametric interaction

atom laser emission rate

Stimulated amplification of light and atomic ground state population via blue Raman sideband

T. Salzburger et. al. , PRL

Cold gas in a quantum optical potential (mean field limit)

* Cavity field generates **dynamical optical lattice with quantum properties** * Atoms act on the cavity field depending on their quantum state

Correlated / entangled dynamics of field amplitude and particle wave-function Coupled Maxwell - Schrödinger equation

Cold dilute gas in a cavity generated optical potential at finite T (Vlasov mean field approach)

Continuous density approximation for cold cloud: dynamic refractive index

$$f(x,v,t) = \frac{m}{2N\pi\hbar} \int e^{-izmv/\hbar} \rho_{P,1} \left(x + \frac{z}{2}, x - \frac{z}{2}, t \right) dz$$

Kinetic limit-Vlasov equation

$$\frac{\partial f}{\partial t} + v\frac{\partial f}{\partial x} + \frac{U_0|\alpha|^2}{2}\sin(2kx)\Big(f(x,v+v_R) - f(x,v-v_R)\Big) = 0$$

field dynamics:

$$\dot{\alpha} = \left[-\kappa + i(\Delta_c - NU_0/2)\right]\alpha - i\frac{NU_0}{2}\alpha \int_{-\infty}^{\infty} dv \int_0^{\lambda} f(x, v, t)\cos(2kx)dx + \eta$$

nonlinear coupled dynamics

Stationary solution for strong field and many particles: bistability

unstable regime for strong pump:

dynamic solution shows density waves with limit cycle behaviour

related experiments:

- A. Hemmerich (transverse motion)
- J. Eschner (thermal cloud)

Quantum dynamics of many particles and field near T~0

BEC in optical lattice with dynamic (quantum) properties

Mean field description of many particles and field

Gross-Pitajevski ⇔ Maxwell

$$\frac{d}{dt}\alpha(t) = [i\Delta_c - iN\langle U(\hat{x})\rangle - \kappa]\alpha(t) + \eta, \qquad (1a)$$

$$i\frac{d}{dt}\psi(x,t) = \left\{\frac{\hat{p}^2}{2m} + |\alpha(t)|^2 U(x) + Ng_{coll}|\psi(x,t)|^2\right\}\psi(x,t).$$

coupled nonlinear and nonlocal equations with a wealth of dynamic effectsRefs:Horak, Barnett, Hammerer, Zoller, Meystre, Liu, Bhattacherjee...Experiments:Esslinger, Reichel, Zimmermann, Hemmerich, Stamper-
Kurn, Vuletic, Treutlein ...

BEC in a cavity: quantum T=0 limit

two relevant momentum modes :

- 1. homogeneous state
- 2. diffracted wave: cos(2kx)

$$\psi(x,t) = c_0(t) + c_2(t)\sqrt{2} \cos(2kx)$$

two coupled oscillators

 $X = 2\sqrt{1/N} \operatorname{Re}(c_0 * c_2)$

⇒optomechanics – Hamiltonian at T=0

$$\ddot{X} + (4\omega_{\rm rec})^2 X = -\omega_{\rm rec} U_0 \sqrt{8N} \langle \hat{a}^{\dagger} \hat{a} \rangle$$

mirror-position \Leftrightarrow field-intensity

ideal "optomechanics"
test toolbox => next talk!

mirror position = amplitude of density wave

BEC parameter regime :

- > start at ground state (T=0)
- strong single photon coupling
- ➢ atoms and light can be measured
- nonlinear regime: bistable response

Dynamical Coupling between a Bose-Einstein Condensate and a Cavity Optical Lattice

Stephan Ritter^{1,2}, Ferdinand Brennecke¹, Christine Guerlin¹, Kristian Baumann¹, Tobias Donner^{1,3}, Tilman Easlinger¹ ¹Institute for Quantum Electronics, ETH Zürich, CH-8093 Zürich, Switzerland ²Maz-Planck-Institut für Quantenoptik, 85748 Garching, Germany ³JILA, University of Colorado and National Institute of Standards and Technology, Boulder CO 80809, USA (Dated: November 24, 2008) Experiment ETH Zürich: BEC in high-Q cavity

Dynamical Coupling between a Bose-Einstein Condensate and a Cavity Optical Lattice

Stephan Ritter^{1,2}, Ferdinand Brennecke¹, Christine Guerlin¹,

Kristian Baumann¹, Tobias Donner^{1,3}, Tilman Esslinger¹* ¹Institute for Quantum Electronics, ETH Zürich, CH-8093 Zürich, Switzerland ²Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany ³JILA, University of Colorado and National Institute of Standards and Technology, Boulder CO 80309, USA (Dated: November 24, 2008)

* two mode BEC expansion works very well

- * study of zero T optomechanics in the instable regime
- * nonlinear oscillations + atom field entanglement

Cavity cooling of molecules or heavier particles

Examples:	Cavity of V=1	mm^3 at 1.5 µ	ı laser
------------------	---------------	---------------	---------

Particle	m (amu)	$\chi \; ({\rm \AA}^3 \times 4\pi \varepsilon_0)$	$\sigma_{\rm a}({\rm \AA}^2)$	$\omega_{\rm r}$ (MHz)	$ U_0 $ (MHz)	$2\gamma_a$ (MHz)	$2\gamma_{\rm s}$ (MHz)
Li	7	24		$8.0 imes 10^{-2}$	$1.9 imes 10^{-9}$		8.9×10^{-18}
C ₆₀	720	83	$\sim 10^{-4}$	7.7×10^{-4}	6.5×10^{-9}	$\sim 10^{-12}$	1.0×10^{-16}
He1000	4000	200		1.4×10^{-4}	1.6×10^{-8}		6.2×10^{-16}
Li1000	7000	5501	2.6×10^{-1}	8.0×10^{-5}	4.3×10^{-7}	1.5×10^{-8}	4.7×10^{-13}
(SiO ₂) ₁₀₀₀	60 000	2901	6.1×10^{-11}	2.0×10^{-5}	2.3×10^{-7}	3.7×10^{-18}	1.3×10^{-13}
Au1000	197 000	4180	8.2×10^{-2}	2.8×10^{-6}	$3.3 imes 10^{-7}$	4.8×10^{-9}	2.7×10^{-13}

- + single setup for wide range of species
- but need to prepare useful initial confinement in mode
- - Watts of pump power at finesse F > 10^4

Note: speed up cooling for weak coupling by more power !

(S. Nimmrichter, NJP 12, 2010, Salzburger 2009, Deachapunya EPJD 08)