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Finite temperature properties of lattice models

Computational techniques for arbitrary dimensions
Quantum Monte Carlo simulations
Polynomial time⇒ Large systems⇒ Finite size scaling
Sign problem⇒ Limited classes of models

Exact diagonalization
Exponential problem⇒ Small systems⇒ Finite size effects
No systematic extrapolation to larger system sizes
Can be used for any model!

High temperature expansions
Exponential problem⇒ High temperatures
Thermodynamic limit⇒ Extrapolations to low T
Can be used for any model!
Can fail (at low T ) even when correlations are short ranged!

DMFT, DCA, DMRG, . . .
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Linked-Cluster Expansions

Extensive observables Ô per lattice site (O) in the thermodynamic limit

O =
∑
c

L(c)×WO(c)

where L(c) is the number of embeddings of cluster c

and WO(c) is the weight
of observable O in cluster c

WO(c) = O(c)−
∑
s⊂c

WO(s).

O(c) is the result for O in cluster c

O(c) = Tr
{
Ô ρ̂GC

c

}
,

ρ̂GC
c =

1

ZGC
c

exp−(Ĥc−µN̂c)/kBT

ZGC
c = Tr

{
exp−(Ĥc−µN̂c)/kBT

}
and the s sum runs over all subclusters of c.
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Linked-Cluster Expansions

In HTEs O(c) is expanded in powers of β and only a finite number
of terms are retained.

In NLCEs an exact diagonalization of the cluster is used to
calculate O(c) at any temperature.
MR, T. Bryant, and R. R. P. Singh, PRL 97, 187202 (2006).
MR, T. Bryant, and R. R. P. Singh, PRE 75, 061118 (2007).
MR, T. Bryant, and R. R. P. Singh, PRE 75, 061119 (2007).

2D Hubbard-like models (square and honeycomb), spin models
(kagome, checkerboard, pyroclore – experiments)
MR and R. R. P. Singh, PRL 98, 207204 (2007).
MR and R. R. P. Singh, PRB 76, 184403 (2007).
E. Khatami and MR, PRB 83, 134431 (2011).
E. Khatami and MR, PRA 84, 053611 (2011).
E. Khatami, R. R. P. Singh, and MR, PRB 84, 224411 (2011).
E. Khatami, J. S. Helton, and MR, PRB 85, 064401 (2012).
E. Khatami and MR, PRA 86, 023633 (2012).
B. Tang, T. Paiva, E. Khatami, and MR, PRL 109, 205301 (2012).
B. Tang, T. Paiva, E. Khatami, and MR, PRB 88, 125127 (2013).
. . .
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Numerical Linked Cluster Expansions

i) Find all clusters that can be
embedded on the lattice

ii) Group the ones with the
same Hamiltonian (Topo-
logical cluster)

iii) Find all subclusters of a
given topological cluster

iv) Diagonalize the topological
clusters and compute the
observables

v) Perform the subgraph
substraction to compute the
weight of each cluster

Bond clusters
c

2

L(c)

2

3 2

4 4

5 4

6 2

7 4

11

8 4

9 8
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Heisenberg Model
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12 bonds
13 bonds

MR et al., PRE 75, 061118 (2007).
B. Tang et al., CPC 184, 557 (2013).
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Numerical Linked-Cluster Expansions

Site clusters

c

2

L(c)

2

3 2

4 4

5 4

6 2

7

11

8 4

9 8

1

No. of sites topological clusters
1 1
2 1
3 1
4 3
5 4
6 10
7 19
8 51
9 112

10 300
11 746
12 2042
13 5450
14 15197
15 42192
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Numerical Linked-Cluster Expansions

Square clusters
c

2

L(c)

11

3

4

5

1/2

1

2

1

No. of squares topological clusters
0 1
1 1
2 1
3 2
4 5
5 11
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Numerical Linked-Cluster Expansions

Square clusters
c

2

L(c)

11

3

4

5

1/2

1

2

1

Heisenberg Model
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E
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12 bonds
13 bonds
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T

-0.8
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0

E
4 squares

5 squares

0.1 1 10

T

-0.8

-0.6
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-0.2

0

E

14 sites
15 sites

MR et al., PRE 75, 061118 (2007).
B. Tang et al., CPC 184, 557 (2013).
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Resummation algorithms

We can define partial sums

On =

n∑
i=1

Si, with Si =
∑
ci

L(ci)×WO(ci)

where all clusters ci share a given characteristic (no. of bonds, sites, etc).
Goal: Estimate O = limn→∞On from a sequence {On}, with n = 1, . . . , N .

Wynn’s algorithm:

ε(−1)n = 0, ε(0)n = On, ε(k)n = ε
(k−2)
n+1 +

1

∆ε
(k−1)
n

where ∆ε
(k−1)
n = ε

(k−1)
n+1 − ε

(k−1)
n .

Brezinski’s algorithm [θ(−1)n = 0, θ
(0)
n = On]:

θ(2k+1)
n = θ(2k−1)n +

1

∆θ
(2k)
n

, θ(2k+2)
n = θ

(2k)
n+1 +

∆θ
(2k)
n+1∆θ

(2k+1)
n+1

∆2θ
(2k+1)
n

where ∆2θ
(k)
n = θ

(k)
n+2 − 2θ

(k)
n+1 + θ

(k)
n .
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Resummation results (Heisenberg model)
Energy (square lattice)
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(BM) B. Bernu and G. Misguich, PRB 63, 134409 (2001).
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Quantum Newton’s Cradle
T. Kinoshita, T. Wenger, and D. S. Weiss,

Nature 440, 900 (2006).

γ =
mg1D
~2ρ

g1D: Interaction strength
ρ: One-dimensional density

If γ � 1 the system is in the
strongly correlated

Tonks-Girardeau regime

If γ � 1 the system is in the
weakly interacting regime

Also in: M. Gring et al.
(Schmiedmayer’s group),

Science 337, 1318 (2012).
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Quenches in one-dimensional superlattices
Quantum dynamics in a

1D superlattice
Trotzky et al. (Bloch’s group),
Nature Phys. 8, 325 (2012).

Initial state |01010 . . . 1010〉

Unitary dynamics under the
“Bose-Hubbard” Hamiltonian

Experimental results (◦) vs
exact t-DMRG calculations

(lines) without free parameters

local observables (top)
vs

nonlocal observables (bottom)
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Unitary dynamics after a sudden quench
If the initial state is not an eigenstate of Ĥ

|ψ0〉 6= |α〉 where Ĥ|α〉 = Eα|α〉 and E0 = 〈ψ0|Ĥ|ψ0〉,

then a few-body observable O will evolve following

O(τ) ≡ 〈ψ(τ)|Ô|ψ(τ)〉 where |ψ(τ)〉 = e−iĤτ/~|ψ0〉.

What is it that we call thermalization?

O(τ) = O(E0) = O(T ) = O(T, µ).

One can rewrite

O(τ) =
∑
α′,α

C?α′Cαe
i(Eα′−Eα )τ/~Oα′α where |ψ0〉 =

∑
α

Cα|α〉.

Taking the infinite time average (diagonal ensemble ρ̂DE ≡
∑
α |Cα|2|α〉〈α|)

O(τ) = lim
τ→∞

1

τ

∫ τ

0

dτ ′〈Ψ(τ ′)|Ô|Ψ(τ ′)〉 =
∑
α

|Cα|2Oαα ≡ 〈Ô〉DE,

which depends on the initial conditions through Cα = 〈α|ψ0〉.
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Description after relaxation (lattice models)

Hard-core boson (spinless fermion) Hamiltonian

Ĥ =

L∑
i=1

−t
(
b̂†i b̂i+1 + H.c.

)
+ V n̂in̂i+1 − t′

(
b̂†i b̂i+2 + H.c.

)
+ V ′n̂in̂i+2

Dynamics vs statistical ensembles

Nonintegrable: t′ = V ′ 6= 0

-π -π/2 0 π/2 π

ka

0.2

0.3

0.4

0.5

0.6

n
(k

)

initial state

time average

thermal

MR, PRL 103, 100403 (2009),
PRA 80, 053607 (2009), . . .

Integrable: t′ = V ′ = 0

-π -π/2 0 π/2 π

ka

0

0.25

0.5

n
(k

) time average
thermal
GGE

MR, Dunjko, Yurovsky, and
Olshanii, PRL 98, 050405 (2007), . . .
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Eigenstate thermalization
Eigenstate thermalization hypothesis
[Deutsch, PRA 43 2046 (1991); Srednicki, PRE 50, 888 (1994).]

The expectation value 〈α|Ô|α〉 of a few-body observable Ô in an
eigenstate of the Hamiltonian |α〉, with energy Eα, of a many-body
system is equal to the thermal average of Ô at the mean energy Eα:

〈α|Ô|α〉 = 〈Ô〉ME(Eα).
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MR, Dunjko, and Olshanii, Nature 452, 854 (2008).
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Time fluctuations and their scaling with system size

0.1
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N

k
L=21

L=24

0

0.1
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δ
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k

0 20 40 60 80 100
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t’=V’=0.24

Relative differences (struct. factor)

δN(τ) =

∑
k |N(k, τ)−Ndiag(k)|∑

kNdiag(k)

Bounds
(G) P. Reimann, PRL 101, 190403 (2008).
(G) Linden et al., PRE 79, 061103 (2009).
(N) Cramer et al., PRL 100, 030602 (2008).
(N) Venuti&Zanardi, PRE 87, 012106 (2013).
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Time fluctuations
Are they small because of dephasing?

〈Ô(t)〉 − 〈Ô(t)〉 =
∑
α′,α
α′ 6=α

C?α′Cαe
i(Eα′−Eα )tOα′α ∼

∑
α′,α
α′ 6=α

ei(Eα′−Eα )t

Nstates
Oα′α

∼
√
N2

states

Nstates
Otypical
α′α ∼ Otypical

α′α

Time average of 〈Ô〉

〈Ô〉 =
∑
α

|Cα|2Oαα

∼
∑
α

1

Nstates
Oαα ∼ Otypical

αα

One needs: Otypical
α′α � Otypical

αα

MR, PRA 80, 053607 (2009)
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Diagonal ensemble and NLCEs
The initial state is in thermal equilibrium in contact with a reservoir

ρ̂Ic =

∑
a e
−(Eca−µIN

c
a)/TI |ac〉〈ac|

ZIc
, where ZIc =

∑
a

e−(E
c
a−µ

INca)/TI ,

|ac〉 (Eca) are the eigenstates (eigenvalues) of the initial Hamiltonian ĤI
c in c.

At the time of the quench ĤI
c → Ĥc , the system is detached from the

reservoir. Writing the eigenstates of ĤI
c in terms of the eigenstates of Ĥc

ρ̂DE
c ≡ limτ ′→∞

1

τ ′

∫ τ ′

0

dτ ρ̂(τ) =
∑
α

W c
α |αc〉〈αc|

where
W c
α =

∑
a e
−(Eca−µIN

c
a)/TI |〈αc|ac〉|2

ZIc
,

|αc〉 (εcα) are the eigenstates (eigenvalues) of the final Hamiltonian Ĥc in c.

Using ρ̂DE
c in the calculation of O(c), NLCEs allow one to compute

observables in the DE in the thermodynamic limit.

MR, arXiv:1401.2160.
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c in c.

At the time of the quench ĤI
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Models and quenches

Hard-core bosons in 1D lattices at half filling (µI = 0)

Ĥ =

L∑
i=1

−t
(
b̂†i b̂i+1 + H.c.

)
+ V n̂in̂i+1 − t′

(
b̂†i b̂i+2 + H.c.

)
+ V ′n̂in̂i+2

Quench: TI , tI = 0.5, VI = 1.5, t′I = V ′
I = 0→ t = V = 1.0, t′ = V ′
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NLCE with maximally
connected clusters

(l = 18 sites)

Energy: EDE = Tr[Ĥρ̂DE]

Convergence:

∆(Oens)l =
|Oens

l −Oens
18 |

|Oens
18 |

Convergence of EDE with l
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Temperature after the quench:
(if in thermal equilibrium)

EDE
l=18 = EGE

l=18

EGE =
Tr[Ĥe−(Ĥ−µN̂)/T ]

Tr[e−(Ĥ−µN̂)/T ]

Relative energy difference
between EDE

18 and EGE
18

is smaller than 10−11

Temperature after the quench
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T
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t’=V’=0, diff. init. state
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Energy and particle number dispersion in the DE

Energy dispersion

∆E2 =
1

L
(〈Ĥ2〉 − 〈Ĥ〉2)
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Particle number dispersion

∆N2 =
1

L
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I
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δ(O)l =
|ODE

l −OGE
18 |

|OGE
18 |

The dispersion of the energy and particle number in the DE depends
on the initial state independently of whether the system is integrable or not.
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Few-body experimental observables in the DE

Momentum distribution

m̂k =
1

L

∑
jj′

eik(j−j
′)ρ̂jj′
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Few-body experimental observables in the DE

nn kinetic energy

K = −t
∑
i

〈b̂†i b̂i+1〉
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NLCEs vs exact diagonalization
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Conclusions

NLCEs provide a general framework to study the diagonal en-
semble in lattice systems after a quantum quench in the thermo-
dynamic limit.

NLCE results suggest that few-body observables thermalize in
nonintegrable systems while they do not thermalize in integrable
systems.

As one approaches the integrable point DE-NLCEs behave as
NLCEs for equilibrium systems approaching a phase transition.
This suggests that a transition to thermalization may occur as
soon as one breaks integrability.
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Finite temperature properties of lattice models

Computational techniques for arbitrary dimensions
Quantum Monte Carlo simulations
Polynomial time⇒ Large systems⇒ Finite size scaling
Sign problem⇒ Limited classes of models

DQMC of a 2D system with: U = 6t, V = 0.04t, T = 0.31t and 560 fermions
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S. Chiesa, C. N. Varney, MR, and R. T. Scalettar, PRL 106, 035301 (2011).
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