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Synthetisized Materials:
High-Temperature Superconductors

Low-dimensional systems
(e.g. TTF-TCNQ & further charge-transfer salts)

Ultracold Gases (Optical Lattices):
Bose-Einstein condensates & Mott-Insulators

Quantum Magnetism of natural Minerals
(Herbertsmithite, Azurite,...): “Spin-liquids”?

Quantum Many-Body Systems
in Nature and in the Lab
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Many-Body Systems Out-Of-Equilibrium:
1) Linear Response

angle-resolved photoemission
(ARPES)

☞ electronic density of states A(k,ω)

(from Wikipedia)

photon 
source energy  

analyser  

(from www.physics.rutgers.edu/
bartgroup/)

☞ local density of states A(ω)

scanning-tunneling 
spectroscopy

http://www.physics.rutgers.edu/bartgroup/
http://www.physics.rutgers.edu/bartgroup/
http://www.physics.rutgers.edu/bartgroup/
http://www.physics.rutgers.edu/bartgroup/
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F. Krausz & M. Ivanov, RMP (2009)
“Light-induced 

superconductivity”
Photo-excitation of 

Mott insulators Photovoltaic effects

S. Wall et al., Nature Physics (2010) D. Fausti et al., Science (2011) E. Manousakis PRB (2010)

Many-Body Systems Out-Of-Equilibrium:
2) Highly Excited Materials



Out-of-Equilibrium

“Quantum Quenches”

Prepared states,
Expansions

➠ Relaxation behavior
➠ Time scales
➠ Novel (metastable) states? 

➠ Sudden change of 
parameters

U0 ➟ U

➠ “Release” atoms, remove a 
trapping potential

Collapse and Revival
of a Bose-Einstein-Condensate

‘Quantum Newton Cradle’

M. Greiner et al., Nature (2002)

T. Kinoshita et al., Nature (2006)

thermal state in 3D, not in 1D

Many-Body Systems Out-Of-Equilibrium:
3) Ultracold Gases & Optical Lattices



Example Quantum Simulators:
Polar Molecules 

➥ generalized t-J model with dipolar long-range interactions

[A.V. Gorshkov, S.R. Manmana et al., PRL & PRA (2011)]

polar Molecules (e.g. KRb) in optical lattices: 
2 Rotational states ⇔ two Spinstates

Effective Model:

dipolar 
interaction

J

V Vt

W-W/8 t: nearest-neighbor hopping
V: Coulomb-repulsion (long-range)

W: density-spin-interaction (long-ranged)
J: Heisenberg coupling (anisotropic, long-ranged)
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[A.V. Gorshkov, S.R. Manmana et al., 
PRL & PRA (2011)]

level scheme for
a rigid rotor in a field:

Idea: project dipolar operator onto two states ➠ effective S=1/2 system

2 basic observations: 
 polar molecules are rigid rotors, e.g., in electric field:

 dipolar, long-ranged interactions:

H0 = BN2 � d0 ~E

Example Optical Lattices:
Polar Molecules 



[A.V. Gorshkov, S.R. Manmana et al., 
PRL & PRA (2011)]

microwaves
➠dressed states:

energies in 
electric field:

level scheme for
a rigid rotor in a field:

(I) (II)

(I): Simplest case, leads to Jz = V = W = 0
 ➠ This talk

(II): Arbitrary ratio between all coefficients
➠ Future research

More general: project dipolar operator onto two dressed states ➠ tunable parameters

useful choice of coefficients:
(depend on details
of dressed states 
{|m0>,|m1>} )                                       

Jz = [⇥m0|d|m0⇤ � ⇥m1|d|m1⇤]2

J? = 2⇥m1|d|m0⇤2

V =
1

4
[⇥m0|d|m0⇤+ ⇥m1|d|m1⇤]2

W =
1

2

⇥
⇥m0|d|m0⇤2 � ⇥m1|d|m1⇤2

⇤

“Ising”
“spin flip”
“density interaction”

“anisotropic interaction”

Polar molecules on optical lattices:
effective models

S.R.M. et al., PRB (rapid comm.) 87, 081106(R) (2013); A.V. Gorshkov, K. Hazzard & A.M. Rey, arXiv:1301.5636 (2013)
(III): Beyond S=1/2, spatial anisotropies,topological order:



9Be+ ions in a Penning trap (NIST Boulder)
[J.W. Britton et al., Nature 484, 489 (2012)]

Example Ultracold Gases:
Ions in a Trap

171Yb+ ions  (JQI/NIST Maryland)
[K. Kim et al., Nature 465, 590 (2010); 

R. Islam et al., Nature Comm. 2,377 (2011);
NJP and more...]

Realization of Ising models with transverse field on variety of lattices: 
Interactions ∼ 1/rα



Numerical Methods for Many-Body Systems: 
Challenges

I) Dynamical spectral functions: 
resolution, finite temperatures

II) ‘Highly excited systems’: 
long times, time evolution at finite temperatures

III) Recent development quantum simulators:
long-range interactions

Further important challenges: D>1, dissipation, infinite system size, ...



“Numerically Exact Dynamics”:
Exact Diagonalization

Direct approach: 

No limitations: 
•arbitrary long times 
•accuracy (machine precision)
•arbitrary geometry 
•independent on details of system or initial state

Bad:
➠ Need the full spectrum...difficult ☹



“Numerically Exact Dynamics”:
Iterative Diagonalization

|vn+1i = H |vni � an |vni � b2n |vn�1i

an=
hvn|H |vni
hvn|vni , b2n+1 =

hvn+1|vn+1i
hvn|vni , b0 = 0

Lanczos procedure:
(Krylov space method) 
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Usually n < 20 is sufficient  

Tridiagonalization of 
Hamiltonian matrix: 

Projection of time evolution operator:

Error estimate:

Larger systems possible
Pro’s/Con’s similar to ‘full diagonalization’

➠ Need to store n vectors with dimension of H ☹

K. Lánczos (1950)

T.J. Park and J.C. Light, J. Chem. Phys (1986)

M. Hochbruck and C. Lubich, SIAM (1997)



“Numerically Exact Dynamics”:
The DMRG

lObtain ground state of finite, small lattice (e.g., using Lanczos)
lReduced density matrix of subsystem (“system block”)

➠ Schmidt decomposition (1907)

A B

➥ central quantity: entanglement entropy S = �
X
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| i =
dimHX

j=1

wj |↵ij |�ij ⇡
mX

j=1

wj |↵ij |�ij Approximation:
m ⌧ dimH

|↵ij , |�ij : Eigenstates of reduced density matrices of A or B
typically (1D) m ∼ 1000, error (discarded weight) ∼ 10-9

S.R. White, PRL (1992); U. Schollwöck, RMP (2005)/Ann. Phys. (2011); R.M. Noack & S.R. Manmana, AIP (2005)

The larger the entanglement, the larger m for a desired accuracy.
• Problematic for D > 1 (‘area law of entanglement’)
• Entanglement grows with time - inhibits (very) long times



“Numerically Exact Dynamics”:
The DMRG

Iterative Procedure:
[Webpage E. Jeckelmann]



“Numerically Exact Dynamics”:
The adaptive t-DMRG

Basic idea:
− Approximate time evolution operator

• Suzuki-Trotter decomposition [Vidal (2003/2004); S.R. White & A. Feiguin (2004); A. Daley et al. (2004)]

• Lanczos projection [P. Schmitteckert (2004); S.R. Manmana et al. (2005)]

− Adapt basis of density-matrix eigenvectors at each time step

Trotter approach (n.n. interactions): Lanczos approach (arbitrary geometry)

U



“Numerically Exact Dynamics”:
Matrix Product States

local complex-valued matrix

➠ underlying structure of the wave function in the DMRG
Convergence: optimize M-matrices via variational principle

Matrix product state (MPS) representation of wave functions:

Matrix product operator (MPO) representation of operators:

U. Schollwöck, Ann. Phys. (2011)



Linear Response Dynamics at T>0



Linear Response:
Dynamical correlation functions

☞ time-dependent perturbation

☞ linear response:

with

☞ express via Green’s functions

H(t) = H0 � hA ei � t A
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Dynamical properties of quantum magnets:
ESR on Cu-PM in magnetic fields

Copper pyrimidine dinatrate:

(Quasi-)1D Heisenberg AFM, described by

effect of staggered g-tensor + DM interaction

ESR spectrum in magnetic field:

DMRG results

[S. Zvyagin et al., PRB(R) (2011)]



Finite temperature methods:
purification with matrix product states

☞ Compute thermal density matrix via a pure state in an extended system:

 

☞ Real time evolution at finite temperature:

 

Problem: reach long times for large systems
Ways out: linear prediction, backward time evolution in Q

) %T = e�H/T = TrQ | T i h T |

| T i = e�(HP⌦IQ)/(2T )
h
⌦L

j=1 |rung � singletij
i

| T i (t) = e�i(HP⌦UQ)t | T i ) GA(T, t)
Fourier) GA(T,!)

[U. Schollwöck, Annals of Physics (2011)]

[T. Barthel, U. Schollwöck & S.R. White,  PRB (2009); C. Karrasch, J.H. Bardarson & J.E. Moore, PRL (2012)]



Spectral functions at finite field

k

ω

Finite-T dynamics
in strong magnetic fields:

small H: spinons

large H: magnons

Time evolution at finite T + Fourier transform 
(non-optimized code, no linear prediction)

[T. Köhler, Master thesis, Univ. Göttingen 2013]



Dynamical correlation functions

H0 |n� = En |n�

Dynamical correlation functions at T = 0:

Dynamical correlation functions at T > 0:

➠ Need the full spectrum...difficult ☹
Way out: continued fraction expansion
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☞ use continued fraction expansion (CFE)

via Lanczos recursion

☞ At finite temperatures:                                                                    

 + evaluation via CFE, correction vector, etc... 

Dynamical correlation functions:
Lanczos recursion
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[E. Dagotto, RMP (1994)]

Note:           is a vector in the Liouville space spanned by | T i HP ⌦HQ

➠ Dynamics is actually governed by Liouville equation

@

@t
| T i = �iL| T i, L = HP ⌦ IQ � IP ⌦HQ

(backward evolution in Q by Karrasch et al.)

[A.C. Tiegel et al., arXiv:1312.6044]



Liouvillian finite-T approach: 
comparison to exact results

Excellent agreement with
exact results!



no DM with DM

Liouvillian finite-T approach: 
Heisenberg antiferromagnet in magnetic field

Melting of a Luttinger liquid
Formation of bands



Relaxation Behavior of Isolated Systems



Unconventional states:
Out-of-Equilibrium Dynamics 

High-energy physics: “Prethermalisation” in heavy ion collisions

thermal
final state

long lived metastable  
state - exotic properties?

[Berges et al., PRL 2004]



Out-of-Equilibrium Dynamics: 
prethermalization in Hubbardmodel

M. Moeckel & S. Kehrein, PRL (2008):

At weak interactions (U << 1, not 1D):
• Time scale ρ-1 U-2 ≲ t ≲ ρ-3 U-4  : metastable prethermalized state with “wrong” quasiparticle residue

➥ agrees with scenario from particle physics
• Larger times: “wrong” quasiparticle residue allows for scattering: 

Boltzmann dynamics & thermalization
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Controlled breaking of integrability:
Dynamics of a 1D dimerised state

29

H(�, U) = �J

LX

l=1

⇥
1 + (�1)l�

⇤ ⇣
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⌘
+ U

LX

l=1

nlnl+1

J+δ UJ-δ

Convenient model:
“Spinless fermions with dimerisation” on a chain (1D):

•U = 0: free fermions, exactly solvable and integrable — should not thermalise
•δ  = 0: exactly solvable and integrable via Bethe ansatz — should not thermalise
•U,δ ≠ 0: no exact solution, non-integrable — should thermalise 

⇒ Control integrability breaking and look for qualitative differences at long times



δ=0: integrable using Bethe Ansatz, phase diagram:

Rich behaviour: 
• Relaxation behavior of the momentum distribution function: non-thermalization?

[S.R. Manmana, S. Wessel, R.M. Noack, and A. Muramatsu, PRL 98, 210405 (2007)]
• Density correlations: ‘horizon-effect’ vs. creation of domain walls

[S.R. Manmana, S. Wessel, R.M. Noack, and A. Muramatsu, PRB 79, 155104 (2009)]

Out-of-Equilibrium Dynamics: 
Relaxation

U/J at t = 0  U/J for t > 0  

U/J



Integrable system
U=0.5 to 2.5
U=5.01 to U = 2.5
Blue line: finite-T QMC results

Two completely different initial states ‘relax’ to a similar state
 Relaxation to a thermal state?
➠ Controlled breaking of integrability in dimerized system 

Momentum distribution function and density correlations:

Out-of-Equilibrium Dynamics: 
Relaxation

[S.R. Manmana et al., PRL (2007)]
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Quench in dimerised state

32

CUT: approximately conserved quasi-particles described by U-dependent 
“number operators” (U<<1): 

➠ “deformed” generalized Gibbs ensemble

Expectations: 
• Metastable state described by this ensemble during life time of quasi-particles
• Scattering between quasi-particles leads to thermalization, as in D>1 Hubbard model
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Quench in dimerised state

33

� = 0.75 ! � = 0.5,

U = 0 ! U = 0.15

� = 0.75 ! � = 0.5,

U = 0 ! U = 0.5

Excellent agreement between tDMRG and CUT!
➠ Confirms formation of quasi-particles & prethermalization plateau

Do we see thermalisation for long enough times and large enough systems?
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Quench in dimerised state

34

� = 0.8 ! � = 0.4,

U = 0 ! U = 0.4

• Weak or no system size dependence
• Up to the times reached: dynamics stays on the prethermalization plateau                            

(also for L=16, t=1000)
• Large thermalisation time scale due to weak breaking of integrability?

Change system size: long(er) times:
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Quench in dimerised state

35

� = 0.8 ! � = 0.4
U = 0 ! U = 0.4 U = 0 ! U = 2 U = 0 ! U = 10

Strong interactions: 
• Prethermalization plateau seems to appear
• Difference between time-averages and thermal expectation values
• Difference minimal for intermediate strength of U — due to finite size effects?

Possible scenarios:
• no prethermalization plateau, direct relaxation to thermal value for intermediate U
• relaxation from prethermalization plateau to thermal on longer time scales
• no thermalisation?
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Quench in dimerised state

36

Δ

non-
thermal:
pre-
thermalization

thermalised?

integrable 
point U=0

integrable 
point U→∞

non-
thermal:
pre-
thermalization



Systems with long-range interactions



Spread of Information:
Lieb-Robinson-Bound

Linear spread of information

Lieb-Robinson-Bound for short-range interactions (lattice systems):

Correlation functions after a global quench:

[S.R. Manmana et al., PRB (2009)]
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Spread of Information:
Ion-Trap-Experiments

Interactions ∼ 1/rα

Not a linear ‘bound of causality’, but curved!
Proposed Lieb-Robinson-Bounds for algebraic long-range interactions:

[P. Richerme et al., arXiv:1401.5088]

 (Hastings & Koma 2006) Z.-X. Gong et al., arXiv:1401.6174
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Algebraically Decaying Interactions:
Causal Horizon vs. Immediate Spread

t-DMRG results for a ‘XXZ’ chain:
α = 0.75 α = 1.5 α = 3

[J. Eisert et al., PRL (2013)]

generic initial state: causal region appears for α > D 
product initial state: causal region appears for α > D/2

When do these bounds apply?
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Conclusions and Outlook

I) Dynamical spectral functions at finite T:
- multitude of interesting effects, compare to experiments
- Liouville-approach

Thank you!

II) Quantum Quenches:
- Relaxation behavior, metastable states
- t-DMRG (Trotter or Krylov variant)

III) Long-range interactions:
- information spread (Lieb-Robinson)
- Krylov t-DMRG, MPOs


