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Quantum many body systems

wikipedia

many interesting quantum phases exist:

wikipedia

magnets superconductor superfluid He Bose-Einstein condensation
wikipedia

theoretically very difficult due to 
large number of degrees of freedom

-> use of model systems



Bosonic atoms in optical lattices
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d i li t ddynamics very complicated
in experiments coupling to environment



Lattice models with dissipative coupling
described by Markovian master equation:

closed system dynamics

dissipative dynamics

atom detection no-detection event
 density matrix
 dissipative coupling
H system Hamiltonian

atom detection no detection event

y

 obtained from Hamiltonian dynamics for both the system and environment
 need short correlation times in environmenteed s o t co e at o t es e o e t
 here  also used for strong dissipation



Outline

Methods:
 Adiabatic elimination method for many body systems

(well known in quantum optics)
 time-dependet DMRG (MPS) method (see talk of S. Manmana for DMRG)

Applications:
 Unconventional dynamics of a Bose-gas subjected to light scattering

two site model: adiabatic elimination + continuum mapping
extended model: adiabatic elimination + mean-field coupling 

 Formation of correlations by local dissipation in a fermionic model
adiabatic elimination + mean-field decoupling of equations for observables
DMRG approach combined with stochastic wave function method 

‘magnetic field fluctuations’g



Conditions for adiabatic elimination

Syassen et al., Science (2008)
Garcia-Ripoll et al., New J. Phys. (2009)
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‘perturbation’ (but does not really need to be very small

where we diagonalize the superoperator:0 [ , ]D 0 ( )    g p p

for 0 
linear solution of the equation of motion
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classify subspaces by their decay rate


 typical exponential decay with decay rate
 oscillations with  
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Idea of adiabatic elimination

classify subspaces by their decay rate


only take slowest decaying subspaces
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only virtual occupation
f d i b ll d

effective dynamics
within decoherence free subspace

H H
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this equation is often still very complicated!
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Validity of adiabatic elimination

all subspaces important
fast exponential decay

effective dynamics
within decoherence free subspacep



timetime
Re

11/ Re
21/ Re
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• very flexiblevery flexible
• any dimension
• complements well short time methods



Application: Bosons with dissipative coupling
dissipative effects:
scattering with thermal atoms
flourescence scattering with light fields
fluctuating noise field 

described by Markovian master equation: closed system dynamics

dissipative dynamics

 density matrix
dissipative coupling dissipative coupling

H Bose-Hubbard model (any D)
F. Gerbier and Y. Castin (2010)
S. Pichler et al (2010)

switch on dissipation at time t=0



Supression of decoherence by interaction

large interaction
dissipation: 

local measurement
of particle number

&
of particle number

interaction impedes decoherence
first slowing down seen in 

exponentially fast 
destruction of coherence
with rate 

localization of atoms
destruction of coherence

S. Pichler et al (2010)
more studies on double well





Adiabatic elimination for bosonic atoms

Poletti, Bernier, Georges, Kollath, PRL (2012)
Poletti, Barmettler, Georges, Kollath, PRL (2013)
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kinetic term

interaction +dissipation0 [ , ]I p
diagonalized by Fock states

decoherence free subspace: diagonal matrices { } { }F n ndecoherence free subspace:     diagonal matrices { } { }j jn n 

infinite time = infinite temperature state F (t ) 1   



Effective equation for two sites
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decoherence free subspace:
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effective (classical) Master equation for diagonal matrix elements:
two sites two particles 

large : 2J ‘normal’ Zeno effect2J g 

large U:
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normal  Zeno effect

‘interaction’ Zeno effect
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large U:

2E U
 interaction  Zeno effect

->impeding of decoherence



Effective equation for two sites, N atoms
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decoherence free subspace:

n
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effective (classical) Master equation for diagonal matrix elements (here ‘interaction Zeno’)

occupation dependent rates

2 2
parameters only enter in rescaled time:

-> even without solution  ‘interaction’ Zeno effect
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Mapping to classical diffusion equation (large U)

continuum mapping (large N limit x=n/N) 
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slowly diffusing states at the boundary
correspond to large imbalance
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rescaled time-scale:
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Diffusion of initial balanced state

anomalous diffusion time-scaleanomalous diffusion
4( 1)
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Slow evolution towards totally mixed state

+
time

+

+…
build up of strongly imbalanced states

energetically very costlyground state close to balanced

-> impeding of decoherence due to interaction
(not due to Mott-state)



Scaling behaviour in coherence
b l t di li ti 1( ) / ~C t N

t

symbols: exact diagonalization
line: adiabatic elimination + continuum approximation
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adiabatic elimination works well at large times
not too small U and 



Interplay of interaction and dissipation
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decoherence free subspace:
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impeding of decoherence by 

‘normal’ Zeno effect
strong coupling to the environment
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‘measurement’ freezes state

‘interaction’ Zeno effect:
strong interaction 
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build up of strongly imbalanced states
energetically very costly

effective dynamics ~ anomalous diffusion in occupation space
algebraic decay



Effective dynamics in extended lattice
effective (classical) Master equation very complicated
(classical Monte-Carlo, see Gabriel Kocher diploma thesis)

fi ld d li f l i l d itmean-field decoupling for classical density
continuum limit
-> diffusion like equation for single site density distribution p

note: direct use of Gutzwiller decoupling leads to incorrect steady states
freezing different steady states can occur
-> Gutzwiller only good for short time



Extended optical lattice: infinite time limit

large time -> infinite temperature state
heating probes ‘all’ configurations

reduced single site density matrix:
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no. of particles on a site

adiabatic elimination gives correct infinite time limit



two unconventional regimes
method: single site mean-field decoupling after adiabatic elimination

short time: power law regime
many almost equally costly processes
(resembles two site dynamics)

method: single site mean field decoupling after adiabatic elimination

( y )





long times: stretched exponential
rare configurations with long time scalerare configurations with long time scale

typical for disorder and frustration 



Idea of origin of stretched exponential

physical interpretation:
exponentially rare states ~exp(-x)
dominate evolution by low diffusion rates ~ 1/xy 

example: local particle fluctuations (scaled)example: local particle fluctuations (scaled)

stretched exponential behaviour!stretched exponential behaviour!



Dissipation in interacting Bose-gases

interplay: dissipation and interactioninterplay: dissipation and interaction

 impeding of decoherence due to 
interaction blocking

l lik d i glass like dynamics 
due to rare states with long time scales

 dissipation probe of
ti t tentire energy structure

open questions:

• can interaction be used
to prevent dissipation?

• implications for heating 
of complex states in cold gases?p g

all this by adiabatic elimination + X



Fermions in a noisy, incoherent ‘magnetic field’
dissipative effects:
polarization measurements, eg. by light scattering
or in solids local magnetic field fluctuations

described by Markovian master equation:
closed system dynamics

dissipative dynamics


 density matrix
 dissipative coupling
n spin density

proced re prepare s stem in gro nd state

ns spin density
H system Hamiltonian:
Fermi-Hubbard model

procedure: prepare system in ground state
switch on dissipation



Only dissipation (H =0) 

single particle correlations: pair correlations are immune! 0sn  
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heated single particle 
correlations

†
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pair correlations
are constantexponential decay with time

time time

p y

decoherence free subspace:
all combinations of doubly occupied sites

+ di l t t+ diagonal states



Effective equations

complicated effective dynamics
go to equation of  motion for special operators

, ,j j jd c c 

mean field decoupling for alternating pairing correlation 1( 1)rf f  †with f d dmean field decoupling for  alternating pairing correlation
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Formation of pair correlations
procedure: prepare system in ground state and switch on dissipationprocedure: prepare system in ground state and switch on dissipation

asymptotic 
value ~1/L



Symmetries of the Hubbard model
U/J 12

number of -pairs is a conserved quantity

† f const   

U/J=12
/J=8, J=1

/ .k af const    pair momentum distribution
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no. of local pairs 
~ longer distance correlations~ longer distance correlations
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Diffusion of staggered correlations
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diffusion equation (U,>>1): 
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meta stable state with pair coherence

here 1Dhere 1D
comparison to numerical stochastic wave function 
with time-dependent DMRG

A D l C K ll th U S h ll ö k G Vid l (2004)
U/J=12
/J=8, J=1

A. Daley, C.Kollath, U. Schollwöck, G. Vidal  (2004)
S. White and  A. Feiguin (2004)

(see talk of S. Manmana for DMRG)



Variance of distribution of pair correlations
1 for diffusion 2 21
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diffusion far beyond validity of adiabatic elimination approximation



Dissipative dynamics in interacting systems

create pair correlations
by local dissipation

interplay: dissipation and interaction

 creation of metastable state with

 impeding of decoherence due to 
interaction blocking

glass like d namics creation of metastable state with 
pair coherence

 diffusive dynamics

l ti i h 1/L

 glass like dynamics 
due to rare states with long time scales

open questions:
 long time pair coherence ~1/L

in finite systems
• can interaction be used

to prevent dissipation?

• suppression of heating?

Thanks to 

pp g

adiabatic elimination is a powerfull method, (any D)

l h i h d fi ld h dcomplement to short time methods as e.g. mean-field methods 
or time-dependent DMRG
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