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Quantum many body systems

many interesting quantum phases exist:
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magnets superconductor superfluid He Bose-Einstein condensation

theoretically very difficult due to
large number of degrees of freedom

-> use of model systems
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Bosonic atoms in optical lattices

interaction
energy

]

’ < 1]
Superfluid (U/J)e  Mott-Insulator

dynamics very complicated "
in experiments coupling to environment universititbonn



Lattice models with dissipative coupling

described by Markovian master equation:

cIosed{system dynamics t

thoip = [H aP] +1iD (p) fli)\

d|SS|pat|ve dynamics

D(p) = %Z oK pK! — KIK,;p — pK! K;

=

atom detection no-detection event

p density matrix
v dissipative coupling
H system Hamiltonian

= obtained from Hamiltonian dynamics for both the system and environment

= need short correlation times in environment
= here also used for strong dissipation "
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Outline

Methods:

= Adiabatic elimination method for many body systems
(well known in quantum optics)

= time-dependet DMRG (MPS) method (see talk of S. Manmana for DMRG)

Applications:

= Unconventional dynamics of a Bose-gas subjected to light scattering
two site model: adiabatic elimination + continuum mapping
extended model: adiabatic elimination + mean-field coupling

= Formation of correlations by local dissipation in a fermionic model
adiabatic elimination + mean-field decoupling of equations for observables
DMRG approach combined with stochastic wave function method

‘magnetic field fluctuations’
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Conditions for adiabatic elimination

split Lindbladian as Syassen et al., Science (2008)
ap Garcia-Ripoll et al., New J. Phys. (2009)
—=W+L)p
ot
VvV =—i [HV ] ‘perturbation’ (but does not really need to be very small

L, =—i1[Hy, ]+ D  where we diagonalize the superoperator: L o =(-A"°+i1™)p,

wor =0
linear solution of the equation of motion classify subspaces by their decay rate

p(t) _ an e(—/igeJri/IO'[m)tpa
ﬂzRe > RE’IO2

» typical exponential decay with decay rate/lf :

» oscillations with '™
A 2> 0,p,

loRe — 0’pF
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Ildea of adiabatic elimination

classify subspaces by their decay rate only take slowest decaying subspaces

Re _ 7Re
A >4, P,

/11Re > O,pl

loRe — 0’pF

only virtual occupation
of decaying subspace allowed

1., H

v

ww Q
% A =0,p"

A >0,p,

AORE — O,pF

effective dynamics
within decoherence free subspace

op"
G =Vee o +%ZVF1V1FPF
1

this equation is often still very complicated!
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Validity of adiabatic elimination

all subspaces important effective dynamics
fast exponential decay within decoherence free subspace

time

A il VEa it

« very flexible .
« any dimension "
« complements well short time methods universitatbonn



Application: Bosons with dissipative couplin

dissipative effects: —
scattering with thermal atoms
flourescence scattering with light fields
fluctuating noise field
described by Markovian master equation: ~ closed system dynamics

~ dissipative dynamics

p density matrix
v dissipative coupling

H Bose-Hubbard model (any D) F. Gerbier and Y. Castin (2010)

S. Pichler et al (2010)

switch on dissipation at time t=0 "
universitatbonn



Supression of decoherence by interaction

large interaction

y

localization of atoms
destruction of coherence

Mott-Insulator

interaction impedes decoherence

first slowing down seen in
S. Pichler et al (2010)

more studies on double well

0.001 | | I | I I E
0 50 100 150 200 250 300

Jt/h

dissipation:

local measurement
of particle number

£

exponentially fast
destruction of coherence

with rate vy
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Adiabatic elimination for bosonic atoms

Sp”t Lindbladian as Poletti, Bernier, Georges, Kollath, PRL (2012)
) Poletti, Barmettler, Georges, Kollath, PRL (2013)
e
L _w+Ly)p

ot
v=—i[H.,] kinetic term

L, =—i[H,,;]+ D interaction +dissipation
diagonalized by Fock states

D(p) = hy Zj (ﬁjﬁﬁj — %ﬁflﬁ - %f)ﬁf)

decoherence free subspace:  diagonal matrices p" =i{nj}><{nj}i

infinite time = infinite temperature state pF(t = oo) =1

universitétbonnl



Effective equation for two sites

decoherence free subspace:

pr =;pn,n|n><n|

n N—n

effective (classical) Master equation for diagonal matrix elements:
two sites two particles

d
= (poo+p11+p22)=0

d
— (po.o — p2.2) = Ao (po.o — p2.2)
dt

d
— (po.o —2p11 + p22) = A (poo — 2p11 + p2.2)
dt

large v: = : Iz o
]2 = normal’ Zeno effect
g = —12—U72/ - 5 y
+y |

E o 2 : =
U ->impeding of decoherence

- |
large U: 2 yJ ‘interaction’ Zeno effect
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Effective equation for two sites, N atoms

decoherence free subspace:

P’ =;pn,n|n><n|

n N—n

effective (classical) Master equation for diagonal matrix elements (here ‘interaction Zeno’)

01' Pn,n — 2 (H:n,Jrl A}O n HT?TA}O n—1 )

Apn — A'T\’Tg(pn—l—l,n-—kl_p-n-,n)

occupation dependent rates (n+1)(N—n)

Wit = (n—N/2+1/2)?

IN2U?
yJ°

-> even without solution ‘interaction’ Zeno effect
universitétbonnl
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Mapping to classical diffusion equation (large U)

continuum mapping (large N limit x=n/N)

N, =o(x)

hU* \ 0 i
“ — (X, t
2%y of p(x.t)

d d H
&(D(X)&ﬂx,t)j:

| () e s

Dlg- === § (/N
(X) (2x1) f=t/N

slowly diffusing states at the boundary
correspond to large imbalance

] 02 o4 o~ 0B 0.8 1

. x
rescaled time-scale:

2N
r=t— \ AV WYV VY
7J
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Diffusion of initial balanced state

D.E*:...--""':'.

: ..~ anomalous diffusion time-scale

nqh A
: _(x=)7 SR 2112
| i | yJ

034

0
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Slow evolution towards totally mixed state

time

build up of strongly imbalanced states

ground state close to balanced SUEGEEEL ) el G0sily

-> impeding of decoherence due to interaction

(not due to Mott-state)
universitétbonnl



- - - _ }
Scaling behaviour in coherence € = (bib: +bb1)

symboils: exact diagonalization
line: adiabatic elimination + continuum approximation C(t)/N ~—

NI ' ' ' (b)

N=60, U/J=20, iy/J=1
10 H| = N=40, U/J=30. iy/J=2
¢ N=50. U/J=10. ry/J=0.5
£ N=40, U/J=0.1, try/J=1

_ analytical solution
10+ . . -
10 10 ° - 10 10 10
2N°U*°
T =1 ;
yJ

adiabatic elimination works well at large times "
not too small U and y universitatbonn



Interplay of interaction and dissipation

decoherence free subspace:

o =;pn,n|n><n|

impeding of decoherence by

1 7 2

normal’ Zeno effect 1 « J_ ‘measurement’ freezes state

strong coupling to the environment E y

‘interaction’ Zeno effect: 7J 2 build up of strongly imbalanced states
strong interaction /1E oC TE energetically very costly

effective dynamics ~ anomalous diffusion in occupation space
algebraic decay

universitétbonnl



Effective dynamics In extended lattice

effective (classical) Master equation very complicated
(classical Monte-Carlo, see Gabriel Kocher diploma thesis) ’

mean-field decoupling for classical density ’ U..’l \
continuum limit ‘ -
-> diffusion like equation for single site density distribution p _

O-p(x.75) = 0y [D(x.74)0pp(x.7p) — F(a.1p)p(2,7f)]

T = 7/f?% D(z,;74) = ((,m —Ef_z()g;fg) dy, F(x,7p) = [° I%I_?f;g:%c)dy and € = hy/fU.

note: direct use of Gutzwiller decoupling leads to incorrect steady states
freezing different steady states can occur
-> Gutzwiller only good for short time

universitétbonnl



Extended optical lattice: infinite time limit

large time -> infinite temperature state

heating probes ‘all’ configurations
reduced single site density matrix:

~

P

/\‘/\‘/\/':_\9/\‘/\‘7 O 5 ~ ’
/\‘/\‘/\‘//\'/\‘/\‘/ | no. of particles on a site |
universitétbonnl

adiabatic elimination gives correct infinite time limit



two unconventional regimes

method: single site mean-field decoupling after adiabatic elimination
short time: power law regime

many almost equally costly processes 10°
(resembles two site dynamics)

844 ACAA

K(Tf)/f 2

1072

long times: stretched exponential
rare configurations with long time scale

A %% AV

T — K(ts)/K(o0)

typical for disorder and frustration

universitétbonnl



Idea of origin of stretched exponential

10°

physical interpretation:
exponentially rare states ~exp(-x)
dominate evolution by low diffusion rates y~ 1/x

1 — k(18 )/ K(00)

universitétbonnl



Dissipation in interacting Bose-gases

interplay: dissipation and interaction ol ’ ]

= impeding of decoherence due to
interaction blocking

= glass like dynamics . |
due to rare states with long time scales 10 10" 107 ¢ 10 10

= dissipation probe of
entire energy structure

open questions:

1= k(15 )/K(o0)

e can interaction be used
to prevent dissipation?

 implications for heating
of complex states in cold gases?

all this by adiabatic elimination + X "
universitatbonn



Fermions in a noisy, incoherent ‘magnetic field’

dissipative effects:
polarization measurements, eg. by light scattering
or in solids local magnetic field fluctuations

closed system dynamics
described by Markovian master equation:

ihoip=[Hpl+ihD(p)

D(p) =y i (Rsapives — 5025 — 3pi2,)

p density matrix

y dissipative coupling
ng spin density

H system Hamiltonian:
Fermi-Hubbard model

procedure: prepare system in ground state "
switch on dissipation : e
> universitatbonn



Only dissipation (H =0)

single particle correlations: pair correlations are immune! N, ‘T¢> =0
o
E<CO’TCET> - _F<CO,TCr,T> ot ' r < r>
d, = Ci1C;y
<cg’Tcm> 0 heated single particle <dgdr> A

correlations

pair correlations
exponential decay with time are constant

time time

decoherence free subspace:
all combinations of doubly occupied sites

+ diagonal states "
universitatbonn



Effective equations

complicated effective dynamics
go to equation of motion for special operators dj =C,4C, |

72 PLPL | Ko PP [K o o]

d - .
24 =
dt Z = Ao+ Ao + l
r', |r—r |=l
aa'=1,...4
= z —"1r"f-'-rr + :{rf’fr" : with _1 _ _2}_2 [EJI- 1) + TJ‘ J + E}r_J_‘ 4 }:j‘r.f.i' _
e TR r F+Z  T—il

mean field decoupling for alternating pairing correlation f~r = (-] f. with f, =/de )

0 r/
a il d \]ZF
~ - dr(o(f)—fj D(f)——s(—(l 2f,)+2— szo]

universitétbonnl



Formation of pair correlations

procedure: prepare system in ground state and switch on dissipation

asymptotic
value ~1/L

0 20 m 60 20 100

Yol "1
universitatbonn



Symmetries of the Hubbard model

U/J=12
number of n-pairs is a conserved gquantity = 1=
o =
<77 77> i fk:;z/a = const. pair momentum distribution
10° 0.25
i Il
I = Ze CrTCri .
. 102 0.2
related to momentum distribution et -
Ju .
1 o 10"
.lzk - _Ze ikd fd )
N . 101
3
) 10.05
no. of local pairs LT

~ longer distance correlations 05 T/ %a — /20 —
1 _ikd
fn/azv(fo+ze fd)

d>0 '.‘
universitatbonn



Diffusion of staggered correlations f.=(-)"f,

d
dr

0 J9F
*+y?

diffusion equation (U,I'’>>1): %f:_(D(fO)difj’ D(fo):_8(?(1_2fo)+2—foj
-

meta stable state with pair coherence

here 1D |
comparison to numerical stochastic wave function

with time-dependent DMRG

A. Daley, C.Kollath, U. Schollwéck, G. Vidal (2004)
S. White and A. Feiguin (2004)

time evolution

Hilbert space
(see talk of S. Manmana for DMRG)

0.08

20
15k diff. eq.

—— DMRG

—4— DMRG

—s— difl. eq. ‘

Yot = 10.0

0 ) 1 6 3 10 19



Variance of distribution of pair correlations

(d*)= %Z r*f,  fordiffusion (d*)=zD(t)t

» diffusion far beyond validity of adiabatic elimination approximation ) "
universitatbonn



Dissipative dynamics in interacting systems

interplay: dissipation and interaction » create pair correlations

0.z

(Superfiuid ) 'Mmlm ) by local dissipation
s | Al

o

ot 0.15
1

= impeding of decoherence due to
interaction blocking

= creation of metastable state with

= glass like dynamics pair coherence

due to rare states with long time scales

open questions: = diffusive dynamics

= Jong time pair coherence ~1/L

e can interaction be used N
in finite systems

to prevent dissipation?

» suppression of heating?

adiabatic elimination is a powerfull method, (any D) Thanks to

complement to short time methods as e.g. mean-field methods '
or time-dependent DMRG : e
universitatbonn



Theory groups:
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