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Quantum many body systems

wikipedia

many interesting quantum phases exist:

wikipedia

magnets superconductor superfluid He Bose-Einstein condensation
wikipedia

theoretically very difficult due to 
large number of degrees of freedom

-> use of model systems



Bosonic atoms in optical lattices
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d i li t ddynamics very complicated
in experiments coupling to environment



Lattice models with dissipative coupling
described by Markovian master equation:

closed system dynamics

dissipative dynamics

atom detection no-detection event
 density matrix
 dissipative coupling
H system Hamiltonian

atom detection no detection event

y

 obtained from Hamiltonian dynamics for both the system and environment
 need short correlation times in environmenteed s o t co e at o t es e o e t
 here  also used for strong dissipation



Outline

Methods:
 Adiabatic elimination method for many body systems

(well known in quantum optics)
 time-dependet DMRG (MPS) method (see talk of S. Manmana for DMRG)

Applications:
 Unconventional dynamics of a Bose-gas subjected to light scattering

two site model: adiabatic elimination + continuum mapping
extended model: adiabatic elimination + mean-field coupling 

 Formation of correlations by local dissipation in a fermionic model
adiabatic elimination + mean-field decoupling of equations for observables
DMRG approach combined with stochastic wave function method 

‘magnetic field fluctuations’g



Conditions for adiabatic elimination

Syassen et al., Science (2008)
Garcia-Ripoll et al., New J. Phys. (2009)
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Idea of adiabatic elimination

classify subspaces by their decay rate
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Validity of adiabatic elimination

all subspaces important
fast exponential decay

effective dynamics
within decoherence free subspacep
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timetime
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• very flexiblevery flexible
• any dimension
• complements well short time methods



Application: Bosons with dissipative coupling
dissipative effects:
scattering with thermal atoms
flourescence scattering with light fields
fluctuating noise field 

described by Markovian master equation: closed system dynamics

dissipative dynamics

 density matrix
dissipative coupling dissipative coupling

H Bose-Hubbard model (any D)
F. Gerbier and Y. Castin (2010)
S. Pichler et al (2010)

switch on dissipation at time t=0



Supression of decoherence by interaction

large interaction
dissipation: 

local measurement
of particle number

&
of particle number

interaction impedes decoherence
first slowing down seen in 

exponentially fast 
destruction of coherence
with rate 

localization of atoms
destruction of coherence

S. Pichler et al (2010)
more studies on double well





Adiabatic elimination for bosonic atoms

Poletti, Bernier, Georges, Kollath, PRL (2012)
Poletti, Barmettler, Georges, Kollath, PRL (2013)
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kinetic term

interaction +dissipation0 [ , ]I p
diagonalized by Fock states

decoherence free subspace: diagonal matrices { } { }F n ndecoherence free subspace:     diagonal matrices { } { }j jn n 

infinite time = infinite temperature state F (t ) 1   



Effective equation for two sites
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effective (classical) Master equation for diagonal matrix elements:
two sites two particles 

large : 2J ‘normal’ Zeno effect2J g 
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->impeding of decoherence



Effective equation for two sites, N atoms
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effective (classical) Master equation for diagonal matrix elements (here ‘interaction Zeno’)

occupation dependent rates
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Mapping to classical diffusion equation (large U)

continuum mapping (large N limit x=n/N) 
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Diffusion of initial balanced state

anomalous diffusion time-scaleanomalous diffusion
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Slow evolution towards totally mixed state

+
time

+

+…
build up of strongly imbalanced states

energetically very costlyground state close to balanced

-> impeding of decoherence due to interaction
(not due to Mott-state)



Scaling behaviour in coherence
b l t di li ti 1( ) / ~C t N

t

symbols: exact diagonalization
line: adiabatic elimination + continuum approximation
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adiabatic elimination works well at large times
not too small U and 



Interplay of interaction and dissipation
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decoherence free subspace:
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impeding of decoherence by 

‘normal’ Zeno effect
strong coupling to the environment
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‘measurement’ freezes state

‘interaction’ Zeno effect:
strong interaction 
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build up of strongly imbalanced states
energetically very costly

effective dynamics ~ anomalous diffusion in occupation space
algebraic decay



Effective dynamics in extended lattice
effective (classical) Master equation very complicated
(classical Monte-Carlo, see Gabriel Kocher diploma thesis)

fi ld d li f l i l d itmean-field decoupling for classical density
continuum limit
-> diffusion like equation for single site density distribution p

note: direct use of Gutzwiller decoupling leads to incorrect steady states
freezing different steady states can occur
-> Gutzwiller only good for short time



Extended optical lattice: infinite time limit

large time -> infinite temperature state
heating probes ‘all’ configurations

reduced single site density matrix:
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no. of particles on a site

adiabatic elimination gives correct infinite time limit



two unconventional regimes
method: single site mean-field decoupling after adiabatic elimination

short time: power law regime
many almost equally costly processes
(resembles two site dynamics)

method: single site mean field decoupling after adiabatic elimination

( y )





long times: stretched exponential
rare configurations with long time scalerare configurations with long time scale

typical for disorder and frustration 



Idea of origin of stretched exponential

physical interpretation:
exponentially rare states ~exp(-x)
dominate evolution by low diffusion rates ~ 1/xy 

example: local particle fluctuations (scaled)example: local particle fluctuations (scaled)

stretched exponential behaviour!stretched exponential behaviour!



Dissipation in interacting Bose-gases

interplay: dissipation and interactioninterplay: dissipation and interaction

 impeding of decoherence due to 
interaction blocking

l lik d i glass like dynamics 
due to rare states with long time scales

 dissipation probe of
ti t tentire energy structure

open questions:

• can interaction be used
to prevent dissipation?

• implications for heating 
of complex states in cold gases?p g

all this by adiabatic elimination + X



Fermions in a noisy, incoherent ‘magnetic field’
dissipative effects:
polarization measurements, eg. by light scattering
or in solids local magnetic field fluctuations

described by Markovian master equation:
closed system dynamics

dissipative dynamics


 density matrix
 dissipative coupling
n spin density

proced re prepare s stem in gro nd state

ns spin density
H system Hamiltonian:
Fermi-Hubbard model

procedure: prepare system in ground state
switch on dissipation



Only dissipation (H =0) 

single particle correlations: pair correlations are immune! 0sn  
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decoherence free subspace:
all combinations of doubly occupied sites

+ di l t t+ diagonal states



Effective equations

complicated effective dynamics
go to equation of  motion for special operators

, ,j j jd c c 

mean field decoupling for alternating pairing correlation 1( 1)rf f  †with f d dmean field decoupling for  alternating pairing correlation
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Formation of pair correlations
procedure: prepare system in ground state and switch on dissipationprocedure: prepare system in ground state and switch on dissipation

asymptotic 
value ~1/L



Symmetries of the Hubbard model
U/J 12

number of -pairs is a conserved quantity
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Diffusion of staggered correlations
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meta stable state with pair coherence

here 1Dhere 1D
comparison to numerical stochastic wave function 
with time-dependent DMRG

A D l C K ll th U S h ll ö k G Vid l (2004)
U/J=12
/J=8, J=1

A. Daley, C.Kollath, U. Schollwöck, G. Vidal  (2004)
S. White and  A. Feiguin (2004)

(see talk of S. Manmana for DMRG)



Variance of distribution of pair correlations
1 for diffusion 2 21
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diffusion far beyond validity of adiabatic elimination approximation



Dissipative dynamics in interacting systems

create pair correlations
by local dissipation

interplay: dissipation and interaction

 creation of metastable state with

 impeding of decoherence due to 
interaction blocking

glass like d namics creation of metastable state with 
pair coherence

 diffusive dynamics

l ti i h 1/L

 glass like dynamics 
due to rare states with long time scales

open questions:
 long time pair coherence ~1/L

in finite systems
• can interaction be used

to prevent dissipation?

• suppression of heating?

Thanks to 

pp g

adiabatic elimination is a powerfull method, (any D)

l h i h d fi ld h dcomplement to short time methods as e.g. mean-field methods 
or time-dependent DMRG
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